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Abstract

There is an urgent need for developing collaborative process-defect modeling in metal-based additive
manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable
machine learning models for anomaly detection. The requirements for large data are especially challenging
for small-to-medium-manufacturers (SMMs), for whom collecting copious amounts of data is usually cost
prohibitive. The objective of this research is to develop a secured data sharing mechanism for Directed
Energy Deposition (DED) based AM without disclosing product design information, facilitating secured
data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise
from data sharing, since AM process data contains confidential design information. The proposed Adaptive
Design De-identification for Additive Manufacturing (ADDAM) methodology integrates AM process

knowledge into an adaptive de-identification procedure to mask the printing trajectory information in AM
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thermal history, which otherwise discloses major product design information. This adaptive approach
applies a flexible data privacy level to each thermal image based on its similarity with the other images,
facilitating better data utility preservation while protecting data privacy. A real-world case study was used
to validate the proposed method based on the fabrication of two cylindrical parts using a DED
process. These results are expressed as a pareto optimal solution, demonstrating significant improvements
in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up
to 30% with as little as 0% losses in dataset usability after de-identification.

Keywords: Additive manufacturing, data privacy, data sharing, de-identification, directed energy

deposition, in-situ anomaly detection, thermal history.

1. Introduction

One of the biggest limitations in the broader adoption of Directed Energy Deposition (DED) based
additive manufacturing (AM) techniques is the in-situ defect detection for part certification. It is crucial for
users to detect process anomalies in an effective and timely manner since the offline counterpart methods
have proven costly and time-consuming [1]-[4]. Machine learning and artificial intelligence has played a
crucial role in the development of in-situ anomaly detection models for AM [4]-[7]. However, due to the
high part complexity, the highly variable part designs and printing parameters, building a robust machine
learning model for in-situ process monitoring requires large amounts of training data, which can be
prohibitively expensive [4], [5], [8]. Recently, the AM research community has identified these obstacles
as a serious roadblock for the accelerated adoption of AM, especially for those small-to-medium sized
manufacturers (SMMs) [4]-[6].

One potential solution is to facilitate data sharing through the direct aggregation of process data from
multiple AM users [9], [10]. The idea of data sharing has been proposed as an important tool to expand AM
technologies [7] and several publications also see it as a remedy to limited data availability plaguing SMMs
[5], [6]. The aggregated training data can then be leveraged to develop a more accurate, robust, and

generalizable machine learning model for anomaly detection. Furthermore, these models would require less



training data from each user than traditional independent machine learning models [5], [11]. This is
especially helpful for SMMs, as it will decrease the amount of data required from each user and tackles one
of the discussed challenges for integrating machine learning with AM [4]-[6].

Unfortunately, the major obstacle in aggregating process data from multiple AM users is the data
privacy concerns that arise from sharing process data outside of the user’s organization. This key drawback
is a highly discussed limitation and forms one of the major gaps in the development and implementation of
AM data sharing frameworks [5], [7]. In AM, the process data contains critical product design information,
which heavily involves the intellectual property (IP) of the individual user. Sharing these data outside the
user’s organization can potentially expose the AM users to the risk of IP theft. This could occur when a
malicious third-party gains access to the shared data and can reverse engineer the AM design specifications,
utilizing the printing path and other parameters derived from the AM process data. What is worse, AM is
typically used in new product prototyping due to its toolless and flexible fabrication for accelerated design
iterations. Therefore, the risk of IP theft in AM process data can be even more detrimental to AM

practitioners, especially SMM users.
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Figure 1: Overview of privacy-preserving collaborative process-defect modeling utilizing ADDAM. This
process can be independently applied for multiple AM users, where the deidentified data can be
aggregated and used to develop more robust privacy preserving collaborative models.

This paper proposes an Adaptive Design De-identification for Additive Manufacturing (ADDAM)
methodology for masking the design information contained in AM thermal process data, while
simultaneously retaining the quality related information for anomaly detection. This methodology will
allow for the secure sharing of AM process data among multiple users, which establishes the foundation
for data aggregation and transfer learning modeling, leading to the development of collaborative privacy-
preserving anomaly detection models with improved IP security and model robustness (Figure 1). The

technical contributions of this paper include: 1) the development of process data privacy and design de-



identification framework for AM applications; and 2) the development of the new ADDAM algorithm with
measurable privacy and utility for AM process data.

The reminder of the paper is organized as follows. The state-of-the-art studies are summarized in
section 2. Section 3 discusses the data privacy problem and de-identification methods for AM applications.
In section 4, the proposed ADDAM methodology is introduced, and section 5 introduces the case study to
evaluate the effectiveness of the proposed method. Finally, the conclusion and future work are summarized

n section 6.
2. Related Research

This section provides a survey of research related to the proposed method, which includes 1)
Collaborative defect detection for metal-based AM; 2) AM process security and privacy concerns; and 3)

a brief survey of the currently used anonymization techniques and their corresponding limitations.
2.1 Collaborative Defect Detection for Metal-based AM

This section focuses on the relevance of collaborative smart manufacturing in metal-based AM
processes. Various in-situ process monitoring and defect detection methods have been proposed for
identifying anomalies [12]. Among those methods, thermal imaging has been adopted to capture the AM
thermal history under the premises that a stable thermal history will result in homogenous and thus defect-
free structures. The high dimensional thermal history data are reduced to extract key process features that
are then leveraged for anomaly detection [1]-[3], [13]-[16]. Moreover, layer-wise anomaly detection
methods using thermal process data have been proposed for DED processes [3], [16]-[18], which provide
an additional advantage compared to the defect detection models that only use local thermal features.
However, the key limitation of this previous work is that these models were only evaluated using one set
of design and printing parameters at a time. Changes in the process parameters can lead to deteriorated
model accuracy, and the models would need to be re-trained and re-validated by newly collected data. This
makes it potentially infeasible to develop accurate anomaly detection models for SMMs, who may print

small batches of highly diverse parts [8], [10]. Transfer learning techniques can be leveraged to address the



modeling limitations related to limited data availability. Transfer learning provides the user with the ability
to apply learned knowledge or data from one domain to another related domain [19] This would allow the
knowledge contained within multiple datasets to be leveraged in machine learning models, instead of
completely discarding and re-collecting data to accommodate the change of AM process parameters. This
can further the development of a collaborative data sharing framework. Currently, transfer learning has
been proposed for transferring knowledge between different machines [10] and materials [20] for anomaly
detection and distortion quantification [9], [21]. However, there are significant data privacy risks that may
arise from sharing AM process data among different AM users. The AM process data contains confidential
product information (e.g., design specifications and mechanical properties) that may jeopardize the product
intellectual property (IP). By sharing AM process data outside their organization, AM users compromise
their data privacy and are exposed to the risk for IP theft [22]-[24]. This is especially detrimental when
using AM in the early phase of product prototyping and development. Lack of IP protection may lead to
tremendous loss for the enterprise [25], [26]. Therefore, there is an urgent need in establishing a privacy-
preserving data sharing framework to facilitate data sharing among multiple AM users for collaborative

process-defect modeling, while not disclosing confidential product design information.
2.2 Privacy and Security Concerns in AM Systems

In the new era of industry 4.0, manufacturing systems are becoming more interconnected [27]. As AM
systems have become increasingly prominent within industrial manufacturing applications, privacy and
security have become significant issues that can affect a variety of different aspects of the AM process [24].
Traditionally, there are three fundamental concepts related to data security: confidentiality, integrity, and
availability. This triad of security concerns encompasses vulnerabilities in manufacturing, including the
overall data confidentiality, data reliability and consistency, and availability of equipment for service [26].
Most current data security and privacy concerns focus on preventing cyber-physical attacks that target on

data integrity and availability, which can diminish the availability of the equipment or integrity of the



printed parts and collected data [22], [24], [26], [28]-[30]. However, this leaves a significant gap for
preventing cyber-domain attacks, which target on the product IP of the users [24], [25].

