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Abstract 

There is an urgent need for developing collaborative process-defect modeling in metal-based additive 

manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable 

machine learning models for anomaly detection. The requirements for large data are especially challenging 

for small-to-medium-manufacturers (SMMs), for whom collecting copious amounts of data is usually cost 

prohibitive. The objective of this research is to develop a secured data sharing mechanism for Directed 

Energy Deposition (DED) based AM without disclosing product design information, facilitating secured 

data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise 

from data sharing, since AM process data contains confidential design information. The proposed Adaptive 

Design De-identification for Additive Manufacturing (ADDAM) methodology integrates AM process 

knowledge into an adaptive de-identification procedure to mask the printing trajectory information in AM 
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thermal history, which otherwise discloses major product design information. This adaptive approach 

applies a flexible data privacy level to each thermal image based on its similarity with the other images, 

facilitating better data utility preservation while protecting data privacy. A real-world case study was used 

to validate the proposed method based on the fabrication of two cylindrical parts using a DED 

process. These results are expressed as a pareto optimal solution, demonstrating significant improvements 

in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up 

to 30% with as little as 0% losses in dataset usability after de-identification.  

Keywords: Additive manufacturing, data privacy, data sharing, de-identification, directed energy 

deposition, in-situ anomaly detection, thermal history. 

1. Introduction  

One of the biggest limitations in the broader adoption of Directed Energy Deposition (DED) based 

additive manufacturing (AM) techniques is the in-situ defect detection for part certification. It is crucial for 

users to detect process anomalies in an effective and timely manner since the offline counterpart methods 

have proven costly and time-consuming [1]–[4]. Machine learning and artificial intelligence has played a 

crucial role in the development of in-situ anomaly detection models for AM [4]–[7]. However, due to the 

high part complexity, the highly variable part designs and printing parameters, building a robust machine 

learning model for in-situ process monitoring requires large amounts of training data, which can be 

prohibitively expensive [4], [5], [8]. Recently, the AM research community has identified these obstacles 

as a serious roadblock for the accelerated adoption of AM, especially for those small-to-medium sized 

manufacturers (SMMs) [4]–[6].  

One potential solution is to facilitate data sharing through the direct aggregation of process data from 

multiple AM users [9], [10]. The idea of data sharing has been proposed as an important tool to expand AM 

technologies [7] and several publications also see it as a remedy to limited data availability plaguing SMMs 

[5], [6]. The aggregated training data can then be leveraged to develop a more accurate, robust, and 

generalizable machine learning model for anomaly detection. Furthermore, these models would require less 
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training data from each user than traditional independent machine learning models [5], [11]. This is 

especially helpful for SMMs, as it will decrease the amount of data required from each user and tackles one 

of the discussed challenges for integrating machine learning with AM [4]–[6].  

Unfortunately, the major obstacle in aggregating process data from multiple AM users is the data 

privacy concerns that arise from sharing process data outside of the user’s organization. This key drawback 

is a highly discussed limitation and forms one of the major gaps in the development and implementation of 

AM data sharing frameworks [5], [7]. In AM, the process data contains critical product design information, 

which heavily involves the intellectual property (IP) of the individual user. Sharing these data outside the 

user’s organization can potentially expose the AM users to the risk of IP theft. This could occur when a 

malicious third-party gains access to the shared data and can reverse engineer the AM design specifications, 

utilizing the printing path and other parameters derived from the AM process data. What is worse, AM is 

typically used in new product prototyping due to its toolless and flexible fabrication for accelerated design 

iterations. Therefore, the risk of IP theft in AM process data can be even more detrimental to AM 

practitioners, especially SMM users.  
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Figure 1: Overview of privacy-preserving collaborative process-defect modeling utilizing ADDAM. This 

process can be independently applied for multiple AM users, where the deidentified data can be 

aggregated and used to develop more robust privacy preserving collaborative models. 

 

This paper proposes an Adaptive Design De-identification for Additive Manufacturing (ADDAM) 

methodology for masking the design information contained in AM thermal process data, while 

simultaneously retaining the quality related information for anomaly detection. This methodology will 

allow for the secure sharing of AM process data among multiple users, which establishes the foundation 

for data aggregation and transfer learning modeling, leading to the development of collaborative privacy-

preserving anomaly detection models with improved IP security and model robustness (Figure 1). The 

technical contributions of this paper include: 1) the development of process data privacy and design de-
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identification framework for AM applications; and 2) the development of the new ADDAM algorithm with 

measurable privacy and utility for AM process data.  

The reminder of the paper is organized as follows. The state-of-the-art studies are summarized in 

section 2. Section 3 discusses the data privacy problem and de-identification methods for AM applications. 

In section 4, the proposed ADDAM methodology is introduced, and section 5 introduces the case study to 

evaluate the effectiveness of the proposed method. Finally, the conclusion and future work are summarized 

in section 6. 

2. Related Research 

This section provides a survey of research related to the proposed method, which includes 1) 

Collaborative defect detection for metal-based AM; 2) AM process security and privacy concerns; and 3) 

a brief survey of the currently used anonymization techniques and their corresponding limitations. 

2.1 Collaborative Defect Detection for Metal-based AM 

This section focuses on the relevance of collaborative smart manufacturing in metal-based AM 

processes. Various in-situ process monitoring and defect detection methods have been proposed for 

identifying anomalies [12]. Among those methods, thermal imaging has been adopted to capture the AM 

thermal history under the premises that a stable thermal history will result in homogenous and thus defect-

free structures. The high dimensional thermal history data are reduced to extract key process features that 

are then leveraged for anomaly detection [1]–[3], [13]–[16]. Moreover, layer-wise anomaly detection 

methods using thermal process data have been proposed for DED processes [3], [16]–[18], which provide 

an additional advantage compared to the defect detection models that only use local thermal features. 

However, the key limitation of this previous work is that these models were only evaluated using one set 

of design and printing parameters at a time. Changes in the process parameters can lead to deteriorated 

model accuracy, and the models would need to be re-trained and re-validated by newly collected data. This 

makes it potentially infeasible to develop accurate anomaly detection models for SMMs, who may print 

small batches of highly diverse parts [8], [10]. Transfer learning techniques can be leveraged to address the 
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modeling limitations related to limited data availability. Transfer learning provides the user with the ability 

to apply learned knowledge or data from one domain to another related domain [19] This would allow the 

knowledge contained within multiple datasets to be leveraged in machine learning models, instead of 

completely discarding and re-collecting data to accommodate the change of AM process parameters. This 

can further the development of a collaborative data sharing framework. Currently, transfer learning has 

been proposed for transferring knowledge between different machines [10] and materials [20] for anomaly 

detection and distortion quantification [9], [21]. However, there are significant data privacy risks that may 

arise from sharing AM process data among different AM users. The AM process data contains confidential 

product information (e.g., design specifications and mechanical properties) that may jeopardize the product 

intellectual property (IP). By sharing AM process data outside their organization, AM users compromise 

their data privacy and are exposed to the risk for IP theft [22]–[24]. This is especially detrimental when 

using AM in the early phase of product prototyping and development. Lack of IP protection may lead to 

tremendous loss for the enterprise [25], [26]. Therefore, there is an urgent need in establishing a privacy-

preserving data sharing framework to facilitate data sharing among multiple AM users for collaborative 

process-defect modeling, while not disclosing confidential product design information.  

2.2 Privacy and Security Concerns in AM Systems 

In the new era of industry 4.0, manufacturing systems are becoming more interconnected [27]. As AM 

systems have become increasingly prominent within industrial manufacturing applications, privacy and 

security have become significant issues that can affect a variety of different aspects of the AM process [24]. 

Traditionally, there are three fundamental concepts related to data security: confidentiality, integrity, and 

availability. This triad of security concerns encompasses vulnerabilities in manufacturing, including the 

overall data confidentiality, data reliability and consistency, and availability of equipment for service [26]. 

Most current data security and privacy concerns focus on preventing cyber-physical attacks that target on 

data integrity and availability, which can diminish the availability of the equipment or integrity of the 
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printed parts and collected data [22], [24], [26], [28]–[30]. However, this leaves a significant gap for 

preventing cyber-domain attacks, which target on the product IP of the users [24], [25].  

