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Key Points: 15 

• An encoder-decoder model (recurrent neural network) is developed to reconstruct Earth’s 16 
global electron density. 17 

• By separating geomagnetic indices from satellite location as inputs, we directly model 18 
total electron density with geomagnetic indices. 19 

• The model captures the spatial variation of density by predicting stable and evident 20 
plumes, roughly consistent with global observations. 21 

  22 
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Abstract 23 

The total electron density is a fundamental quantity in the Earth’s magnetosphere and plays an 24 
important role in a number of physical processes, but its dynamic global evolution is not fully 25 
quantified yet. We present an implementation of a specific type of recurrent neural network 26 
(encoder-decoder), which is distinct from previous models, to construct global electron density 27 
based on the multi-year data from Van Allen Probes. The history of geomagnetic indices is first 28 
encoded into a hidden state H, then together with auxiliary information (satellite location), they 29 
are decoded into the quantity of interest (total electron density in this study). In this process the 30 
input of historical geomagnetic indices is detangled from the satellite location and is processed 31 
chronologically by the encoder. As a result, time evolution of geomagnetic indices is explicitly 32 
embedded in the structure and the encoded hidden state H can be viewed as the representation of 33 
the inner magnetospheric state. The magnetospheric state is then decoded to predict global 34 
electron density evolution.  Our results show that the model can capture the dynamical evolution 35 
of total electron density with the formation and evolution of stable and evident plume 36 
configurations that roughly agree with global observations. Our findings demonstrate the 37 
importance of applying recurrent neural networks to specify the inner magnetospheric state in a 38 
novel way, which will potentially improve our fundamental understanding of wave and particle 39 
dynamics in the Earth’s magnetosphere. 40 

 41 

Plain Language Summary 42 

The global evolution of total electron density in the Earth’s magnetosphere is important for 43 
understanding energetic particle dynamics and their associated wave-particle interactions. 44 
Although physics-based models show reasonable evolution, they do not fully capture all the 45 
dynamical evolution on a global scale. Therefore, data-driven methods by utilizing machine 46 
learning techniques have been developed recently. The recurrent neural network is a variant of 47 
artificial neural networks, and it has been applied to many time-series data. It naturally handles 48 
the time dependence by processing the data chronologically. We develop an encoder-decoder 49 
model based on recurrent neural network and show that by properly designing the architecture, 50 
the model can separate the spacecraft orbital variation and the temporal evolution. We apply it to 51 
global total electron density modeling trained on the Van Allen Probes observation, and the 52 
result shows fairly good performance with stable and evident spatial structures of the 53 
plasmasphere and plumes.  54 

  55 

1 Introduction 56 

 The plasmasphere is a region in the near-Earth space, extending up to ~7 Earth radii (RE), 57 
filled with cold (0.1-10 eV) and dense (up to 104 cm-3) plasma. It is populated mostly by the 58 
outflow of ions and electrons from the ionosphere and typically has an irregular toroidal shape 59 
around the Earth (Carpenter & Anderson, 1992) with an exponentially decreasing density profile 60 
as the radial distance increases. Previous studies have suggested that the shape of the 61 
plasmasphere is correlated with geomagnetic activity (Carpenter & Seely, 1976; Goldstein, 62 
2007), and the global distribution of cold plasma can become complex during geomagnetically 63 
disturbed periods (Carpenter & Lemaire, 1997; Darrouzet et al., 2009) and highly structured 64 
during quiet periods (Goldstein & Sandel, 2005; Moldwin et al., 1994, 1995, 2003). During 65 
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geomagnetic storms, the outer plasmasphere is often eroded due to an enhanced convection 66 
electric field, forming a region of sharp gradient called “plasmapause”. The erosion starts from 67 
the nightside and propagates to the dayside (Gallagher & Adrian, 2007; Goldstein & Sandel, 68 
2005), where the plasma is convected further away from the plasmasphere and transported 69 
sunward toward the magnetopause via a high-density structure, called “plasmaspheric plume”. 70 
Plasmaspheric plumes at the dayside magnetopause may modify the reconnection rate there 71 
(McFadden et al., 2008; Walsh et al., 2014). As the convection subsides, the corotation 72 
dominates and the plasmasphere gradually recovers through plasma refilling from the ionosphere 73 
during the recovery phase (Dent et al., 2006; Reinisch et al., 2004).  74 