The main threats for AM IP protection are the attacks on data confidentiality. This type of attacks is
commonly conducted by gaining malicious access to process data or related datasets and extracting key
details to identify some confidential information [26]. This attack can be directly leveraged with AM
process data to retrieve the product printing path information, and then reverse engineer the printed part
design specifications [22], [24] (Figure 2). These attacks can be costly and detrimental to the AM users, as
they directly attack the user’s IP [26]. There are four specific tactics leveraged to preserve data privacy and
prevent confidentiality attacks, including anonymization, access control, encryption, and querying systems
[22]. From these different techniques, the most viable options for enhancing data security and facilitating

transfer learning include anonymization and data encryption.
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Figure 2: Current risk of externally shared or aggregated AM process data

The objective of anonymization is to remove or obscure the confidential information contained within
the dataset, reducing the availability of specific, identifying characteristics available within the dataset [22],
[31]. The privacy is enhanced by either suppressing or generalizing identifying features that can be used to
collect sensitive information contained within the data. However, the biggest limitations facing
anonymization revolve around ensuring that the data protection is strong enough to withstand re-
identification attacks [22]. On the other hand, encryption is also a strong data security technique, which
encodes the data so that it appears to be random, irrelevant data that is hard to understand without the proper
encryption keys [32]. Despite the proven data protections, there are still reservations surrounding the overall

usability of the post-encryption [22]. Specific forms of encryption, such as homogeneous encryption, are
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designed to allow computations to be performed once the data are encrypted [32], but the computational
complexity is limited to only simple models [22], [33]. In addition, for both privacy measures, as the extent
of the data protection increases, the overall usability of the protected data decreases [22], [31]. This means
that achieving higher levels of data privacy traditionally leads to greater losses in data usability.
Anonymization and encryption provide specific advantages to data privacy protection, but still face major
challenges when balancing data privacy with data usability. Due to the additional computational restrictions
associated with encryption, anonymization provides a potentially more effective framework for

incorporating data privacy measures into collaborative, data-sharing AM applications.
2.3 The k-Anonymization Method and its Applications

This section details various anonymization methods, including the k-anonymization, k-same family of
methodologies, and other de-identification models, which form the foundation for the proposed ADDAM
methodology. Moreover, the major limitations of these methods when applying to AM design de-

identification are summarized.

2.3.1 Traditional k-anonymization and Adaptations

k-anonymization is a specific form of de-identification for data privacy proposed in [34], and is an
effective solution to guaranteeing data privacy, while still preserving some data usability. This method was
originally designed for protecting individual sample identities and was primarily implemented for the
tabular dataset applications. This includes data privacy protection for customer data [35], healthcare data
[34], and public transportation data [36], as well as various other applications where the sample identity
privacy is required. Tabular-structured datasets are defined as datasets that are minimally complex and
contain independent (or weakly correlated) features, such as a person’s name, zip-code, social security
number, health condition and others. These types of datasets provide an ideal application of k-
anonymization, where the identity-compromising attributes are either generalized or suppressed to the point
where there are at least k — 1 identical samples for each sample in the dataset [34], [37]. However, for more

complex applications, additional modifications are needed to improve the applicability of k-anonymization.



For example, the Mondrian multi-dimensional k-anonymization algorithm was formulated as an improved
privacy-enhancing method to the traditional methodology [38]. The Mondrian method goes one step further
to incorporate multidimensional partitioning to the anonymization procedure. This partitioning is used to
achieve a more robust anonymization, as it factors in the relationship between different features during the
generalization process [38]. Furthermore, clustering [39], [40] and p-sensitive anonymization algorithms
[37] have also been proposed as other improvements to the traditional k-anonymization method. These
updated methodologies still leverage the key generalization and suppression techniques used to ensure data
privacy, but provide additional approaches to enhancing the process [23]. For all cases of k-anonymization,
data protection techniques are applied to the identifying features, instead of applying anonymization to all
features in the dataset. This helps to ensure the user-defined level of data privacy, while maintaining the
usability of the non-identifying attributes.

However, k-anonymization methods face a few critical limitations. First, the de-identification approach
is primarily applicable to tabular-structured datasets. Traditional applications of traditional &-
anonymization and its variants (Mondrian [38], clustering [39], [40], p-sensitive [35], [37]) do not translate
well to more complex data, such as image data or other multi-dimensional datasets. These datasets contain
features that are highly correlated and highly nonlinear, which provides a new challenge for k-
anonymization. Secondly, k-anonymization and most of its variants and enhancements cannot guarantee
that there will be no data leakage [37]. These methods can provide enhanced data privacy, but do not provide
complete protection, unless the dataset usability is extremely compromised. Finally, the proposed
anonymization tactics of generalization and suppression are specific to the dataset application and can
severely impact the interpretation of numerical attributes [34], [37]. This is primarily attributed to the
generalization tactic, which in many cases converts the numerical attribute into a categorical variable (i.e.,
a person’s numeric age into a categorical age range). This impacts the overall usability of the dataset and

may potentially affect the applications. Because of the abovementioned limitations, several novel



approaches to extending k-anonymization to the privacy preservation of more complex data structure have

been proposed, as discussed in the next section.

2.3.2 k-Anonymization for Image Data

More recently, image data have become increasingly available, especially through the widespread
implementation of security and surveillance monitoring systems. This has caused a drastic increase in the
need for protecting individuals’ privacy and identity [41]. Traditional naive methods, such as blurring and
pixilation, can mask the key identity information from images. However, they only serve the purpose of
eliminating the identity of individuals within the images, and thus retain very little to no data utility [42].
Despite the alterations to the images, some of these methods only deter human recognition, as computer
algorithms can be leveraged to reverse the distortions and re-identify those individuals [43]. To improve
data privacy, several different techniques for facial de-identification algorithms have been developed [41]—
[50]. These different approaches provide stronger protection guarantees and better overall data usability in
de-identified images, pulling inspiration from the previous work of k-anonymization [34].

From the different approaches to facial de-identification, there are a few methods that provide robust
de-identification capacities, which show potential for applications extending beyond facial image data.
Firstly, the k-same approach takes the average of k similar images within a subset of facial images, and
replaces the subset with an averaged, surrogate image [41]. This method is the most naive scheme and
extends the k-anonymization technique to complex image data, where these datasets can reach the same
level of privacy as the k-anonymization algorithm (see [26] for proof). However, there are two main
limitations of this methodology. The first is that the k-same method does not provide a satisfactory level of
data utility [42]. This is because the image-space is highly non-linear and there is a steep utility loss when
replacing the entire group of images with one single surrogate image. In addition, there is the threat of re-
identification, since all the anonymization is performed using the original image dataset, meaning that some
original information is contained within the published data [44]. From the k-same methodology, the k-

same-select model was derived to improve the utility performance by providing prior knowledge about the
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dataset into the de-identification process, which further enhances the utility preservation [42]. Furthermore,
the k-same-Model (k-same-M) approach also extends the k-same method to implement de-identification
within the Active Appearance Models (AAM) [46], which are widely used in modeling and tracking facial
image data. This produces a higher quality image, but there are still challenges in capturing key utility
features, such as facial expressions during the anonymization process [49]. In summary, despite these
enhancements, there were still significant gaps in applying data privacy to facial images to achieve a trade-
off between privacy and utility.