The main threats for AM IP protection are the attacks on data confidentiality. This type of attacks is 

commonly conducted by gaining malicious access to process data or related datasets and extracting key 

details to identify some confidential information [26]. This attack can be directly leveraged with AM 

process data to retrieve the product printing path information, and then reverse engineer the printed part 

design specifications [22], [24] (Figure 2). These attacks can be costly and detrimental to the AM users, as 

they directly attack the user’s IP [26]. There are four specific tactics leveraged to preserve data privacy and 

prevent confidentiality attacks, including anonymization, access control, encryption, and querying systems 

[22]. From these different techniques, the most viable options for enhancing data security and facilitating 

transfer learning include anonymization and data encryption. 

 
Figure 2: Current risk of externally shared or aggregated AM process data 

The objective of anonymization is to remove or obscure the confidential information contained within 

the dataset, reducing the availability of specific, identifying characteristics available within the dataset [22], 

[31]. The privacy is enhanced by either suppressing or generalizing identifying features that can be used to 

collect sensitive information contained within the data. However, the biggest limitations facing 

anonymization revolve around ensuring that the data protection is strong enough to withstand re-

identification attacks [22]. On the other hand, encryption is also a strong data security technique, which 

encodes the data so that it appears to be random, irrelevant data that is hard to understand without the proper 

encryption keys [32]. Despite the proven data protections, there are still reservations surrounding the overall 

usability of the post-encryption [22]. Specific forms of encryption, such as homogeneous encryption, are 
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designed to allow computations to be performed once the data are encrypted [32], but the computational 

complexity is limited to only simple models [22], [33]. In addition, for both privacy measures, as the extent 

of the data protection increases, the overall usability of the protected data decreases [22], [31]. This means 

that achieving higher levels of data privacy traditionally leads to greater losses in data usability. 

Anonymization and encryption provide specific advantages to data privacy protection, but still face major 

challenges when balancing data privacy with data usability. Due to the additional computational restrictions 

associated with encryption, anonymization provides a potentially more effective framework for 

incorporating data privacy measures into collaborative, data-sharing AM applications.   

2.3 The 𝒌-Anonymization Method and its Applications 

This section details various anonymization methods, including the 𝑘-anonymization, 𝑘-same family of 

methodologies, and other de-identification models, which form the foundation for the proposed ADDAM 

methodology. Moreover, the major limitations of these methods when applying to AM design de-

identification are summarized. 

2.3.1 Traditional 𝒌-anonymization and Adaptations 

k-anonymization is a specific form of de-identification for data privacy proposed in [34], and is an 

effective solution to guaranteeing data privacy, while still preserving some data usability. This method was 

originally designed for protecting individual sample identities and was primarily implemented for the 

tabular dataset applications. This includes data privacy protection for customer data [35], healthcare data 

[34], and public transportation data [36], as well as various other applications where the sample identity 

privacy is required. Tabular-structured datasets are defined as datasets that are minimally complex and 

contain independent (or weakly correlated) features, such as a person’s name, zip-code, social security 

number, health condition and others. These types of datasets provide an ideal application of  𝑘-

anonymization, where the identity-compromising attributes are either generalized or suppressed to the point 

where there are at least 𝑘 − 1 identical samples for each sample in the dataset [34], [37]. However, for more 

complex applications, additional modifications are needed to improve the applicability of k-anonymization. 
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For example, the Mondrian multi-dimensional 𝑘-anonymization algorithm was formulated as an improved 

privacy-enhancing method to the traditional methodology [38]. The Mondrian method goes one step further 

to incorporate multidimensional partitioning to the anonymization procedure. This partitioning is used to 

achieve a more robust anonymization, as it factors in the relationship between different features during the 

generalization process [38]. Furthermore, clustering [39], [40] and 𝑝-sensitive anonymization algorithms 

[37] have also been proposed as other improvements to the traditional k-anonymization method. These 

updated methodologies still leverage the key generalization and suppression techniques used to ensure data 

privacy, but provide additional approaches to enhancing the process [23]. For all cases of 𝑘-anonymization, 

data protection techniques are applied to the identifying features, instead of applying anonymization to all 

features in the dataset. This helps to ensure the user-defined level of data privacy, while maintaining the 

usability of the non-identifying attributes. 

However, 𝑘-anonymization methods face a few critical limitations. First, the de-identification approach 

is primarily applicable to tabular-structured datasets. Traditional applications of traditional k-

anonymization and its variants (Mondrian [38], clustering [39], [40], 𝑝-sensitive [35], [37]) do not translate 

well to more complex data, such as image data or other multi-dimensional datasets. These datasets contain 

features that are highly correlated and highly nonlinear, which provides a new challenge for 𝑘-

anonymization. Secondly, 𝑘-anonymization and most of its variants and enhancements cannot guarantee 

that there will be no data leakage [37]. These methods can provide enhanced data privacy, but do not provide 

complete protection, unless the dataset usability is extremely compromised. Finally, the proposed 

anonymization tactics of generalization and suppression are specific to the dataset application and can 

severely impact the interpretation of numerical attributes [34], [37]. This is primarily attributed to the 

generalization tactic, which in many cases converts the numerical attribute into a categorical variable (i.e., 

a person’s numeric age into a categorical age range). This impacts the overall usability of the dataset and 

may potentially affect the applications. Because of the abovementioned limitations, several novel 
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approaches to extending k-anonymization to the privacy preservation of more complex data structure have 

been proposed, as discussed in the next section. 

2.3.2 𝒌-Anonymization for Image Data 

More recently, image data have become increasingly available, especially through the widespread 

implementation of security and surveillance monitoring systems. This has caused a drastic increase in the 

need for protecting individuals’ privacy and identity [41]. Traditional naïve methods, such as blurring and 

pixilation, can mask the key identity information from images. However, they only serve the purpose of 

eliminating the identity of individuals within the images, and thus retain very little to no data utility [42]. 

Despite the alterations to the images, some of these methods only deter human recognition, as computer 

algorithms can be leveraged to reverse the distortions and re-identify those individuals [43]. To improve 

data privacy, several different techniques for facial de-identification algorithms have been developed [41]–

[50]. These different approaches provide stronger protection guarantees and better overall data usability in 

de-identified images, pulling inspiration from the previous work of 𝑘-anonymization [34].  

From the different approaches to facial de-identification, there are a few methods that provide robust 

de-identification capacities, which show potential for applications extending beyond facial image data. 

Firstly, the 𝑘-same approach takes the average of 𝑘 similar images within a subset of facial images, and 

replaces the subset with an averaged, surrogate image [41]. This method is the most naïve scheme and 

extends the 𝑘-anonymization technique to complex image data, where these datasets can reach the same 

level of privacy as the 𝑘-anonymization algorithm (see [26] for proof). However, there are two main 

limitations of this methodology. The first is that the 𝑘-same method does not provide a satisfactory level of 

data utility [42]. This is because the image-space is highly non-linear and there is a steep utility loss when 

replacing the entire group of images with one single surrogate image. In addition, there is the threat of re-

identification, since all the anonymization is performed using the original image dataset, meaning that some 

original information is contained within the published data [44]. From the 𝑘-same methodology, the 𝑘-

same-select model was derived to improve the utility performance by providing prior knowledge about the 
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dataset into the de-identification process, which further enhances the utility preservation [42]. Furthermore, 

the 𝑘-same-Model (k-same-M) approach also extends the 𝑘-same method to implement de-identification 

within the Active Appearance Models (AAM) [46], which are widely used in modeling and tracking facial 

image data. This produces a higher quality image, but there are still challenges in capturing key utility 

features, such as facial expressions during the anonymization process [49]. In summary, despite these 

enhancements, there were still significant gaps in applying data privacy to facial images to achieve a trade-

off between privacy and utility.  

To address the limitations of the 𝑘-same methods, the GARP-Face and APFD anonymization 

algorithms were developed for de-identifying facial images to achieve better balance between privacy and 

utility. Instead of replacing image groups with a surrogate image, both methods define the facial features, 

construct nearest neighborhoods, and use a separate utility specific subset of images to perform the 

anonymization. The GARP-Face (Gender-Age-Race) model [44] identifies useful features to preserve 

information (e.g., gender, age, and race) and develops classifiers to identify these features from the sample 

images. These features are then leveraged to identify 𝑘-similar images, which are then combined in the de-

identification process to produce a surrogate image. The Attribute Preserved Face De-identification (APFD) 

method [45] follows a similar approach but leverages an additional optimization function that determines 

the optimal weights to be applied when averaging images. This weighted objective function is directly 

applied to the shape and appearance parameters, maximizing the number of common attributes the original 

and de-identified image share. Furthermore, both techniques also implement AAM to identify and 

characterize the shape and appearance parameters of the face. Overall, the results from this improved 

feature-targeting and preservation process show improved privacy and data utility preservation.  