 Quantification of the total electron density in the Earth’s magnetosphere is critical, as it 75 
affects many processes, including populating the plasmasphere and the plasmasheet (Elphic et 76 
al., 1997), affecting magnetopause stability (Borovsky & Denton, 2006; Zou et al., 2021), plasma 77 
wave generation and propagation (Chen et al., 2012; Li et al., 2013; Shi et al., 2019), and the loss 78 
and acceleration of energetic particles (Bortnik et al., 2007; Li et al., 2019; Liu et al., 2016; 79 
Malaspina et al., 2020; Thorne et al., 2016). Therefore, it is important to construct an accurate 80 
model of global electron density. Many empirical (Reinisch et al., 2009; Sheeley et al., 2001) and 81 
physics-based models (De Pascuale et al., 2018; Pierrard & Lemaire, 2004; Pierrard et al., 2009) 82 
have been developed. However, due to the lack of direct observation on a global scale, these 83 
models are either simplified with a limited number of parameters, thus lack complex spatio-84 
temporal variation, or miss some key processes (e.g., the complex electric field evolution). By 85 
taking full advantage of long-term satellite observations, we aim to model the global electron 86 
density using a machine learning technique.  87 

Machine learning is a field with a long and rich history (Bishop, 2006; Cortes & Vapnik, 88 
1995; Van Otterlo & Wiering, 2012). It can be loosely defined as to enable the computers to 89 
learn from data without being explicitly programmed (Samuel, 1959). Deep learning (LeCun et 90 
al., 2015) as a subfield of machine learning benefits from the rapidly growing computing power 91 
and has gained its popularity after AlexNet (Krizhevsky et al., 2017) won several image 92 
classification contests in 2012. Over the recent years, there has been an explosive growth of deep 93 
learning in theory (E et al., 2017; Han et al., 2018; He & Tao, 2021), model structures (He et al., 94 
2018; Liu et al., 2021; Vaswani et al., 2017; Zhou et al., 2021) and applications (Liu & Tegmark, 95 
2021; Sirignano & Spiliopoulos, 2018). In the field of space physics, the application of machine 96 
learning has started in 1990s, when the early form of neural network is used to provide 97 
relativistic electron fluxes at geosynchronous orbit (Koons and Gorney, 1991), geomagnetic 98 
storm forecasts (Wu and Lundstedt, 1997), and Kp forecasts (Wing et al., 2005). More recently, 99 
deep learning has been applied to solar flare prediction (Nishizuka et al., 2021; Wang et al., 100 
2020), plasma region classification (Breuillard et al., 2020), electron flux modeling (Chu et al., 101 
2021; Ma et al., 2021; McGranaghan et al., 2021) and so on. The idea of modeling total electron 102 
density with deep learning is not new and previous studies have demonstrated the ability of deep 103 
learning to capture the plasmaspheric response to geomagnetic activity (Bortnik et al., 2016; Chu 104 
et al., 2017a, 2017b; Zhelavskaya et al., 2017). However, all of the previous methods use fully 105 
connected neural networks to model the relation, which is not necessarily the most natural way to 106 
handle time order information. Because the geomagnetic indices used to model the relation are 107 
time-series and all satellite observations are partly time-series (also contain the location 108 
dependence), we view the problem as time-series nowcasting/forecasting. Compared with 109 
traditional modeling methods including autoregressive moving average models (ARMA; Chen et 110 
al., 1995) and further variant with exogenous variables included (ARMAX; Huang et al., 2005), 111 
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deep learning models show certain advantages in modeling complex non-linear relation without 112 
prior knowledge on the time-series itself and outperform traditional methods in many 113 
applications (Lara-Benítez et al., 2021). In the present study, we apply an encoder-decoder 114 
architecture based on recurrent neural network to model the total electron density with explicit 115 
time evolution in the model structure.  116 

Description of the data and the modeling method is provided in Sections 2 and 3. In 117 
Section 4, we examine the overall model performance and apply the model to two observations 118 
of plumes. Finally, we discuss our current understanding of similar modeling tasks and 119 
summarize the findings in Sections 5 and 6. 120 