To address the limitations of the k-same methods, the GARP-Face and APFD anonymization
algorithms were developed for de-identifying facial images to achieve better balance between privacy and
utility. Instead of replacing image groups with a surrogate image, both methods define the facial features,
construct nearest neighborhoods, and use a separate utility specific subset of images to perform the
anonymization. The GARP-Face (Gender-Age-Race) model [44] identifies useful features to preserve
information (e.g., gender, age, and race) and develops classifiers to identify these features from the sample
images. These features are then leveraged to identify k-similar images, which are then combined in the de-
identification process to produce a surrogate image. The Attribute Preserved Face De-identification (APFD)
method [45] follows a similar approach but leverages an additional optimization function that determines
the optimal weights to be applied when averaging images. This weighted objective function is directly
applied to the shape and appearance parameters, maximizing the number of common attributes the original
and de-identified image share. Furthermore, both techniques also implement AAM to identify and
characterize the shape and appearance parameters of the face. Overall, the results from this improved
feature-targeting and preservation process show improved privacy and data utility preservation.

It is worth noting that these different facial de-identification methods apply the same level of data
privacy to each image in the de-identified dataset, making them global de-identification approaches.
However, the global de-identification approach is difficult to be directly applied to AM thermal images for

the following reasons. Firstly, unlike the facial de-identification datasets, the AM thermal images suffer
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from limited data availability and a tendency to have repeating identities within the dataset. This can lead
to compromised performance when directly applying a global de-identification model, as many of the
nearest neighbor images may share the same identities, and the limited number of samples can degrade the
overall dataset diversity. Secondly, the AM process data anomalies demonstrate high variations in their
distributions, meaning that they are distinctly different from both the healthy distribution and each other.
However, the facial image data do not encounter this problem, as most human faces will share a similar
distribution of features. This creates another roadblock to directly implementing global de-identification
methods, since directly averaging k nearest neighbors will blur the difference between healthy and
abnormal melt pool images, leading to dramatically degraded data usability (i.e., anomaly detection

performance).

3. De-identification and Data Privacy for AM

This section will introduce the various types of AM data, as well as the confidentiality and the
vulnerability in these data. In addition, the role of data privacy in AM and the importance of maintaining
the balance between data utility and privacy is explained. The formal definitions related to data privacy for

AM applications set the foundation for the proposed ADDAM algorithm.

3.1 AM Data Description

As described in Figure 3, various types of AM data are generated in the four major steps of AM, i.e.,
design, slicing, manufacturing, and inspection. Together, these steps construct the cyber-physical AM
systems [5].

Design Slicing Manufacturing [nspection

-

CAD Files ) Process ) GD&T )

.STL Files Parameters Process Data Defect Detection

Figure 3: Key steps of AM and data generated
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The design phase includes the generation of the CAD and STL files, which represent the detailed, three-
dimensional part design. This information is highly confidential, especially for rapid prototyping
applications. Because of this, the data generated during this phase (CAD and STL design files) should be
maintained internally, and never shared for IP protection purposes.

The slicing phase takes the design file as the input and generates a g-code file, which contains several
different process parameters, including the printing path, print speed, layer thickness, temperature settings,
and many others. Like the design files, these process parameters also contain confidential design attributes,
and should never be shared externally.

The manufacturing phase involves the physical printing process while generating a variety of process
data, including thermal imaging data, acceleration, acoustics, and others. Recently, the process data play
critical roles in in-situ process monitoring and anomaly detection. However, the process data contain
confidential design information, particularly relating to the printing geometries and parameters. These
embedded features can be extracted and linked back to the part design, compromising the product IP.
Therefore, the implementation of data privacy measures is particularly important at this phase because the
collected process data are expected to be externally shared and aggregated.

Finally, the inspection phase is where the final printed part is evaluated for quality assurance. This
includes checking the Geometric, Dimension, and Tolerance features (GD&T) of the part, as well as
detecting defects within the print part. Although this process also creates vulnerabilities for IP theft, most
data collected during this phase will be stored internally and only accessed locally. The data from this phase
that is shared externally for developing in-situ defect modeling (anomaly labels) usually does not contain

confidential design information.

3.2 Key Definitions in AM Privacy

In this section, several important definitions in AM process data de-identification for process-defect
modeling are introduced by integrating AM process knowledge into data privacy and anonymization related

terminologies.
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Definition I: AM data privacy is defined as the ability of the shared AM data that prevent a malicious
third party from identifying critical product design specifications. For example, for AM thermal process
data, specific privacy measures need to be applied directly to the melt pool images to properly de-
identify/mask the printing trajectory information (Figure 4). This creates a safeguard for protecting against
IP thefts through the AM process data.

When applying the de-identification framework, the AM data discussed in section 3.1 can be briefly
categorized into three groups of attributes [23], [34], [37], [38], as summarized in Table 1.

1) AM Sensitive attributes are attributes that can directly identify the design information contained
within the dataset. This includes design data (i.e., CAD files), attributes derived from the design
data (e.g., g-codes and printing angular information), and the complete thermal history, all of which
pose a significant IP privacy risk. Furthermore, AM Design features are embedded within the
complete thermal history, which poses a significant risk of data privacy. These features can be
directly extracted from the thermal process images themselves (as illustrated in Figure 4). This
creates a major vulnerability for the product IP when sharing the data externally, where malicious
third parties could gain access to the complete thermal image set and extract these critical design
features. Thus, it is important that AM sensitive attributes are kept locally, or any relationship

between the shared data and corresponding sensitive attributes needs to be de-identified.

0 =0° 0 = 60° 0 = 180° 0 = 300°
Figure 4: Melt pool angular orientation and printing path

2) AM Quasi-identifiers are attributes, that alone, do not directly give away the product design
information. However, when used in conjunction with other AM quasi-identifiers, or sensitive

attributes, they can be leveraged to further identify confidential design features. For example,
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within the thermal process data, each melt pool image alone (or each pixel within the image) does
not directly give away confidential design information. However, when a large enough set of
thermal images are available, they can be directly used to re-identify the sensitive AM design
features. Furthermore, features such as the layer-wise location of the melt pool, and the sequential
image ID, can be used to enhance the identification of compromising trends and information within
the process data. Ultimately, the AM quasi-identifier’s relationship with the sensitive attributes

should be removed or de-identified for secure data sharing.

3) AM Insensitive attributes are attributes that do not have any direct relationship with the design
information. This includes the AM Utility Features, which represent the geometric and thermal
features within the melt pools (e.g., melt pool area and eccentricity, and maximum temperature).
Unlike the AM design features, these utility features are insensitive to design information, but
informative for utility preservation (e.g., anomaly detection). Overall, they do not pose a security
risk and are able to be leveraged for de-identification, or externally shared if desired.