It is worth noting that these different facial de-identification methods apply the same level of data 

privacy to each image in the de-identified dataset, making them global de-identification approaches. 

However, the global de-identification approach is difficult to be directly applied to AM thermal images for 

the following reasons. Firstly, unlike the facial de-identification datasets, the AM thermal images suffer 
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from limited data availability and a tendency to have repeating identities within the dataset. This can lead 

to compromised performance when directly applying a global de-identification model, as many of the 

nearest neighbor images may share the same identities, and the limited number of samples can degrade the 

overall dataset diversity. Secondly, the AM process data anomalies demonstrate high variations in their 

distributions, meaning that they are distinctly different from both the healthy distribution and each other. 

However, the facial image data do not encounter this problem, as most human faces will share a similar 

distribution of features. This creates another roadblock to directly implementing global de-identification 

methods, since directly averaging 𝑘 nearest neighbors will blur the difference between healthy and 

abnormal melt pool images, leading to dramatically degraded data usability (i.e., anomaly detection 

performance). 

3. De-identification and Data Privacy for AM  

This section will introduce the various types of AM data, as well as the confidentiality and the 

vulnerability in these data. In addition, the role of data privacy in AM and the importance of maintaining 

the balance between data utility and privacy is explained. The formal definitions related to data privacy for 

AM applications set the foundation for the proposed ADDAM algorithm. 

3.1 AM Data Description 

As described in Figure 3, various types of AM data are generated in the four major steps of AM, i.e., 

design, slicing, manufacturing, and inspection. Together, these steps construct the cyber-physical AM 

systems [5]. 

 
Figure 3: Key steps of AM and data generated 
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The design phase includes the generation of the CAD and STL files, which represent the detailed, three-

dimensional part design. This information is highly confidential, especially for rapid prototyping 

applications. Because of this, the data generated during this phase (CAD and STL design files) should be 

maintained internally, and never shared for IP protection purposes.  

The slicing phase takes the design file as the input and generates a g-code file, which contains several 

different process parameters, including the printing path, print speed, layer thickness, temperature settings, 

and many others. Like the design files, these process parameters also contain confidential design attributes, 

and should never be shared externally.  

The manufacturing phase involves the physical printing process while generating a variety of process 

data, including thermal imaging data, acceleration, acoustics, and others. Recently, the process data play 

critical roles in in-situ process monitoring and anomaly detection. However, the process data contain 

confidential design information, particularly relating to the printing geometries and parameters. These 

embedded features can be extracted and linked back to the part design, compromising the product IP. 

Therefore, the implementation of data privacy measures is particularly important at this phase because the 

collected process data are expected to be externally shared and aggregated.  

Finally, the inspection phase is where the final printed part is evaluated for quality assurance. This 

includes checking the Geometric, Dimension, and Tolerance features (GD&T) of the part, as well as 

detecting defects within the print part. Although this process also creates vulnerabilities for IP theft, most 

data collected during this phase will be stored internally and only accessed locally. The data from this phase 

that is shared externally for developing in-situ defect modeling (anomaly labels) usually does not contain 

confidential design information.  

3.2 Key Definitions in AM Privacy 

In this section, several important definitions in AM process data de-identification for process-defect 

modeling are introduced by integrating AM process knowledge into data privacy and anonymization related 

terminologies.  
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Definition I: AM data privacy is defined as the ability of the shared AM data that prevent a malicious 

third party from identifying critical product design specifications. For example, for AM thermal process 

data, specific privacy measures need to be applied directly to the melt pool images to properly de-

identify/mask the printing trajectory information (Figure 4). This creates a safeguard for protecting against 

IP thefts through the AM process data. 

When applying the de-identification framework, the AM data discussed in section 3.1 can be briefly 

categorized into three groups of attributes [23], [34], [37], [38], as summarized in Table 1. 

1) AM Sensitive attributes are attributes that can directly identify the design information contained 

within the dataset. This includes design data (i.e., CAD files), attributes derived from the design 

data (e.g., g-codes and printing angular information), and the complete thermal history, all of which 

pose a significant IP privacy risk. Furthermore, AM Design features are embedded within the 

complete thermal history, which poses a significant risk of data privacy. These features can be 

directly extracted from the thermal process images themselves (as illustrated in Figure 4). This 

creates a major vulnerability for the product IP when sharing the data externally, where malicious 

third parties could gain access to the complete thermal image set and extract these critical design 

features. Thus, it is important that AM sensitive attributes are kept locally, or any relationship 

between the shared data and corresponding sensitive attributes needs to be de-identified. 

 
Figure 4: Melt pool angular orientation and printing path 

2) AM Quasi-identifiers are attributes, that alone, do not directly give away the product design 

information. However, when used in conjunction with other AM quasi-identifiers, or sensitive 

attributes, they can be leveraged to further identify confidential design features. For example, 
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within the thermal process data, each melt pool image alone (or each pixel within the image) does 

not directly give away confidential design information. However, when a large enough set of 

thermal images are available, they can be directly used to re-identify the sensitive AM design 

features. Furthermore, features such as the layer-wise location of the melt pool, and the sequential 

image ID, can be used to enhance the identification of compromising trends and information within 

the process data. Ultimately, the AM quasi-identifier’s relationship with the sensitive attributes 

should be removed or de-identified for secure data sharing.  

3) AM Insensitive attributes are attributes that do not have any direct relationship with the design 

information. This includes the AM Utility Features, which represent the geometric and thermal 

features within the melt pools (e.g., melt pool area and eccentricity, and maximum temperature). 

Unlike the AM design features, these utility features are insensitive to design information, but 

informative for utility preservation (e.g., anomaly detection). Overall, they do not pose a security 

risk and are able to be leveraged for de-identification, or externally shared if desired. 

Table 1: Breakdown for AM process data features and attributes 

AM Steps 
AM Attributes 

Considered 

Attribute 

Classification 
Description 

Design CAD/STL file AM sensitive attribute 
Detailed 3D geometric design and specifications 

file 

Slicing G-code file AM sensitive attribute 
Parameters related to the printing process and 

printing path information 

Manufacturing 

Thermal image AM quasi-identifier 
Independent Image matrix of thermal intensity 

readings 

Layer label AM quasi-identifier Layer-wise location of melt pool 

Image ID  AM quasi-identifier Image ID, sequentially captured 

Angular label AM sensitive attribute Numeric label for angular information 

Inspection Anomaly label 
AM insensitive 

attribute 
Binary label for anomaly information 

 

Definition II: AM data utility is defined as the overall usability of the dataset for specific modeling 

purpose (e.g., anomaly detection) after privacy-preserving measures [52]. For the AM process data de-

identification, this means that sufficient information is retained in the de-identified data for the end-user to 

train defect detection models. This is measured by the ability of a machine learning model to accurately 

detect the presence of anomalies within the de-identified data. 
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4. The Proposed ADDAM Methodology 

In this section, the ADDAM methodology is proposed for de-identifying design information from AM 

melt pool image data. This new methodology focuses on developing a secure aggregation mechanism for 

collaborative process-defect modeling by masking the design information in the thermal history while 

retaining the process quality information. This section starts with an overview of the proposed ADDAM 

methodology (Figure 5), followed by a subsequent breakdown for each of the main stages of the proposed 

method.  

4.1 Proposed ADDAM Overview 

The major advantage of the ADDAM algorithm is the introduction of the novel adaptive mechanism to 

determine the level of data privacy on a per-image basis. This deviates from the traditional forms of 𝑘-

anonymization, which take a global approach to data privacy, de-identifying each image with the same, 

globally determined level of data privacy. The proposed adaptive approach is motivated by the following 

two reasons.  

Firstly, the AM process data tends to be imbalanced and suffers from limited data availability, where 

there are vastly more cases of healthy melt pools as compared to abnormalities. This creates two major 

challenges. First, there is potentially a limited number of unique angular identities available to de-identify. 