 121 

2 Data 122 

In this study, we use the in-situ total electron density data from Van Allen Probes (Mauk 123 
et al., 2013), also known as Radiation Belt Storm Probes (RBSP), covering from January 2013 to 124 
October 2019. Van Allen Probes are twin satellites (RBSP-A and B) in a highly elliptical orbit in 125 
the Earth’s inner magnetosphere (< ~5.8 RE). We use the satellite location of L shell, magnetic 126 
local time (MLT) and magnetic latitude (MLAT), and the total electron density (Ne) inferred 127 
from upper hybrid resonance frequency (Kurth et al., 2015) measured by the High Frequency 128 
Receiver (HFR) onboard the Electric and Magnetic Field Instrument Suite and Integrated 129 
Science (EMFISIS) instrument (Kletzing et al., 2013). The MLT is converted into sin(MLT/12π) 130 
and cos(MLT/12π) as model input parameters. The time resolution of satellite data is processed 131 
to be of one minute by simple linear interpolation. 132 

In this study, geomagnetic indices are used to represent the magnetospheric state. The 133 
solar wind parameters are not used since their time coverage is not continuous with intermittent 134 
gaps. Here we use SML, Hp30, and SYM-H indices as they capture the disturbance of the 135 
geomagnetic field in auroral zone, mid-latitude, and low-latitude, respectively. Thus, they are 136 
good indicators of the overall inner magnetospheric activity. The SML index (Gjerloev, 2012; 137 
Newell & Gjerloev, 2011), obtained from SuperMAG Web Service, is similar to the widely used 138 
AL index but provides full-time coverage during the Van Allen Probe era. The Hp30 index 139 
(Matzka et al., 2021) is from GFZ German Research Centre for Geosciences and is used to 140 
replace the 3-hour Kp index, providing higher temporal resolution of 30 min. These indices are 141 
interpolated at 1-min time resolution to match with the satellite data. 142 

3 Methodology 143 

3.1 Model Structure 144 

We use a well-established architecture called encoder-decoder to model the global 145 
electron density. The architecture differs from the conventional models composed of several 146 
fully connected layers applied in previous studies (Bortnik et al., 2016; Chu et al., 2017a; 147 
Zhelavskaya et al., 2017). Encoder-decoder was first proposed to deal with natural language 148 
processing tasks (Cho et al., 2014) and was later extended to general sequence-to-sequence 149 
modeling (Sutskever et al., 2014). Since geomagnetic indices are time-series and satellite 150 
observations also vary with time, we adapt the architecture to our project, as illustrated in Figure 151 
1a. The history of geomagnetic indices is passed to an encoder to obtain the magnetospheric 152 
state. Then, this encoded state and auxiliary satellite information (satellite location) are passed to 153 
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the decoder to obtain the quantity of interest 𝑌 (total electron density in our case). The key 154 
component of the encoder-decoder structure is an architecture called Long Short-Term Memory 155 
(LSTM; Hochreiter & Schmidhuber, 1997), which is a modified version of Recurrent Neural 156 
Networks (RNN; Elman, 1990). RNN is first introduced as a type of Artificial Neural Networks 157 
(ANN) to deal with time-series data, where the output of the hidden layer is used as the input of 158 
next time step. As a result, RNN is able to model the temporal dependence of the data and was 159 
later improved with many variants to deal with longer time pattern dependence (Cho et al., 2014; 160 
Gers et al., 1999; Huang et al., 2015). Among all these variants, LSTM is the most popular one 161 
and appears to perform well in many time-series modeling tasks (Lara-Benítez et al., 2021). By 162 
introducing different gates, LSTM can mitigate some limitations of vanilla RNN (e.g., the 163 
gradient vanishing problem), thus is able to sustain deeper architectures and capture longer time 164 
dependence. The detailed description and discussion of LSTM can be found in Staudemeyer & 165 
Morris (2019) and references therein. 166 