Table 1: Breakdown for AM process data features and attributes
AM Attributes Attribute o
AM Steps Considered Classification Description
Design CAD/STL file AM sensitive attribute Detailed 3D geometrlcfillzmgn and specifications
Slicing G-code file AM sensitive attribute Parameters e 1a.ted to th? P rlntlng process and
printing path information
Thermal image AM quasi-identifier Independent Image mat.rlx of thermal intensity
readings
Manufacturing Layer label AM quasi-identifier Layer-wise location of melt pool
Image ID AM quasi-identifier Image ID, sequentially captured
Angular label AM sensitive attribute Numeric label for angular information
. AM insensitive . . .
Inspection Anomaly label attribute Binary label for anomaly information

Definition I1: AM data utility is defined as the overall usability of the dataset for specific modeling
purpose (e.g., anomaly detection) after privacy-preserving measures [52]. For the AM process data de-
identification, this means that sufficient information is retained in the de-identified data for the end-user to
train defect detection models. This is measured by the ability of a machine learning model to accurately

detect the presence of anomalies within the de-identified data.
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4. The Proposed ADDAM Methodology

In this section, the ADDAM methodology is proposed for de-identifying design information from AM
melt pool image data. This new methodology focuses on developing a secure aggregation mechanism for
collaborative process-defect modeling by masking the design information in the thermal history while
retaining the process quality information. This section starts with an overview of the proposed ADDAM
methodology (Figure 5), followed by a subsequent breakdown for each of the main stages of the proposed

method.
4.1 Proposed ADDAM Overview

The major advantage of the ADDAM algorithm is the introduction of the novel adaptive mechanism to
determine the level of data privacy on a per-image basis. This deviates from the traditional forms of k-
anonymization, which take a global approach to data privacy, de-identifying each image with the same,
globally determined level of data privacy. The proposed adaptive approach is motivated by the following
two reasons.

Firstly, the AM process data tends to be imbalanced and suffers from limited data availability, where
there are vastly more cases of healthy melt pools as compared to abnormalities. This creates two major
challenges. First, there is potentially a limited number of unique angular identities available to de-identify.
This means that de-identifying a sample image with its k-closet images may not necessarily improve data
privacy if its nearest neighbors contain the same angular identity. In addition, due to the rare and diverse
nature of anomalies, the k-closest images of an abnormal image may include either healthy images or
abnormal images with different abnormality categories, leading to reduced distinction between healthy and
unhealthy melt pool images after de-identification. This will significantly jeopardize the data utility (i.e.,
anomaly detection). Secondly, during the printing process there is a noticeable thermal distribution change
over time in the thermal history. As a result, the baseline for healthy melt pools observed at different layers

would vary significantly, even though their process parameters are set the same. Implementing a global k
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value completely neglects this drifting trend in the thermal distribution and will lead to de-identifying using

images that are not actually neighbors in the printing process.
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Figure 5: Overview of the ADDAM methodology
A reference or gallery set of s thermal images, with each image containing r X ¢ pixel, can be denoted
asR = {R; € R™, i =1,...,s}. The proposed ADDAM methodology defines a transformation function,
f + R™¢ — R™¢, which generates a surrogate thermal image for each observed thermal image, I; € R™¢,

as illustrated in Equation (1).
L =71 (1
where ij € R"™¢ denotes the surrogate image for I; with its angular identity (p(l j) de-identified, where ¢ (-)

denotes the instantaneous printing orientation of the thermal image. The transformation function f is

implemented by pooling the observed thermal image I; with a selective subset of k; — 1 thermal images
from the reference set R, denoted as R; < R and |Rj| = kj — 1, where || denotes the cardinality of the

image set.
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The de-identification function, f, aims to improve data privacy by masking the design information (i.e.,
printing path information) from each image I;, while simultaneously retaining data utility for anomaly
detection and part certification. The proposed ADDAM methodology can be divided into several stages,

which are discussed in the following sub-sections.
4.2 Stage 1: Reference Set Selection

In real world applications, AM users have the ability to use their historical data, or data available from
machine calibrations, to create a diverse and robust reference set R for de-identification. There are some
key requirements to keep in mind when developing this independent reference set. Firstly, the reference set
should have a high diversity of angular orientations. This is important as it will better facilitate proper de-
identification, as more unique identities can lead to more variability in the de-identified images with respect
to the angular identity. Secondly, the reference data needs to share a similar domain distribution the data to
be de-identified. This is important for the similarity space construction and the preservation of the data
utility, as the geometric and thermal features derived from each distribution are indicative to the overall
characteristics of the distribution. If these features differ too much, it will drastically impact the adaptive
procedure of the algorithm and lead to utility and/or privacy degradation. Finally, the reference set should
not include any samples that are also within the set of images to be de-identified. This will lead to a degraded
privacy gains, as these duplicate reference images would be guaranteed to be included in the adaptive-k
samples used to de-identify the original image.

After selection of the reference images, the overall reference set quality can be evaluated in a couple of
ways. The first is to evaluate the overall difference between the derived thermal and geometric features of
the reference set and the de-identification set. These features play an important role in de-identification,
and if their distribution in the reference set differs too much from the de-identification set, it will impact
the overall algorithm performance. Secondly, the two domain distributions could be quantitatively

evaluated using a distance metric, such as Maximum Mean Discrepancy (MMD) or Kullback-Leibler
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Divergence. This allows a user to quantify the distance and difference between two distributions with

metrics that are commonly used in transfer learning and domain adaption applications [53], [54].
4.3 Stage 2: Process Data Dimension Reduction

To reduce the dimensionality of the thermal images, the reference set, R, is used to fit Vectorized
Principal Component Analysis (VPCA) for low dimensional process feature extraction. The vPCA achieves
dimensionality reduction by mapping the original melt pool images into a low-dimensional space, where

each sample image, I;, is then transformed into this space, as illustrated in Equation (2).
— 2
v = Vec(lj)Wp @)
where W,, represents the projection matrix estimated from the reference image set, R, and p denotes the

percentage of the total variability explained by the extracted PCs, denoted as v;. In most cases, the value

of p is set as 95% such that the major variability in the original melt pool image I; can be retained in v;.

4.4 Stage 3: AM Utility Attribute Space Construction

The Utility Attribute Space (UAS) incorporates derived features to construct a vector space to evaluate
the utility-aware similarity of sample images to images in the reference image set. The features used to
construct this space include both the geometric features and the other insensitive, utility related features.
These derived features can be directly indicative of the overall health status of the melt pool and play an
important role in preserving the dataset utility and achieving adaptive de-identification. However, it is
important to note that these features underperform compared to the features extracted using PCA for
anomaly detection. For this reason, these features are not leveraged during classification. The UAS is
leveraged to identify the abnormal and healthy melt pool images, based on how similar they are to their
neighbors. This improves data privacy as it ensures that healthy melt pools, which tend to have a high
number of neighbors, achieve a higher level of data privacy. Since healthy melt pools tend to make up the
majority of data samples, this ensures better data set privacy. In addition, the UAS allows for abnormal

melt pools to maintain a minimum level of de-identification, which in turn maintains dataset usability. This
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is due to the characteristic fact that the abnormal melt pools are dissimilar from healthy melt pools and each
other, allowing these samples to maintain their distinct characteristics by using a lower adaptive k value. It
is important to note that this will not compromise the overall dataset privacy, as with AM data not every
image has to be de-identified to ensure data privacy. The main risks are exposed when a large set of images
are available and can be used together, and these anomalies only make up a small subset of the data.
Multiple AM utility attributes are proposed to form the UAS. The first attribute is the L, norm of the

reconstruction error denoted as g}, which can be calculated in Eq. (3) for each I;,

g; =1L -, 3)

where ij € R"™¢ denotes the image reconstructed from v;. This feature is important as the vPCA algorithm

is fit using healthy reference images, which provide a larger L, reconstruction error for melt pools that
contain anomalies. Moreover, a few additional utility features can be extracted from each original melt pool

image I;, including peak temperature and its row and column location in the field of view, as well as the
area and eccentricity of the melt pool, which is segmented using the melting point of the feedstock material.
These abovementioned features of I; are denoted as g}f" (w =1,2,...,6). The 6-dimensional feature vector
is denoted as g; = (g}, g]z, . gf), which forms the UAS to determine the similarity of each melt pool
image I; against the reference images.