This means that de-identifying a sample image with its 𝑘-closet images may not necessarily improve data 

privacy if its nearest neighbors contain the same angular identity. In addition, due to the rare and diverse 

nature of anomalies, the 𝑘-closest images of an abnormal image may include either healthy images or 

abnormal images with different abnormality categories, leading to reduced distinction between healthy and 

unhealthy melt pool images after de-identification. This will significantly jeopardize the data utility (i.e., 

anomaly detection). Secondly, during the printing process there is a noticeable thermal distribution change 

over time in the thermal history. As a result, the baseline for healthy melt pools observed at different layers 

would vary significantly, even though their process parameters are set the same. Implementing a global 𝑘 
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value completely neglects this drifting trend in the thermal distribution and will lead to de-identifying using 

images that are not actually neighbors in the printing process.  

 

Figure 5: Overview of the ADDAM methodology  

A reference or gallery set of 𝑠 thermal images, with each image containing 𝑟 × 𝑐 pixel, can be denoted 

as ℛ ≔ {𝐑𝑖 ∈ ℝ𝑟×𝑐 , 𝑖 = 1, … , 𝑠}. The proposed ADDAM methodology defines a transformation function, 

𝑓 ∶ ℝ𝑟×𝑐 → ℝ𝑟×𝑐, which generates a surrogate thermal image for each observed thermal image,  𝐈𝑗 ∈ ℝ𝑟×𝑐, 

as illustrated in Equation (1). 

𝐈̃𝑗 = 𝑓(𝐈𝑗)  (1) 

where 𝐈̃𝑗 ∈ ℝ𝑟×𝑐 denotes the surrogate image for 𝐈𝑗 with its angular identity 𝜑(𝐈𝑗) de-identified, where 𝜑(∙) 

denotes the instantaneous printing orientation of the thermal image. The transformation function 𝑓 is 

implemented by pooling the observed thermal image 𝐈𝑗 with a selective subset of 𝑘𝑗 − 1 thermal images 

from the reference set ℛ, denoted as ℛ𝑗 ⊆ ℛ and |ℛ𝑗| = 𝑘𝑗 − 1, where |∙| denotes the cardinality of the 

image set. 
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The de-identification function, 𝑓, aims to improve data privacy by masking the design information (i.e., 

printing path information) from each image 𝐈𝑗, while simultaneously retaining data utility for anomaly 

detection and part certification. The proposed ADDAM methodology can be divided into several stages, 

which are discussed in the following sub-sections. 

4.2 Stage 1: Reference Set Selection 

In real world applications, AM users have the ability to use their historical data, or data available from 

machine calibrations, to create a diverse and robust reference set ℛ for de-identification. There are some 

key requirements to keep in mind when developing this independent reference set. Firstly, the reference set 

should have a high diversity of angular orientations. This is important as it will better facilitate proper de-

identification, as more unique identities can lead to more variability in the de-identified images with respect 

to the angular identity. Secondly, the reference data needs to share a similar domain distribution the data to 

be de-identified. This is important for the similarity space construction and the preservation of the data 

utility, as the geometric and thermal features derived from each distribution are indicative to the overall 

characteristics of the distribution. If these features differ too much, it will drastically impact the adaptive 

procedure of the algorithm and lead to utility and/or privacy degradation. Finally, the reference set should 

not include any samples that are also within the set of images to be de-identified. This will lead to a degraded 

privacy gains, as these duplicate reference images would be guaranteed to be included in the adaptive-k 

samples used to de-identify the original image. 

After selection of the reference images, the overall reference set quality can be evaluated in a couple of 

ways. The first is to evaluate the overall difference between the derived thermal and geometric features of 

the reference set and the de-identification set. These features play an important role in de-identification, 

and if their distribution in the reference set differs too much from the de-identification set, it will impact 

the overall algorithm performance. Secondly, the two domain distributions could be quantitatively 

evaluated using a distance metric, such as Maximum Mean Discrepancy (MMD) or Kullback-Leibler 
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Divergence. This allows a user to quantify the distance and difference between two distributions with 

metrics that are commonly used in transfer learning and domain adaption applications [53], [54].  

4.3 Stage 2: Process Data Dimension Reduction  

 To reduce the dimensionality of the thermal images, the reference set, ℛ, is used to fit Vectorized 

Principal Component Analysis (vPCA) for low dimensional process feature extraction. The vPCA achieves 

dimensionality reduction by mapping the original melt pool images into a low-dimensional space, where 

each sample image, 𝐈𝑗, is then transformed into this space, as illustrated in Equation (2). 

where 𝐖𝑝 represents the projection matrix estimated from the reference image set, ℛ, and 𝑝 denotes the 

percentage of the total variability explained by the extracted PCs, denoted as 𝒗𝑗. In most cases, the value 

of 𝑝 is set as 95% such that the major variability in the original melt pool image 𝐈𝑗 can be retained in 𝒗𝑗.  

4.4 Stage 3: AM Utility Attribute Space Construction 

The Utility Attribute Space (UAS) incorporates derived features to construct a vector space to evaluate 

the utility-aware similarity of sample images to images in the reference image set. The features used to 

construct this space include both the geometric features and the other insensitive, utility related features. 

These derived features can be directly indicative of the overall health status of the melt pool and play an 

important role in preserving the dataset utility and achieving adaptive de-identification. However, it is 

important to note that these features underperform compared to the features extracted using PCA for 

anomaly detection. For this reason, these features are not leveraged during classification. The UAS is 

leveraged to identify the abnormal and healthy melt pool images, based on how similar they are to their 

neighbors. This improves data privacy as it ensures that healthy melt pools, which tend to have a high 

number of neighbors, achieve a higher level of data privacy. Since healthy melt pools tend to make up the 

majority of data samples, this ensures better data set privacy. In addition, the UAS allows for abnormal 

melt pools to maintain a minimum level of de-identification, which in turn maintains dataset usability. This 

𝒗𝑗 = vec(𝐈𝑗)𝐖𝑝 (2) 
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is due to the characteristic fact that the abnormal melt pools are dissimilar from healthy melt pools and each 

other, allowing these samples to maintain their distinct characteristics by using a lower adaptive 𝑘 value. It 

is important to note that this will not compromise the overall dataset privacy, as with AM data not every 

image has to be de-identified to ensure data privacy. The main risks are exposed when a large set of images 

are available and can be used together, and these anomalies only make up a small subset of the data.  

Multiple AM utility attributes are proposed to form the UAS. The first attribute is the 𝐿2 norm of the 

reconstruction error denoted as 𝑔𝑗
1, which can be calculated in Eq. (3) for each 𝐈𝑗,  

𝑔𝑗
1 = ‖𝐈𝑗 − 𝐈̂𝑗‖

2
 (3) 

where 𝐈̂𝑗 ∈ ℝ𝑟×𝑐 denotes the image reconstructed from 𝒗𝑗. This feature is important as the vPCA algorithm 

is fit using healthy reference images, which provide a larger 𝐿2 reconstruction error for melt pools that 

contain anomalies. Moreover, a few additional utility features can be extracted from each original melt pool 

image 𝐈𝑗, including peak temperature and its row and column location in the field of view, as well as the 

area and eccentricity of the melt pool, which is segmented using the melting point of the feedstock material. 

These abovementioned features of 𝐈𝑗 are denoted as 𝑔𝑗
𝑤 (𝑤 = 1,2, … ,6).  The 6-dimensional feature vector 

is denoted as 𝒈𝑗 = (𝑔𝑗
1, 𝑔𝑗

2, … , 𝑔𝑗
6), which forms the UAS to determine the similarity of each melt pool 

image 𝐈𝑗 against the reference images.  

A distance function is defined in the UAS, denoted as 𝑑𝑔(𝐗, 𝐘), which represents the Euclidean distance 

between two thermal images, i.e., 𝐗 and 𝐘, in the UAS. This distance function is used to identify the subset 

of images in ℛ to be used to de-identify the observed image 𝐈𝑗, and thus acts as one of the controlling 

mechanisms used to tune the sensitivity of the ADDAM algorithm when determining the adaptive 𝑘 value. 