To explain the workflow in detail, in the encoder (green block in Figure 1a), at any given 167 
time 𝑡 (time is denoted in the superscript hereafter), the model output of each LSTM cell (Figure 168 
1b) can be described as 𝑯௧ = 𝑓(𝑯௧ିଵ, 𝑿௧), where 𝑓 denotes the processes by the LSTM cell, 𝑯௧ 169 
is the LSTM output (also called hidden state) at the current time t. 𝑯௧ିଵ is the LSTM output 170 
from the previous time step (1 min in this study to match the resolution of the satellite measured 171 
density), which is also used as the input at the current time step. 𝑿௧ represents the geomagnetic 172 
indices at the current time. By iteratively updating hidden state 𝑯௧ with its last state 𝑯௧ିଵ and 173 
current geomagnetic indices 𝑿௧ over time, the history of geomagnetic indices is encoded into 𝑯, 174 
which is one of the most intuitive ways to handle the time evolution. In the decoder (orange 175 
block in Figure 1a), apart from updating the hidden state with the current geomagnetic indices, 176 
we concatenate the hidden state 𝑯 with location Loc (L, sin(MLT/12π), cos(MLT/12π), MLAT) 177 
and pass them to a two-layer fully connected neural network, with the final output to be the total 178 
electron density (Ne). This process is consistent with the previous models (e.g., Bortnik et al., 179 
2016; Chu et al., 2017a, 2017b; Zhelavskaya et al., 2017). 180 

 The main difference between our model and previous models is in treating the time 181 
sequence of geomagnetic indices and satellite location. Specifically, in the fully connected neural 182 
network, the information from geomagnetic indices and satellite location are entangled (they are 183 
concatenated together before fed to the model). Moreover, in fully connected neural networks, 184 
the “corresponding” hidden state of magnetospheric state H at different times is derived 185 
separately from a sequence of historical geomagnetic indices without an explicit time-186 
dependence. As a result, the neuron outputs of different times do not have a clear dependence on 187 
each other. In our encoder-decoder model (specifically in the encorder section), the hidden state 188 𝑯௧ is updated from the last state 𝑯௧ିଵ together with geomagnetic indices at time t (Figure 1b), 189 
thus it explicitly depends on the previous hidden state (at time t-1) and can ultimately be viewed 190 
as a representation of the magnetospheric state. In addition, the dependence of 𝑯௧ on 𝑯௧ିଵleads 191 
to a more continuous H over time (possibly producing a smoothly varying total electron density 192 
evolution) and ensures to explicitly take into account the time evolution of the system.  193 

 194 

3.2 Data Processing 195 

 To process data, we first divide the RBSP observations into inbound and outbound orbits. 196 
Since each bound consists of ~270 minutes of observation, we set the length of the decoder to be 197 
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270, fill it with NaN if the bound is shorter, and truncate it if the bound is longer. Geomagnetic 198 
indices, satellite location, and Ne in the decoder are thus 270 minutes long, with a 1-min time 199 
resolution. The dynamics of the plasmasphere occur on timescales that are much longer than a 200 
minute, so 1-min resolution provides sufficient resolution to capture any variations in the large-201 
scale density distribution. Note that the same resolution was used by Zhelavskaya et al. (2017). 202 
The 270-min length is chosen because it has complete coverage from low/high L shell to 203 
high/low L shell to provide sufficient variability in total electron density for the model to train 204 
on. In the encoder, we set the geomagnetic indices to be 200-hour long with a 10-min time 205 
resolution after the hyperparameter tuning described in section 3.3. In total, we end up with 206 
~26,000 inbounds and outbounds. To divide them into different datasets (for training, validation, 207 
and testing), we first assign calendar dates into 7-day blocks and randomly pick 70% of the 208 
blocks as the training set, 20% as the validation set, and 10% as the test set. We then match the 209 
RBSP-A and RBSP-B sequence to the split time blocks. Note that 7 days is longer than the 210 
plasmaspheric system "memory time", so by doing this we take into account long-term seasonal 211 
and solar cycle variation while avoiding data leakage. 212 

 To summarize, the model takes as input 200 hours of geomagnetic indices in the encoder 213 
and 270 minutes of geomagnetic indices and satellite location (L, sin(MLT/12π), cos(MLT/12π), 214 
MLAT) in the decoder. The model outputs with 270 minutes of the predicted total electron 215 
density. Note that the 200-hour encoder length and 270-min decoder length are only for the 216 
training process and are totally extendable. 217 

 218 

3.3 Optimization 219 

The model performance is evaluated on the validation set, based on the difference 220 
between logଵ଴ 𝑁𝑒 and logଵ଴ 𝑁𝑒௉, where P denotes the predicted electron density from our 221 
model. We choose the mean square error (MSE) as the loss function and r-square (r2, where r 222 
denotes the Pearson correlation coefficient) as the evaluation metrics.  223 