A distance function is defined in the UAS, denoted as d; (X, Y), which represents the Euclidean distance

between two thermal images, i.e., X and Y, in the UAS. This distance function is used to identify the subset

of images in R to be used to de-identify the observed image I}, and thus acts as one of the controlling

mechanisms used to tune the sensitivity of the ADDAM algorithm when determining the adaptive k value.
4.5 Stage 4: Determination of the Adaptive k; Value

This stage determines the adaptive k; value for I;. The proposed method significantly departs from the

traditional k-same, GARP, and APFD algorithms, which utilize a global k value to achieve image

anonymization [44], [45]. There are two distinct and important operations within the ADDAM algorithm.
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Firstly, the ADDAM algorithm implements a series of constraints when determining the k-closest reference
images of I;. These constraints leverage characteristics of each melt pool, including the layer location and
angular identity, and define the neighborhood size within the UAS. This plays a crucial role in the ADDAM
algorithm, as it allows the user to adjust and control the sensitivity and tune the de-identification algorithm.
Secondly, the adaptive algorithm employs an additional balancing mechanism, which ensures that the
reference set, combined with the sample image I;, is equally diverse across all possible angular identities
in the dataset. Both aspects are critical components that de-identify the angular identities while retaining
the utility related information in the de-identified image

For each angular identity in R, denoted as 8,, (n = 1,2, ..., m), the corresponding angular-reference set,

used to de-identify I;, can be defined in equation (4),

I(R)) € [1(1;) — AL I(T;) + Al
R =R, o(R) =6, @
dg(1,R;) < M
where the first constraint enforces the identified neighbors to be in proximity of I; in terms of the build
layers, where [(-) denotes the layer index where the thermal image is collected from, and Al represents the
pre-defined maximum allowable layer difference between the identified neighboring images and I;; the
second constraint requires the elements in R}l to be of the angular identity 8,,; the last constraint forces that
the Euclidean distance (denoted as d;) between the identified neighboring images and I; are no larger than

a pre-defined threshold value M in the UAS defined in Stage 3. After applying these constraints, the number

of closest reference images in R}l can be calculated as below.

kft = |R1n | ®)
where k]n > 0, and k]n varies according to the similarity of I; to the reference thermal images in R as well
as the corresponding angular identity 6,,. For example, if I; is a healthy thermal image, there will be many
R;’s in proximity of I; in terms of both build layers and within the UAS, and thus the value of k;* will be

larger. However, if I; is an unhealthy thermal image, there will be very few (or even none) neighboring
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thermal images in R, and thus the k}" value will be very small (or even zero). In the case where one or more
of the k}l = 0, I; is probably extremely abnormal, and therefore will receive no de-identification to keep its

significant deviation from the healthy group. This scenario is extremely rare within 7, and will not create
any major privacy concerns as abnormal melt pools make up the minority. In addition, it is worth noting
that the sample image I; is the nearest neighbor to itself within the subset where (p(lj) = 6,,. The sample
image will be incorporated into the corresponding R}’ of the same angular identity 0,,. This ensures that
sample image angular identify will be accounted for when the algorithm undergoes a balancing procedure.

Subsequently, the adaptive algorithm involves a crucial balancing function that ensures that there is an
equal representation of images within each reference subset .72}1. This prevents an overpopulation of one
angular identity during the de-identification process, which can impact the amount of data privacy achieved.
This step results from the major difference present between the ADDAM algorithm and traditional k-
anonymization algorithms. Traditionally, when applying global anonymization techniques, each image
within the dataset contained a unique identity, such as a human face. If this image is anonymized with any
other identity in the dataset, there will be a resulting gain of privacy for that individual. However, with AM
thermal process data, there are repeating identities within the dataset. Therefore, the de-identification with
the same identity will not yield any privacy gains. Balancing the distribution of these angular identities
within R; guarantees that not one unique identity will be more prominent than the others during de-
identification. This is accomplished by first ensuring that each angular-based subset previously determined

is re-indexed into a monotonically increasing order, such that dg(lj,R(l)) < dg(lj,R(z)) <<
dg (lj,R(k}l)) << dg(lj,R(s)). Re-indexing ensures that the images with the shortest Euclidean

distance to the sample image will be first in the order of the subsets.
From here, a fourth filter is applied, which limits the size of each subgroup to be equal to the smallest
subgroup. This is the novel balancing procedure which ensures that each angular identity is equally

represented within the closest k;, images to the sample image,
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. 6
ki = mm(k}’) ()
and the balanced identify subgroup 5‘2}*" = {Ri|Ri <d, (Ij,R(k,f)> ,R; € R]"} Next, the aggregated de-
J

identification set, R;, can be formed by directly merging R}‘”’s to form the larger and equally diverse de-

identification dataset. This aggregated set R; is directly used to de-identify sample image I;,

ki =m Xk %
m

R; = Ujg]’fn (®)
n=1

where k; is the number of aggregated, closest images used to de-identify I;. The aggregated de-
identification set, R;, is a direct combination of all the balanced reference subgroups, RJ’-“”. This is the set

of images (sample image and closest reference images) that will be directly used to de-identify I;.

4.6 Stage 5: Melt Pool Image De-identification

The final stage of the proposed methodology is AM process image de-identification, given the

k; neighboring images identified in stage 4. For each sample image I, all the images in R; are combined
to form the anonymized image, ij, by directly averaging the dimensionally reduced images in R; as below.

—~ ZV]'ERJ' v]
ki
]

©)
where each image within the aggregated de-identification set is directly averaged to create a de-identified
PC vector (¥;), which can then be reversely transformed into the original image space to obtain the
surrogate image ij to be published and aggregated with data from other AM users.

4.7 Evaluation of Design De-identification Performance

To evaluate the design de-identification performance for secured collaborative AM process-defect
modeling, two novel anonymization performance metrics are introduced to meet the needs of AM

applications. These metrics will allow for the measurable gain in privacy and loss in utility of the dataset
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shared, and then can be further evaluated using a Pareto Front [55], [56] to quantify the tradeoff between
two conflicting objectives: 1) minimizing Utility Loss and 2) maximizing Privacy Gain [44]. These two
metrics are derived from the traditional classification metrics, which have been previously leveraged to
evaluate the performance of de-identification and k-anonymization algorithms [41], [43], [44], [46].
Traditionally, the data privacy performance can be gauged as the number of correct predictions before and
after de-identification. This allows for a natural and easily implementable method for evaluating model
performance using ML models by simply calculating the performance metrics before and after.

Definition I1I: Utility Loss, UL, is defined as the decrease in the anomaly detection performance (in

percentage) due to de-identification.

UL = —(XBase — Xanon) (10)

where Xpase and Xanon denote the anomaly detection performance metrics achieved by the original dataset
and the de-identified dataset, respectively. It is worth noting that based on the definition, UL is usually a
negative value. Therefore, it is desirable to either minimize |UL| or maximize UL. In addition, the UL
metric is written in a general form of anomaly detection performance metrics above, while it relies on
leveraging classification metrics, such as F1 (13) or overall Accuracy (14). In general, the F1 can be
leveraged when evaluating UL, as AM process data is traditionally unbalanced with respect to the anomaly
labels.