4.5 Stage 4: Determination of the Adaptive 𝑘𝑗 Value 

This stage determines the adaptive 𝑘𝑗 value for 𝐈𝑗. The proposed method significantly departs from the 

traditional 𝑘-same, GARP, and APFD algorithms, which utilize a global 𝑘 value to achieve image 

anonymization [44], [45]. There are two distinct and important operations within the ADDAM algorithm. 
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Firstly, the ADDAM algorithm implements a series of constraints when determining the 𝑘-closest reference 

images of 𝐈𝑗. These constraints leverage characteristics of each melt pool, including the layer location and 

angular identity, and define the neighborhood size within the UAS. This plays a crucial role in the ADDAM 

algorithm, as it allows the user to adjust and control the sensitivity and tune the de-identification algorithm. 

Secondly, the adaptive algorithm employs an additional balancing mechanism, which ensures that the 

reference set, combined with the sample image 𝐈𝑗, is equally diverse across all possible angular identities 

in the dataset. Both aspects are critical components that de-identify the angular identities while retaining 

the utility related information in the de-identified image 

For each angular identity in ℛ, denoted as 𝜃𝑛 (𝑛 = 1,2, … , 𝑚), the corresponding angular-reference set, 

used to de-identify 𝐈𝑗, can be defined in equation (4), 

ℛ𝑗
𝑛 = {𝐑𝑖|

𝑙(𝐑𝑖) ∈ [𝑙(𝐈𝑗) − ∆𝑙, 𝑙(𝐈𝑗) + ∆𝑙]

𝜑(𝐑𝑖) = 𝜃𝑛

𝑑𝑔(𝐈𝑗, 𝐑𝑖) ≤ 𝑀

} (4) 

 

where the first constraint enforces the identified neighbors to be in proximity of 𝐈𝑗 in terms of the build 

layers, where 𝑙(∙) denotes the layer index where the thermal image is collected from, and ∆𝑙 represents the 

pre-defined maximum allowable layer difference between the identified neighboring images and 𝐈𝑗; the 

second constraint requires the elements in ℛ𝑗
𝑛 to be of the angular identity 𝜃𝑛; the last constraint forces that 

the Euclidean distance (denoted as 𝑑𝑔) between the identified neighboring images and 𝐈𝑗 are no larger than 

a pre-defined threshold value 𝑀 in the UAS defined in Stage 3. After applying these constraints, the number 

of closest reference images in ℛ𝑗
𝑛 can be calculated as below.  

𝑘𝑗
𝑛 = |ℛ𝑗

𝑛|   (5) 

where 𝑘𝑗
𝑛 ≥  0, and 𝑘𝑗

𝑛 varies according to the similarity of 𝐈𝑗 to the reference thermal images in ℛ as well 

as the corresponding angular identity 𝜃𝑛. For example, if 𝐈𝑗 is a healthy thermal image, there will be many 

𝐑𝑖’s in proximity of 𝐈𝑗 in terms of both build layers and within the UAS, and thus the value of 𝑘𝑗
𝑛 will be 

larger. However, if 𝐈𝑗 is an unhealthy thermal image, there will be very few (or even none) neighboring 
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thermal images in ℛ, and thus the 𝑘𝑗
𝑛 value will be very small (or even zero). In the case where one or more 

of the 𝑘𝑗
𝑛 = 0, 𝐈𝑗 is probably extremely abnormal, and therefore will receive no de-identification to keep its 

significant deviation from the healthy group. This scenario is extremely rare within ℐ, and will not create 

any major privacy concerns as abnormal melt pools make up the minority. In addition, it is worth noting 

that the sample image 𝐈𝑗 is the nearest neighbor to itself within the subset where 𝜑(𝐈𝑗) = 𝜃𝑛.  The sample 

image will be incorporated into the corresponding ℛ𝑗
𝑛 of the same angular identity 𝜃𝑛. This ensures that 

sample image angular identify will be accounted for when the algorithm undergoes a balancing procedure.  

Subsequently, the adaptive algorithm involves a crucial balancing function that ensures that there is an 

equal representation of images within each reference subset ℛ𝑗
𝑛. This prevents an overpopulation of one 

angular identity during the de-identification process, which can impact the amount of data privacy achieved. 

This step results from the major difference present between the ADDAM algorithm and traditional 𝑘-

anonymization algorithms. Traditionally, when applying global anonymization techniques, each image 

within the dataset contained a unique identity, such as a human face. If this image is anonymized with any 

other identity in the dataset, there will be a resulting gain of privacy for that individual.  However, with AM 

thermal process data, there are repeating identities within the dataset. Therefore, the de-identification with 

the same identity will not yield any privacy gains. Balancing the distribution of these angular identities 

within ℛ𝑗 guarantees that not one unique identity will be more prominent than the others during de-

identification. This is accomplished by first ensuring that each angular-based subset previously determined 

is re-indexed into a monotonically increasing order, such that 𝑑𝑔(𝐈𝑗, 𝐑(1)) ≤ 𝑑𝑔(𝐈𝑗, 𝐑(2)) ≤ ⋯ ≤

𝑑𝑔 (𝐈𝑗, 𝐑
(𝑘𝑗

𝑛)
) ≤ ⋯ ≤ 𝑑𝑔(𝐈𝑗, 𝐑(𝑠)). Re-indexing ensures that the images with the shortest Euclidean 

distance to the sample image will be first in the order of the subsets.  

From here, a fourth filter is applied, which limits the size of each subgroup to be equal to the smallest 

subgroup. This is the novel balancing procedure which ensures that each angular identity is equally 

represented within the closest 𝑘𝑛 images to the sample image, 
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𝑘𝑗
∗ = min(𝑘𝑗

𝑛) (6) 

and the balanced identify subgroup ℛ𝑗
∗𝑛 = {𝐑𝑖|𝐑𝑖 ≤ 𝑑𝑔 (𝐈𝑗, 𝐑

(𝑘𝑗
∗)

) , 𝐑𝑖 ∈ ℛ𝑗
𝑛}. Next, the aggregated de-

identification set, ℛ𝑗, can be formed by directly merging ℛ𝑗
∗𝑛’s to form the larger and equally diverse de-

identification dataset. This aggregated set ℛ𝑗 is directly used to de-identify sample image 𝐈𝑗, 

𝑘𝑗 = 𝑚 × 𝑘𝑗
∗ (7) 

ℛ𝑗 = ⋃ ℛ𝑗
∗𝑛

𝑚

𝑛=1

  (8) 

where 𝑘𝑗 is the number of aggregated, closest images used to de-identify 𝐈𝑗. The aggregated de-

identification set, ℛ𝑗, is a direct combination of all the balanced reference subgroups, ℛ𝑗
∗𝑛. This is the set 

of images (sample image and closest reference images) that will be directly used to de-identify 𝐈𝑗.  

4.6 Stage 5: Melt Pool Image De-identification 

The final stage of the proposed methodology is AM process image de-identification, given the 

𝑘𝑗 neighboring images identified in stage 4. For each sample image 𝐈𝑗, all the images in ℛ𝑗 are combined 

to form the anonymized image, 𝐈̃𝑗, by directly averaging the dimensionally reduced images in ℛ𝑗 as below.  

𝒗̃𝑗 =  
 ∑ 𝒗𝑗𝒗𝑗∈ℛ𝑗

𝑘𝑗
    (9) 

where each image within the aggregated de-identification set is directly averaged to create a de-identified 

PC vector (𝒗̃𝑗), which can then be reversely transformed into the original image space to obtain the 

surrogate image  𝐈̃𝑗 to be published and aggregated with data from other AM users. 

4.7 Evaluation of Design De-identification Performance 

To evaluate the design de-identification performance for secured collaborative AM process-defect 

modeling, two novel anonymization performance metrics are introduced to meet the needs of AM 

applications. These metrics will allow for the measurable gain in privacy and loss in utility of the dataset 
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shared, and then can be further evaluated using a Pareto Front [55], [56] to quantify the tradeoff between 

two conflicting objectives: 1) minimizing Utility Loss and 2) maximizing Privacy Gain [44]. These two 

metrics are derived from the traditional classification metrics, which have been previously leveraged to 

evaluate the performance of de-identification and k-anonymization algorithms [41], [43], [44], [46]. 

Traditionally, the data privacy performance can be gauged as the number of correct predictions before and 

after de-identification. This allows for a natural and easily implementable method for evaluating model 

performance using ML models by simply calculating the performance metrics before and after.  

Definition III: Utility Loss, UL, is defined as the decrease in the anomaly detection performance (in 

percentage) due to de-identification.  