We optimize the hyperparameters in our model using the steps described below.  224 

(a) We choose one hyperparameter from the list: LSTM hidden size, fully connected 225 
layer size, encoder length and encoder time resolution;  226 

(b) We set a range for the hyperparameter. Using Newton’s iteration, we find the 227 
hyperparameter that results in the best model performance, and choose it as the optimized 228 
parameter;  229 

(c) We loop through all hyperparameters, and the above steps (a-b) are performed for 230 
each hyperparameter iteratively;  231 

(d) We repeat the above steps (a-c) until the loss does not improve by 0.002.   232 

Using this method, our final hyperparameters are determined to be the following; (1) 233 
LSTM hidden size is 512; (2) geomagnetic indices in the encoder are 200-hour long with 10-234 
minute time resolution; (3) fully connected network in the decoder has two layers of 16 neurons 235 
each, with tanh as the activation function.   236 

 237 
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4 Results 238 

 In this section, we evaluate the performance of the final model that we optimized. Figure 239 
2 shows the comparison between satellite observation and model prediction on (a) training, (b) 240 
validation, and (c) test dataset. For each point on the plot, the x- and y-axis represent logଵ଴ 𝑁𝑒 241 
and logଵ଴ 𝑁𝑒௉ respectively. A perfect model would be a diagonal line (y=x) marked with a white 242 
dashed line. For the test dataset, our model accuracy metrics are MSE=0.114 and r2=0.834, 243 
which is close to those in the training (MSE=0.089 and r2=0.872) and validation sets 244 
(MSE=0.115 and r2=0.841), and is comparable to the previous studies (Bortnik et al., 2016; Chu 245 
et al., 2017a, 2017b; Zhelavskaya et al., 2017). However, we should point out that a direct one-246 
to-one comparison between the performance of different models can be very challenging because 247 
the datasets for training were processed differently and were obtained from different satellites. 248 
Below we examine the global performance of our model during two events; both are out-of-249 
sample datasets that were not included in the training process.  250 