Definition IV: Privacy Gain, PG, is evaluating the classifier model’s ability to predict the printing path
orientation between the baseline and de-identified datasets, ultimately evaluating the privacy gains from

implementing de-identification algorithms.
11
PG = Zgase = Zanon an

where Zgase and Zppon denote the printing orientation classification performance metrics achieved by the
original dataset and the de-identified dataset, respectively, and they are also written in general form and

relies on the specific classification metric used (12) — (13), which is determined heavily on the balanced
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or unbalanced characterization of the dataset. In general, the Accuracy can be leveraged when evaluating
PG, if the datasets are balanced with respect to the print orientation labels. Had the angular class labeling
been unbalanced, the F1 should be used.

Both PG and UL are plotted in a two-dimensional plot to find the pareto front of optimal solutions,
determining the overall performance of ADDAM. The following equations describe the different

classification metrics used to build the UL performance metric.

_ TP .. TP 12

Recall = e Precision = e (12)
2 X Precision X Recall

F1= (13)

Precision + Recall

In these equations, TP represents the correct prediction that there is a defect present and the melt pool is
abnormal, and TN represents the correct prediction that there are no defects present, and the melt pool is
healthy. In addition, FP represents the incorrect prediction that there is a defect present, but the melt pool
is healthy, and FN represents the incorrect prediction that there are no defects present, but the melt pool is
abnormal. The metrics used depend on how balanced the data is with respect to class labels. For example,
when the dataset is unbalanced, F1 should be used for Xgase and Xanon. Otherwise, Accuracy would be a

good choice [57]. Furthermore, accuracy is leveraged as the underlying metric behind the PG.

Correctly Predicted Angular Identities (14)

Accuracy =
y Total Predictions

In summary, a pseudocode of the proposed ADDAM algorithm is detailed in Figure 6.

ADDAM De-identification Algorithm
Input: Sample Image Set 7

Reference Subsets R

Derived feature set g}" (w =1,2,...,6) for both 7 and R image sets
Output: Anonymized Image Set 7

Dimensionality Reduction and UAS Construction:
1: Fit vPCA with reference image set R
2: Transform each sample image I; € 7 into R vPCA Space: v; = Vec(lj)Wp
3: Calculate g} for each image and append to g;

ADDAM Algorithm:
4 : Generate the empty image set 7
5:Forv; €7:
6 :  Generate the empty image set R, oquced

Applying the Layer Constraint
7: Forv;, ER:
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8: Identify [(R;)

9: if (Ry) € [U(1;) — AL I(T;) + Al]:

10: Append v; t0 R equced

Applying the Angular Constraint

11: Generate empty image set R}l for 0,, angular identities
12: Append v;to corresponding R}' with (p(lj) =0,

13: For v; € Ryequcea:

14: if6,(v;,) =6,

15: Append v; to R}'

Applying the Euclidean Distance Constraint
16:  Forv; € R}":

17: Calculate Euclidean distance dg (I]-, Ri) using the UAS features
18: ifdy(I,R;) > M,
19: Remove v;

20: k; = min(len(R}"))

Balancing the Angular Subsets
21:  Foreach R}":

22: Re-index Rf as V(1), V(z2), +» v(k]n) in the increasing order based on dg
23: if len(R) > k;
24: Remove v(;-y if i™ > kj

Forming the Aggregated De-Identification Set

25: R, = concatenate(R}")

26: kj=mXxkjf

De-Identification

ZviEiR
kj

28: Append de-identified image ¥; to J (PC matrix of Image)

29: Inverse Transform vPCA J to original image dimensions

30: Return Anonymized Image Set J

Figure 6: The Pseudocode of the ADDAM Algorithm

.V
j L

27: Average the remaining k-closest images U; =

5. Case Study

This section will discuss the case study used to validate the proposed ADDAM methodology with
respect to both data privacy gain and data utility preservation.
5.1 Experimental Setup and Data Description

The experimental setup is visualized in Figure 7, which consists of an OPTOMEC LENS 750 Directed
Energy Deposition (DED) machine equipped with a co-axial pyrometer camera (Stratonics Inc.) to capture
the thermal images during the fabrication [2], [3], [17], [18]. The LENS DED machine leverages a 1.0 kW

Nd:YAG laser, and the pyrometer is mounted above the DED machine, outside of the inert chamber, where
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it is aligned with a series of mirrors to obtain a co-axial view. The specifications of the pyrometer are as

follows:

Exposure time: 2.0274ms

Image Size 752 x 480 and pixel pitch 6.45um
Captured temperature range: 1000-2500 °C
Pixel clock: 5 MHz

Image collection rate: 6.4 Hz

Two cylindrical specimens with different printing parameters and infill patterns were fabricated for

data collection. The key printing parameters are summarized in Table 2.

Collected Process Data

Laser Pyrometer
Source
Printed Unidirectional
Workpiece Infill Patterns
Part 1 Part 2
Nozzle «-- @ @
Powder «----- @
Melt pool <«--
e X-ray CT
' Porosity Detection
Figure 7: Experimental set-up and data collection methods
Table 2: Printing parameters for Part 1 and Part 2
Parameters Part 1 Part 2
Scan speed 40 inch/min 50 inch/min
Powder feed rate 3 rpm 2.5 rpm
Hatch spacing 0.02 inch 0.025 inch
Power 300 W 350 W
Layer thickness 0.015 inch 0.015 inch
Number of thermal images utilized 1,616 842
Number of layers in the build 69 55
Number of anomalies 138 (6%) N/A
Infill pattern Unidirectional (0°/180° ) | Unidirectional (60°/180/300° )
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The specimen fabrication resulted in raw thermal images with 480 rows and 752 columns, in which
each pixel represents a temperature reading at the corresponding location. First, these images are cropped
into 201 X 201 to reduce the image dimensions and remove irrelevant regions that do not contain the melt
pools. It is important to note that the initial cropping parameters were consistent across all the images. In
addition, the instantaneous printing orientations of both datasets were determined by leveraging the g-codes
of the two specimens post-processing. There are two unique angular identities in Part 1 (0°/180°), and three
in Part 2 (60°/180°/300°). Furthermore, due to the existing trends in the AM thermal process data, only the
data after layer 20 were leveraged for tuning and evaluating the performance of the different algorithms.
This provides a better, more consistent evaluation of ADDAM performance. Overall, these two datasets
will provide four unique angular identities and 2,458 thermal melt pool images for experimentation. This
is a limited dataset that will allow more controlled experimentation and simulate the limited data availability
faced by SMMs. The results are reflective and comparable to the application of ADDAM in a practical
setting.

After part fabrication, the porosities were detected utilizing the XCT inspection and subsequently
matched with the thermal images based on the porosity location and the g-code for Part 1 only. As a result,
the thermal images were labeled as defect present (1) or defect absent (0). For Part 2, there is no post-

process inspection data available for anomaly detection modeling.
5.2 Evaluation Procedure

5.2.1 Benchmark Method Selection

For benchmark comparison, a global k-anonymization approach was applied. This involves
anonymizing each sample image with a constant number of k-closest neighbors, instead of allowing an
adaptive k value to be applied to each image. This is indicative of the traditional global k-anonymization

methods that have been used in the past, primarily in the k-same methods. The performance comparison
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will demonstrate the effectiveness of the proposed adaptive mechanism in de-identifying AM process data.
It is worth noting that the global k value will be the only hyperparameter to tune for the benchmark method.
5.2.2 Two Testing Scenarios

Two different testing scenarios were designed to evaluate the performance of the ADDAM algorithm.