UL =  −(𝑋Base − 𝑋Anon)  (10) 

where 𝑋Base and 𝑋Anon denote the anomaly detection performance metrics achieved by the original dataset 

and the de-identified dataset, respectively. It is worth noting that based on the definition, UL is usually a 

negative value. Therefore, it is desirable to either minimize |UL| or maximize UL. In addition, the UL 

metric is written in a general form of anomaly detection performance metrics above, while it relies on 

leveraging classification metrics, such as F1 (13) or overall Accuracy (14). In general, the F1 can be 

leveraged when evaluating UL, as AM process data is traditionally unbalanced with respect to the anomaly 

labels.  

Definition IV: Privacy Gain, PG, is evaluating the classifier model’s ability to predict the printing path 

orientation between the baseline and de-identified datasets, ultimately evaluating the privacy gains from 

implementing de-identification algorithms. 

PG =  𝑍Base − 𝑍Anon (11) 

where 𝑍Base and 𝑍Anon denote the printing orientation classification performance metrics achieved by the 

original dataset and the de-identified dataset, respectively, and they are also written in general form and 

relies on the specific classification metric used (12) − (13), which is determined heavily on the balanced 
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or unbalanced characterization of the dataset. In general, the Accuracy can be leveraged when evaluating 

PG, if the datasets are balanced with respect to the print orientation labels. Had the angular class labeling 

been unbalanced, the F1 should be used.  

Both PG and UL are plotted in a two-dimensional plot to find the pareto front of optimal solutions, 

determining the overall performance of ADDAM. The following equations describe the different 

classification metrics used to build the UL performance metric.  

In these equations, TP represents the correct prediction that there is a defect present and the melt pool is 

abnormal, and TN represents the correct prediction that there are no defects present, and the melt pool is 

healthy. In addition, FP represents the incorrect prediction that there is a defect present, but the melt pool 

is healthy, and FN represents the incorrect prediction that there are no defects present, but the melt pool is 

abnormal. The metrics used depend on how balanced the data is with respect to class labels. For example, 

when the dataset is unbalanced, F1 should be used for 𝑋Base and 𝑋Anon. Otherwise, Accuracy would be a 

good choice [57]. Furthermore, accuracy is leveraged as the underlying metric behind the PG.  

In summary, a pseudocode of the proposed ADDAM algorithm is detailed in Figure 6.  

Recall =
TP

TP+FP
; Precision =

TP

TP+FN
 (12) 

F1 =
2 × Precision × Recall

Precision + Recall
 

(13) 

Accuracy =
Correctly Predicted Angular Identities

Total Predictions
 

(14) 

ADDAM De-identification Algorithm 
Input: Sample Image Set  ℐ 
            Reference Subsets ℛ 
            Derived feature set 𝑔𝑗

𝑤  (𝑤 = 1,2, … ,6) for both ℐ and ℛ image sets 

Output: Anonymized Image Set ℐ̃ 
 

Dimensionality Reduction and UAS Construction: 
    1: Fit vPCA with reference image set ℛ 

    2: Transform each sample image 𝐈𝑗 ∈ ℐ into ℛ vPCA Space:  𝒗𝑗 = vec(𝐈𝑗)𝐖𝑝 

    3: Calculate 𝑔𝑗
1 for each image and append to 𝒈𝑗  

 

ADDAM Algorithm: 
    4 : Generate the empty image set ℐ̃ 
    5 : For 𝒗𝑗 ∈ ℐ: 
    6 :      Generate the empty image set ℛ𝑟𝑒𝑑𝑢𝑐𝑒𝑑  
 

    Applying the Layer Constraint 
    7 :       For 𝒗𝑖 ∈ ℛ: 
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Figure 6: The Pseudocode of the ADDAM Algorithm  

5. Case Study   

This section will discuss the case study used to validate the proposed ADDAM methodology with 

respect to both data privacy gain and data utility preservation. 

5.1 Experimental Setup and Data Description 

The experimental setup is visualized in Figure 7, which consists of an OPTOMEC LENS 750 Directed 

Energy Deposition (DED) machine equipped with a co-axial pyrometer camera (Stratonics Inc.) to capture 

the thermal images during the fabrication [2], [3], [17], [18]. The LENS DED machine leverages a 1.0 𝑘𝑊 

Nd:YAG laser, and the pyrometer is mounted above the DED machine, outside of the inert chamber, where 

    8 :              Identify 𝑙(𝐑𝑖)  

    9 :              if 𝑙(𝐑𝑖) ∈ [𝑙(𝐈𝑗) − ∆𝑙, 𝑙(𝐈𝑗) + ∆𝑙]: 
   10:                    Append 𝒗𝑖 to ℛ𝑟𝑒𝑑𝑢𝑐𝑒𝑑  
 

   Applying the Angular Constraint 
   11:       Generate empty image set  ℛ𝑗

𝑛 for 𝜃𝑛 angular identities 

   12:       Append 𝒗𝑗to corresponding ℛ𝑗
𝑛 with 𝜑(𝐈𝑗) = 𝜃𝑛 

   13:       For 𝒗𝑖 ∈ ℛ𝑟𝑒𝑑𝑢𝑐𝑒𝑑: 
   14:               if 𝜃𝑛(𝒗𝑖) = 𝜃𝑛 
   15:                     Append 𝒗𝑖 to ℛ𝑗

𝑛 
 

   Applying the Euclidean Distance Constraint 
   16:       For 𝒗𝑖 ∈ ℛ𝑗

𝑛: 

   17:               Calculate Euclidean distance 𝑑𝑔(𝐈𝑗 , 𝐑𝑖) using the UAS features 

   18:               if 𝑑𝑔(𝐈𝑗 , 𝐑𝑖) > 𝑀, 

   19:                     Remove 𝒗𝑖 
   20:        𝑘𝑗

∗ = min (len(ℛ𝑗
𝑛)) 

 

   Balancing the Angular Subsets 
   21:       For each ℛ𝑗

𝑛: 

   22:             Re-index ℛ𝑗
𝑛 as 𝒗(1), 𝒗(2), … , 𝒗

(𝑘𝑗
𝑛)

 in the increasing order based on 𝑑𝑔 

   23:             if len(ℛ𝑗
𝑛) > 𝑘𝑗

∗ 

   24:                   Remove 𝒗(𝑖−) if 𝑖
− > 𝑘𝑗

∗ 
 

   Forming the Aggregated De-Identification Set 
   25:       ℛ𝑗 = concatenate(ℛ𝑗

𝑛) 

   26:       𝑘𝑗 = 𝑚 × 𝑘𝑗
∗ 

 

   De-Identification 

   27:       Average the remaining 𝑘-closest images 𝒗̃𝑗 =  
 ∑ 𝒗𝑖𝒗𝑖∈ℛ𝑗

𝑘𝑗
    

   28:       Append de-identified image 𝒗̃𝑗 to ℐ̃ (PC matrix of Image) 

   29: Inverse Transform vPCA ℐ̃ to original image dimensions 
   30: Return Anonymized Image Set ℐ̃ 
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it is aligned with a series of mirrors to obtain a co-axial view. The specifications of the pyrometer are as 

follows: 

• Exposure time: 2.0274ms  

• Image Size 752 × 480 and pixel pitch 6.45μm 

• Captured temperature range: 1000–2500 °C 

• Pixel clock: 5 MHz 

• Image collection rate: 6.4 Hz 

Two cylindrical specimens with different printing parameters and infill patterns were fabricated for 

data collection.  The key printing parameters are summarized in Table 2.  

 
Figure 7: Experimental set-up and data collection methods 

 

Table 2: Printing parameters for Part 1 and Part 2 
Parameters Part 1 Part 2 

Scan speed 40 inch/min 50 inch/min 

Powder feed rate 3 rpm 2.5 rpm 

Hatch spacing 0.02 inch 0.025 inch 

Power 300 W 350 W 

Layer thickness 0.015 inch 0.015 inch 

Number of thermal images utilized 1,616 842 

Number of layers in the build 69 55 

Number of anomalies 138 (6%) N/A 

Infill pattern Unidirectional (0°/180° ) Unidirectional (60°/180/300° ) 
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The specimen fabrication resulted in raw thermal images with 480 rows and 752 columns, in which 

each pixel represents a temperature reading at the corresponding location. First, these images are cropped 

into 201 × 201 to reduce the image dimensions and remove irrelevant regions that do not contain the melt 

pools. It is important to note that the initial cropping parameters were consistent across all the images. In 

addition, the instantaneous printing orientations of both datasets were determined by leveraging the g-codes 

of the two specimens post-processing. There are two unique angular identities in Part 1 (0°/180°), and three 

in Part 2 (60°/180°/300°). Furthermore, due to the existing trends in the AM thermal process data, only the 

data after layer 20 were leveraged for tuning and evaluating the performance of the different algorithms. 

This provides a better, more consistent evaluation of ADDAM performance. Overall, these two datasets 

will provide four unique angular identities and 2,458 thermal melt pool images for experimentation. This 

is a limited dataset that will allow more controlled experimentation and simulate the limited data availability 

faced by SMMs. The results are reflective and comparable to the application of ADDAM in a practical 

setting.  

After part fabrication, the porosities were detected utilizing the XCT inspection and subsequently 

matched with the thermal images based on the porosity location and the g-code for Part 1 only. As a result, 

the thermal images were labeled as defect present (1) or defect absent (0). For Part 2, there is no post-

process inspection data available for anomaly detection modeling. 

5.2 Evaluation Procedure 

5.2.1 Benchmark Method Selection 

For benchmark comparison, a global 𝑘-anonymization approach was applied. This involves 

anonymizing each sample image with a constant number of k-closest neighbors, instead of allowing an 

adaptive k value to be applied to each image. This is indicative of the traditional global 𝑘-anonymization 

methods that have been used in the past, primarily in the 𝑘-same methods. The performance comparison 
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will demonstrate the effectiveness of the proposed adaptive mechanism in de-identifying AM process data. 

It is worth noting that the global 𝑘 value will be the only hyperparameter to tune for the benchmark method. 

5.2.2 Two Testing Scenarios 

Two different testing scenarios were designed to evaluate the performance of the ADDAM algorithm.  

Scenario I: This scenario aimed at evaluating both the data utility and privacy by applying the ADDAM 

algorithm exclusively to Part 1, where there are both anomaly and theta labels. This scenario simulates a 

single, independent user who is applying the ADDAM algorithm to their dataset before data sharing.  

Scenario II: This scenario was designed to evaluate the effect of additional instantaneous print 

orientations on the privacy preserving abilities of the ADDAM, as well as to evaluate the utility preservation 

abilities when aggregating two datasets. This is simulating the collaboration of two users, or a single user 

leveraging two datasets, to de-identify the thermal process data. Ultimately providing further validation to 

the results from the first scenario, as there were limited print orientations available within the first test, as 

well as providing an evaluation on the performance of ADDAM when aggregating multiple datasets. 

5.2.3 Data Splitting for Evaluation 

For both previously described scenarios, 30% of the sample images were used as the reference image 

set (ℛ) for the de-identification process, which simulates an independent reference or gallery set that shared 

a similar distribution to the de-identification data. The remaining images were used to as the sample images 

(ℐ). More specifically, for Part 1, 30% of the healthy melt pool images (Class = 0) were used to form ℛ. 

This is a similar tactic to those used in [3], where the distribution of the normal melt pools is leveraged to 

identify abnormal melt pools. However, for Part 2 there is no normal and abnormal class labels, so the 

reference data (ℛ) is taken by randomly sampling 30% of the original melt pool images. This data splitting 

method is described in detail in Figure 8. 
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Figure 8: Data splitting for scenario I and scenario II  

In addition, the Maximum Mean Discrepancy (MMD) [53] can be leveraged to verify the similarity of 

the distribution between the reference set and the de-identification set. The MMD is essentially defined as 

the distance between the feature mean of two distributions. This similarity metric has been commonly 

leveraged in transfer learning applications to determine the distance, or similarity, between the source and 

target domains [11], and can be used as a loss function in deep learning applications [58]. The calculated 

MMD scores between the reference set and the sample sets for both testing scenarios are summarized in 

Table 3. In general, the lower MMD score is, the smaller the distance between the feature means of the two 

datasets will be. It can be observed that the MMD scores for both testing scenarios are only 1.41% and 

0.97% of the MMD score between the distributions of two fabricated parts.  

Table 3: MMD evaluation of reference and sample sets for each scenario 

Linear MMD 
Scenario I Scenario II Part 1 and Part 2 

6.088 4.159 430.750 

 

Furthermore, from the sample image set (ℐ), 30% of the images were randomly sampled and used as a 

tuning set (𝒯) to tune both the ADDAM user-defined hyperparameters (𝑀 and Δ𝑙) and the global 𝑘 nearest 

neighbor parameter (𝑘). This tuning data is first de-identified using different combinations of the user-

defined hyperparameters and is then evaluated each time using an SVM classifier for anomaly detection 

and angular identity detection. The remaining 70% of the sample images were used as an evaluation set (ℰ) 

to gauge the performance of the optimal user-defined de-identification parameters identified from the tuning 
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process. The evaluation set is de-identified using each of the parameter sets selected from the tuning data. 

After de-identification, the de-identified evaluation data was split into 80/20 training/testing sets and fed 

into SVM classifiers to predict anomalies and angular identities, producing the overall UL and PG 

performance of the de-identification algorithm. This final SVM performance evaluation was performed 

over 10 iterations and results in an averaged performance for the de-identification algorithm. This entire 

procedure was repeated for both scenarios, just with either Part 1 independent or Part 1 and Part 2 

aggregated datasets, which also dictates if either anomaly-detecting and/or angular identity detecting SVM 

classifiers are leveraged.  

To evaluate the algorithm performance in these two scenarios, an SVM classifier was chosen due to its 

ability to characterize the non-linear relationships within high-dimensional data. The SVM classifier was 

used during both the tuning stage and during the final evaluation stage, and the SVM hyperparameters were 

tuned using grid search cross-validation with a stratified shuffle splitting strategy. In addition, 10 

replications were performed for each scenario test, and the average performance across these replications 

was reported and compared to evaluate model robustness.  

5.3 Parameter Tuning  

For each image within the sample dataset, there are several parameters to consider, these include the 

variability explained in the PCs (𝑝) and the user-defined constraints related parameters, i.e., M and Δ𝑙. For 

the 𝑝 value, the variability explained by the PCs was fixed at 95%. This value was chosen as an adequate 

level of variation that will reduce the high dimensionality of the data, while simultaneously capturing the 

explained variance within melt pools. This allows for less computational expensive experimentation while 

still retaining enough information to identify both the presence of abnormal melt pools and the detection of 

the print orientation angles. In addition, the user defined inputs, M and Δ𝑙, and the benchmark input, 𝑘, 

were evaluated over different ranges of values These ranges were designed to capture a variety of possible 

values and highlight how varying input values can affect the performance of the ADDAM algorithm and 

are depicted in Table 4. 
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Table 4: User defined input parameter ranges 

User Defined Input Candidate Values 

Maximum Euclidean Distance (𝑀) 0.25, 0.3, 0.4, 0.50, 0.60, 0.7, 0.8, 0.9, 1.0, 1.1, 1.25, 1.50 

Maximum Allowable Layer Range (Δ𝑙) 1, 5, 10 

Global 𝑘 nearest neighbors 2, 5, 8, 10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150 

 

The user-defined inputs were evaluated based on the tuning data set in terms of both PG and UL, and 

all the Pareto efficient solutions were found through evaluating the performance metrics on a mesh grid of 

the two de-identification hyperparameters. The pareto efficient solutions were chosen such that they 

maximized the increase in privacy, while minimizing the loss of utility. A visualization of the ADDAM 

tuning process is depicted in Figure 9. It is important to note that due to the limited number of unique 

angular identities, too high of a distance constraint (𝑀) can lead to a decrease or stagnation in the privacy 

gain. In addition, larger Δ𝑙 values can lead to higher privacy gains in some scenarios but can adversely 

impact usability.  

 

Figure 9: Hyperparameter tuning for distance constraint (𝑀) and layer constraint (𝛥𝑙) constraints for 

Scenario I (A) and Scenario II (B) 
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Furthermore, the benchmark methodology (global k-anonymization) was also tuned to provide 

comparable evaluations. This included using the same SVM classifier and tuning data split as the ADDAM 

algorithm. However, this method does not incorporate a balancing parameter, as it directly uses the 𝑘 − 1 

nearest neighbors to de-identify the image. A visualization of the global 𝑘 anonymization can be seen in 

Figure 10, and it is important to note that the general trend exists that increasing PG decreases the UL. This 

shows that there is a direct, inverse relationship in the privacy gain and utility preserving performance of 

global anonymization models. In addition, the variation in performance between 𝑘 values can be attributed 

to the lack of unique angular identities available in each dataset and imbalanced nature of the dataset.  