Scenario I: This scenario aimed at evaluating both the data utility and privacy by applying the ADDAM
algorithm exclusively to Part 1, where there are both anomaly and theta labels. This scenario simulates a
single, independent user who is applying the ADDAM algorithm to their dataset before data sharing.

Scenario II: This scenario was designed to evaluate the effect of additional instantaneous print
orientations on the privacy preserving abilities of the ADDAM, as well as to evaluate the utility preservation
abilities when aggregating two datasets. This is simulating the collaboration of two users, or a single user
leveraging two datasets, to de-identify the thermal process data. Ultimately providing further validation to
the results from the first scenario, as there were limited print orientations available within the first test, as
well as providing an evaluation on the performance of ADDAM when aggregating multiple datasets.
5.2.3 Data Splitting for Evaluation

For both previously described scenarios, 30% of the sample images were used as the reference image
set (R) for the de-identification process, which simulates an independent reference or gallery set that shared
a similar distribution to the de-identification data. The remaining images were used to as the sample images
(). More specifically, for Part 1, 30% of the healthy melt pool images (Class = ) were used to form R.
This is a similar tactic to those used in [3], where the distribution of the normal melt pools is leveraged to
identify abnormal melt pools. However, for Part 2 there is no normal and abnormal class labels, so the
reference data (R) is taken by randomly sampling 30% of the original melt pool images. This data splitting

method is described in detail in Figure 8.
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~ Reference Data (R) Sample Data (7)
Tuning Data (T) Evaluation Data (&)
Scenario 1 30% 21% 49%
Part 1 Healthy Remaining Part 1 Healthy and Unhealthy
Scenario 11 30% 21% 49%
Part 1 Healthy Remaining Part 1 Healthy and Unhealthy
Part 2 Random Remaining Part 2

Figure 8: Data splitting for scenario I and scenario II

In addition, the Maximum Mean Discrepancy (MMD) [53] can be leveraged to verify the similarity of
the distribution between the reference set and the de-identification set. The MMD is essentially defined as
the distance between the feature mean of two distributions. This similarity metric has been commonly
leveraged in transfer learning applications to determine the distance, or similarity, between the source and
target domains [11], and can be used as a loss function in deep learning applications [58]. The calculated
MMD scores between the reference set and the sample sets for both testing scenarios are summarized in
Table 3. In general, the lower MMD score is, the smaller the distance between the feature means of the two
datasets will be. It can be observed that the MMD scores for both testing scenarios are only 1.41% and

0.97% of the MMD score between the distributions of two fabricated parts.

Table 3: MMD evaluation of reference and sample sets for each scenario

Scenario I Scenario 11 Part 1 and Part 2
6.088 4.159 430.750

Linear MMD

Furthermore, from the sample image set (7), 30% of the images were randomly sampled and used as a
tuning set (77) to tune both the ADDAM user-defined hyperparameters (M and Al) and the global k nearest
neighbor parameter (k). This tuning data is first de-identified using different combinations of the user-
defined hyperparameters and is then evaluated each time using an SVM classifier for anomaly detection
and angular identity detection. The remaining 70% of the sample images were used as an evaluation set (£)

to gauge the performance of the optimal user-defined de-identification parameters identified from the tuning
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process. The evaluation set is de-identified using each of the parameter sets selected from the tuning data.
After de-identification, the de-identified evaluation data was split into 80/20 training/testing sets and fed
into SVM classifiers to predict anomalies and angular identities, producing the overall UL and PG
performance of the de-identification algorithm. This final SVM performance evaluation was performed
over 10 iterations and results in an averaged performance for the de-identification algorithm. This entire
procedure was repeated for both scenarios, just with either Part 1 independent or Part 1 and Part 2
aggregated datasets, which also dictates if either anomaly-detecting and/or angular identity detecting SVM
classifiers are leveraged.

To evaluate the algorithm performance in these two scenarios, an SVM classifier was chosen due to its
ability to characterize the non-linear relationships within high-dimensional data. The SVM classifier was
used during both the tuning stage and during the final evaluation stage, and the SVM hyperparameters were
tuned using grid search cross-validation with a stratified shuffle splitting strategy. In addition, 10
replications were performed for each scenario test, and the average performance across these replications

was reported and compared to evaluate model robustness.
5.3 Parameter Tuning

For each image within the sample dataset, there are several parameters to consider, these include the
variability explained in the PCs (p) and the user-defined constraints related parameters, i.e., M and Al. For
the p value, the variability explained by the PCs was fixed at 95%. This value was chosen as an adequate
level of variation that will reduce the high dimensionality of the data, while simultaneously capturing the
explained variance within melt pools. This allows for less computational expensive experimentation while
still retaining enough information to identify both the presence of abnormal melt pools and the detection of
the print orientation angles. In addition, the user defined inputs, M and Al, and the benchmark input, k,
were evaluated over different ranges of values These ranges were designed to capture a variety of possible
values and highlight how varying input values can affect the performance of the ADDAM algorithm and

are depicted in Table 4.
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Table 4: User defined input parameter ranges

User Defined Input

Candidate Values

Maximum Euclidean Distance (M) 0.25,0.3, 0.4, 0.50, 0.60, 0.7, 0.8,0.9, 1.0, 1.1, 1.25, 1.50

Maximum Allowable Layer Range (Al) 1,5,10

Global k nearest neighbors

2,5,8,10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150

The user-defined inputs were evaluated based on the tuning data set in terms of both PG and UL, and

all the Pareto efficient solutions were found through evaluating the performance metrics on a mesh grid of

the two de-identification hyperparameters. The pareto efficient solutions were chosen such that they

maximized the increase in privacy, while minimizing the loss of utility. A visualization of the ADDAM

tuning process is depicted in Figure 9. It is important to note that due to the limited number of unique

angular identities, too high of a distance constraint (M) can lead to a decrease or stagnation in the privacy

gain. In addition, larger Al values can lead to higher privacy gains in some scenarios but can adversely

impact usability.
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Figure 9: Hyperparameter tuning for distance constraint (M) and layer constraint (4l) constraints for
Scenario I (A) and Scenario II (B)
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Furthermore, the benchmark methodology (global k-anonymization) was also tuned to provide
comparable evaluations. This included using the same SVM classifier and tuning data split as the ADDAM
algorithm. However, this method does not incorporate a balancing parameter, as it directly uses the k — 1
nearest neighbors to de-identify the image. A visualization of the global k anonymization can be seen in
Figure 10, and it is important to note that the general trend exists that increasing PG decreases the UL. This
shows that there is a direct, inverse relationship in the privacy gain and utility preserving performance of
global anonymization models. In addition, the variation in performance between k values can be attributed

to the lack of unique angular identities available in each dataset and imbalanced nature of the dataset.

0.4 4 A 0.4 4 B
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9-1 0.0 1 Scenario I 0.0 4 Scenario IT
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Figure 10: Global k benchmark method tuning for various k values for Scenario I (A) and Scenario II (B)
5.4 Results and Discussion

This section details the results from the experimentation described in the previous sections. All tests
were evaluated using the same SVM model set-up described previously, to ensure comparability between
the proposed and benchmark method.

Firstly, the baseline performance of the SVM model was determined for each of the two testing

scenarios. This baseline test highlights the non-anonymized performance of the chosen SVM classifier,
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which is the maximum data utility that can be achieved. As noted previously, the F1 Score will be the
primary metric to evaluate UL. The Accuracy metric will be leveraged when evaluating the angular
classification performance, PG. The baseline results for both scenarios are listed in Table 5. In addition, it
is important to note that the vPCA extracted features were chosen to evaluate our proposed ADDAM
method due to their higher performance over the geometric and thermal features for anomaly detection.

Table 5: Baseline Results using vPCA to extract features and SVM for classification

Scenario Anomaly Detection Angular Detection
(F1-Score) (Accuracy)
Scenario I 0.859 0.990
Scenario 11 0.852 0.970

Secondly, the validation data (77) was leveraged in the ADDAM algorithm and global k algorithm to
determine which parameter(s) were optimal for each scenario. As illustrated in Figure 11, each point
represents a combination of user-defined inputs (M and Al) for ADDAM, or a global k level for the
benchmark. From here, the pareto optimal points were identified (higher opacity) as the points that lie on
the optimal front of the performance area for each scenario. The additional points (lower opacity) are the
other combination of parameters which do not lie on the pareto optimal front. These points represent
parameters that do not perform optimally using the datasets in Scenario I and II, and are not chosen to
evaluate the final test performance. The specific performance and corresponding hyperparameter values are
shown in Figure 11. It is important to note that the advantage of the ADDAM algorithm is its ability to
preserve data usability, through a smaller |UL|, provided similar privacy gain, PG. From these optimal
points, the corresponding hyperparameter sets were selected and then used to de-identify the testing dataset

(&) for the benchmark and ADDAM methods.
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Figure 11: Pareto front comparison during the parameter tuning (using J°) for the ADDAM and global k
in Scenario I (A) and Scenario II (B). This details all possible solutions for the different combinations of
tuning parameters for ADDAM, and highlights the pareto optimal solutions, which are detailed in the
corresponding tables.

The final phase of experimentation takes the pareto optimal set of the hyperparameter values identified
in the tuning stage and applies them to the held-out evaluation data £ to determine an averaged performance
in both PG and UL. This evaluation is similar to the tuning results depicted in Figure 11, however these
represent the optimal combination of parameters used on the hold-out testing data, ultimately representing
the final performance. The ADDAM algorithm again outperforms the benchmark method for both testing
scenarios, which is detailed in Figure 12. The Pareto optimal values found from the evaluation data (€) were
better positioned to minimize |UL| and maximize PG for ADDAM, as compared to global k. These results

show that the ADDAM algorithm uniformly outperforms the benchmark global k method.
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Figure 12: Pareto front comparison evaluating testing data (£) using pareto efficient solutions identified in
Figure 10, for ADDAM and global k in Scenario I (A) and Scenario II (B). This details the performance
of the optimally selected tuning parameters from Figure 11 on the testing data, highlighting the overall
performance of the proposed ADDAM algorithm.

Furthermore, in Scenario I, the ADDAM algorithm can achieve a comparable or slightly larger PG,
without sacrificing as nearly as much data usability as the global k method. This trend is present when
implementing the ADDAM algorithm in both the tuning and evaluation stages. In addition, for Scenario II
the ADDAM algorithm was able to achieve a noticeable higher privacy gain value, i.e., PG, while
maintaining a comparable, and even slightly better, utility loss than the benchmark method. This reinforces
the effectiveness of the ADDAM algorithm in practical applications, where complex part geometries would
be leveraged in the de-identification. This would provide more diverse angular identities, leading to more

improved de-identification results. From both testing scenarios, the ADDAM algorithm was able to
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outperform the benchmark method in at least one or both optimization objectives. The better performance
in utility preservation and increased data privacy of the ADDAM algorithm can be explained through the
adaptive de-identification approach. With ADDAM, the user is maximizing the features preserved in the
abnormal melt pools, because these images will receive lower, or even zero, level of de-identification. This
effectively preserves the features that define the abnormalities. On the other hand, in the benchmark method
with global k, the k-closest neighbors were chosen as a constant optimal value, which does not provide the
de-identification flexibility to abnormal images. This, as a result, will blur the distinction between the
healthy and abnormal melt pool images, sacrificing the AM data utility in anomaly detection.

In a practical application, these results would provide the AM user with the ability to leverage an
optimal set of solutions and optimize a de-identification algorithm that best suits their needs. This can be
primarily attributed to the pareto front evaluation technique, which provides an optimal set of solutions and
allows the user to evaluate the tradeoff between utility preservation and data privacy. From here, a user can
evaluate these optimal solutions and decide if they want to prioritize de-identification, utility preservation,
or find a balance. This allows the user an additional level of customization to better meet their specific

application needs.

6. Conclusion and Future Work

In conclusion, this paper proposes a novel, adaptive approach named the ADDAM methodology to
achieving de-identification of design information for AM thermal process data, resulting in secure, de-
identified AM process data that can be leveraged for the development of more robust in-situ defect detection
models. This new adaptive de-identification approach outperforms the traditional global approaches to
achieving dataset privacy. Ultimately improving overall dataset privacy (20-30% improvement), while
sacrificing a limited amount of data utility (0-10% maximum loss in usability) on the controlled dataset.
This creates a stronger defense against IP theft while still allowing AM users to aggregate data, overcoming
some of the challenges posed by limited process data for robust process-defect modeling for SMM.

Furthermore, the ADDAM algorithm was evaluated on thermal process data collected from a DED process,
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however, the adaptive framework can easily be expanded beyond DED systems. Many different metal-
based AM systems could collect very similar thermal process data, and the adaptive approach itself provides
a novel method for de-identifying AM process data, which tends to share the same characteristics of being
unbalanced and containing a limited number of unique identities.

There are a few directions that remain open for future research. Firstly, the inclusion of additional
angular identities provides a potentially effective improvement in the ADDAM algorithm performance.
This includes evaluating the potential effects of using infill orientation angles that are not based on a
unidirectional infill pattern or a free-formed component. In addition, leveraging larger datasets that reflect
more complex part geometries will provide a more diverse reference set, which may result in stronger de-
identification per image. This will ultimately translate into stronger dataset-level data privacy, and be
reflective of practical applications. Furthermore, with an increased diversity of angular identities, a potential
improvement for the evaluation method would be to apply a regression-based evaluation of the angular
identities. This would provide a continuous-valued result, which could provide a more accurate evaluation
of the angular identity detection. Secondly, the proposed ADDAM algorithm is aimed at providing a melt-
pool wise data privacy, which will provide data privacy while achieving an elevated level of data utility
preservation. Future research can potentially develop an additional, compounding privacy measures to
further protect against re-identification attacks on a layer-wise level. This could involve incorporating
additional image-augmentation measures and layer-wise anonymization techniques to the proposed
adaptive de-identification method to achieve larger gains in data privacy. Finally, the adaptive approach to
de-identification can be applied to other applications, outside of the AM domain. The ADDAM
methodology implements a novel adaptive approach to de-identification that can be beneficial to achieving
improved data privacy in different applications, especially where the traditional global k-anonymization
approaches may not be as effective. This includes instances where the dataset may not have a large number
of unique identities or instances there are additional features available that can be extracted and leveraged

to enhance the data privacy through similarity space construction.
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