 
Figure 10: Global 𝑘 benchmark method tuning for various 𝑘 values for Scenario I (A) and Scenario II (B) 

5.4 Results and Discussion 

This section details the results from the experimentation described in the previous sections. All tests 

were evaluated using the same SVM model set-up described previously, to ensure comparability between 

the proposed and benchmark method.  

Firstly, the baseline performance of the SVM model was determined for each of the two testing 

scenarios. This baseline test highlights the non-anonymized performance of the chosen SVM classifier, 
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which is the maximum data utility that can be achieved. As noted previously, the F1 Score will be the 

primary metric to evaluate UL. The Accuracy metric will be leveraged when evaluating the angular 

classification performance, PG. The baseline results for both scenarios are listed in Table 5. In addition, it 

is important to note that the vPCA extracted features were chosen to evaluate our proposed ADDAM 

method due to their higher performance over the geometric and thermal features for anomaly detection.  

Table 5: Baseline Results using vPCA to extract features and SVM for classification 

Scenario 
Anomaly Detection 

(F1-Score) 
Angular Detection 

(Accuracy) 

Scenario I 0.859 0.990 

Scenario II 0.852 0.970 

 

Secondly, the validation data (𝒯) was leveraged in the ADDAM algorithm and global 𝑘 algorithm to 

determine which parameter(s) were optimal for each scenario. As illustrated in Figure 11, each point 

represents a combination of user-defined inputs (𝑀 and Δ𝑙) for ADDAM, or a global 𝑘 level for the 

benchmark. From here, the pareto optimal points were identified (higher opacity) as the points that lie on 

the optimal front of the performance area for each scenario. The additional points (lower opacity) are the 

other combination of parameters which do not lie on the pareto optimal front. These points represent 

parameters that do not perform optimally using the datasets in Scenario I and II, and are not chosen to 

evaluate the final test performance. The specific performance and corresponding hyperparameter values are 

shown in Figure 11. It is important to note that the advantage of the ADDAM algorithm is its ability to 

preserve data usability, through a smaller |UL|, provided similar privacy gain, PG. From these optimal 

points, the corresponding hyperparameter sets were selected and then used to de-identify the testing dataset 

(ℰ) for the benchmark and ADDAM methods.  
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Figure 11: Pareto front comparison during the parameter tuning (using 𝒯) for the ADDAM and global 𝑘 

in Scenario I (A) and Scenario II (B). This details all possible solutions for the different combinations of 

tuning parameters for ADDAM, and highlights the pareto optimal solutions, which are detailed in the 

corresponding tables.  

The final phase of experimentation takes the pareto optimal set of the hyperparameter values identified 

in the tuning stage and applies them to the held-out evaluation data ℰ to determine an averaged performance 

in both PG and UL. This evaluation is similar to the tuning results depicted in Figure 11, however these 

represent the optimal combination of parameters used on the hold-out testing data, ultimately representing 

the final performance. The ADDAM algorithm again outperforms the benchmark method for both testing 

scenarios, which is detailed in Figure 12. The Pareto optimal values found from the evaluation data (ℰ) were 

better positioned to minimize |UL| and maximize PG for ADDAM, as compared to global k. These results 

show that the ADDAM algorithm uniformly outperforms the benchmark global 𝑘 method.  
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Figure 12: Pareto front comparison evaluating testing data (ℰ) using pareto efficient solutions identified in 

Figure 10, for ADDAM and global 𝑘 in Scenario I (A) and Scenario II (B). This details the performance 

of the optimally selected tuning parameters from Figure 11 on the testing data, highlighting the overall 

performance of the proposed ADDAM algorithm.  

Furthermore, in Scenario I, the ADDAM algorithm can achieve a comparable or slightly larger PG, 

without sacrificing as nearly as much data usability as the global 𝑘 method. This trend is present when 

implementing the ADDAM algorithm in both the tuning and evaluation stages. In addition, for Scenario II 

the ADDAM algorithm was able to achieve a noticeable higher privacy gain value, i.e., PG, while 

maintaining a comparable, and even slightly better, utility loss than the benchmark method. This reinforces 

the effectiveness of the ADDAM algorithm in practical applications, where complex part geometries would 

be leveraged in the de-identification. This would provide more diverse angular identities, leading to more 

improved de-identification results. From both testing scenarios, the ADDAM algorithm was able to 
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outperform the benchmark method in at least one or both optimization objectives. The better performance 

in utility preservation and increased data privacy of the ADDAM algorithm can be explained through the 

adaptive de-identification approach. With ADDAM, the user is maximizing the features preserved in the 

abnormal melt pools, because these images will receive lower, or even zero, level of de-identification. This 

effectively preserves the features that define the abnormalities. On the other hand, in the benchmark method 

with global 𝑘, the 𝑘-closest neighbors were chosen as a constant optimal value, which does not provide the 

de-identification flexibility to abnormal images. This, as a result, will blur the distinction between the 

healthy and abnormal melt pool images, sacrificing the AM data utility in anomaly detection. 

 In a practical application, these results would provide the AM user with the ability to leverage an 

optimal set of solutions and optimize a de-identification algorithm that best suits their needs.  This can be 

primarily attributed to the pareto front evaluation technique, which provides an optimal set of solutions and 

allows the user to evaluate the tradeoff between utility preservation and data privacy. From here, a user can 

evaluate these optimal solutions and decide if they want to prioritize de-identification, utility preservation, 

or find a balance. This allows the user an additional level of customization to better meet their specific 

application needs.   

6. Conclusion and Future Work 

In conclusion, this paper proposes a novel, adaptive approach named the ADDAM methodology to 

achieving de-identification of design information for AM thermal process data, resulting in secure, de-

identified AM process data that can be leveraged for the development of more robust in-situ defect detection 

models. This new adaptive de-identification approach outperforms the traditional global approaches to 

achieving dataset privacy. Ultimately improving overall dataset privacy (20-30% improvement), while 

sacrificing a limited amount of data utility (0-10% maximum loss in usability) on the controlled dataset. 

This creates a stronger defense against IP theft while still allowing AM users to aggregate data, overcoming 

some of the challenges posed by limited process data for robust process-defect modeling for SMM. 

Furthermore, the ADDAM algorithm was evaluated on thermal process data collected from a DED process, 
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however, the adaptive framework can easily be expanded beyond DED systems. Many different metal-

based AM systems could collect very similar thermal process data, and the adaptive approach itself provides 

a novel method for de-identifying AM process data, which tends to share the same characteristics of being 

unbalanced and containing a limited number of unique identities.  

There are a few directions that remain open for future research. Firstly, the inclusion of additional 

angular identities provides a potentially effective improvement in the ADDAM algorithm performance. 

This includes evaluating the potential effects of using infill orientation angles that are not based on a 

unidirectional infill pattern or a free-formed component. In addition, leveraging larger datasets that reflect 

more complex part geometries will provide a more diverse reference set, which may result in stronger de-

identification per image. This will ultimately translate into stronger dataset-level data privacy, and be 

reflective of practical applications. Furthermore, with an increased diversity of angular identities, a potential 

improvement for the evaluation method would be to apply a regression-based evaluation of the angular 

identities. This would provide a continuous-valued result, which could provide a more accurate evaluation 

of the angular identity detection.   Secondly, the proposed ADDAM algorithm is aimed at providing a melt-

pool wise data privacy, which will provide data privacy while achieving an elevated level of data utility 

preservation. Future research can potentially develop an additional, compounding privacy measures to 

further protect against re-identification attacks on a layer-wise level. This could involve incorporating 

additional image-augmentation measures and layer-wise anonymization techniques to the proposed 

adaptive de-identification method to achieve larger gains in data privacy. Finally, the adaptive approach to 

de-identification can be applied to other applications, outside of the AM domain. The ADDAM 

methodology implements a novel adaptive approach to de-identification that can be beneficial to achieving 

improved data privacy in different applications, especially where the traditional global k-anonymization 

approaches may not be as effective. This includes instances where the dataset may not have a large number 

of unique identities or instances there are additional features available that can be extracted and leveraged 

to enhance the data privacy through similarity space construction.  
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