The first case occurred on 26 June 2000 during a modest geomagnetic storm (SYM-H 251 
down to ~ -80 nT with Kp up to 6) in association with a series of substorm activities (Figure 3a). 252 
The plume evolution was observed by global imaging (Goldstein et al., 2004) from the Imager 253 
for the Magnetopause-to-Aurora Global Exploration (IMAGE) mission, which was the first 254 
mission dedicated to imaging the Earth’s magnetosphere (Burch, 2000). The Extreme Ultraviolet 255 
Imager (EUV) measured 30.4 nm light resonantly scattered from He+ ions (Sandel et al., 2000) to 256 
estimate total plasma density. Figure 3 shows the comparison between the model prediction 257 
(panel b) and the EUV observations (panel c) at different times (1-4). Since the total density 258 
distribution from the EUV observations requires assumptions, we focus on the plasmaspheric 259 
shape which is identified with the largest He+ density gradient (if any) of the EUV measurement. 260 
It is worth noting that the plasmapause identified in the EUV images (corresponding to the edge 261 
intersecting total electron density of 40±10 cm–3) is a good proxy (within 0.25 RE) for the 262 
plasmapause in proton or electron density profiles (Goldstein et al., 2003; Harris et al., 1970; 263 
Horwitz et al., 1990). Statistically, the density profiles of protons and He+ ions are 264 
morphologically similar (Goldstein et al., 2019b). The corresponding plasmapause of the 265 
modeled electron density is defined as the contour of 50 cm-3 (approximately consistent with the 266 
value of the edge in EUV images, noted above) as marked in red in Figure 3b, with a grey 267 
shadow covering a slightly broader area (20-80 cm-3) to denote the plume region. At the 268 
beginning of the day (time (1)), under quiet geomagnetic conditions, the plasmasphere was 269 
saturated with the plasmapause approaching the geosynchronous orbit (L = 6.6). After the main 270 
phase of the geomagnetic storm, at time (2), the plasmasphere showed a sunward surge where 271 
the cold plasma was dragged to the dusk sector due to enhanced convection electric field. During 272 
the storm recovery phase from time (3) to (4), the plume structure wrapped up as it corotated 273 
with the Earth, forming the final tail-like structure. During this process, the model captured the 274 
quick formation of the enhanced density region on the dusk side and the plume feature was stable 275 
over the next ten hours when the geomagnetic substorm activity was strong. Near the end of the 276 
day, the model predicted a gradually rotating plume as the convection subsided, as marked by the 277 
more quiet geomagnetic indices, which is consistent with the previous study (Goldstein et al., 278 
2014b). We estimated the approximate rotation rate of the predicted plume from 1:30 to 5:00 UT 279 
to be 0.9 times of the Earth’s rotation rate. During the entire period, the model showed complete 280 
plume evolution over 15 hours and the animation is included in Movie S1 and S2 in the 281 
Supporting Information. 282 
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 The second event was on 7 September 2015 when a major substorm occurred with the 283 
peak SML < -2,000 nT, associated with a geomagnetic storm with SYM-H down to ~ -100 nT 284 
and Kp up to ~6 (Figure 4a). RBSP-A observed a long-lived plume during the period, while the 285 
Global Positioning System (GPS) also measured strong enhancements of total electron content 286 
(TEC) near the dusk sector. By measuring the delay of GPS signals traveling through the 287 
ionosphere, the TEC along the signal path can be estimated and serves as a reference for the total 288 
electron density. Figure 4b shows the one-to-one comparison between the RBSP-A observation 289 
(darker color) and the model prediction (lighter color), and the plume periods (light blue shadow) 290 
are identified with a density change by a factor of 5 within ΔL ≤ 0.5 at L > 4. Figure 4c shows 291 
the comparison between the modeled density and the RBSP-B observation. It is worth noting that 292 
RBSP-B did not observe a similar trend as RBSP-A did during this period, indicative of a very 293 
confined spatial extent of the plume. The global view on the equatorial plane (Figure 4d) 294 
presents the modeled plasmapause (red) and plume (grey shadow), and measured equatorial TEC 295 
(color-coded). The GPS TEC measurements were gridded to 2 x 6 deg cells and mapped to the 296 
equatorial plane using the T01 magnetic field model (Tsyganenko, 2002a, 2002b). Green lines 297 
represent simulated plasmapause from test particle simulations (PTP; Goldstein et al. (2005, 298 
2014a, 2014b, 2019a)), which started at 00 UT on 7 September 7 2015 using an initial 299 
plasmapause specified by O’Brien and Moldwin (2003) and solved with 10s time steps driven by 300 
Kp and the OMNI solar wind electric field with the scaling factor f = 0.2. The PTP simulation is 301 
useful for showing the overall plasmaspheric response to solar activity (Goldstein et al., 2019a), 302 
including sunward surge, plume formation and rotation with the Earth, and is a good reference 303 
for the model to compare with on a large scale, as the reliable observation of the plasmapause 304 
location on a global scale is not always available. The RBSP-A trajectory (where the plume was 305 
identified shown in Figure 4b) is plotted with the cyan line with the satellite location marked 306 
with star in Figure 4d. Starting from 16:00 UT, the substorm reached its peak activity as shown 307 
in Figure 4a, and RBSP-A encountered the enhanced density region on the dusk side. In the 308 
meantime, the equatorial TEC significantly increased in the noon-dusk sector. For the next 8 309 
hours (time(3) to time(7)), the convection pattern was suggested to be stable from the PTP 310 
simulation, and RBSP-A entered the plume region again with fewer disturbances inside the 311 
plume. During the second plume period (00–04 UT), the RBSP-A trajectory overlapped with the 312 
modelled plume region, which suggests that the model captured the plume location accurately. 313 
The plume shape from the RNN model became narrower and rotated duskward, as the PTP 314 
simulation suggested.  315 

It is interesting to note that although the model does not provide an accurate one-to-one 316 
agreement with the RBSP observation during some periods (Figure 4b), it predicts a stable plume 317 
at roughly the same location from a global view (Figure 4d; also see animation in Movie S3 and 318 
S4 in the Supporting Information), which means that the model learned a global response of total 319 
electron density evolution to geomagnetic activity fairly well. However, an accurate global 320 
density model with the perfect agreement with the observed plume location requires further 321 
investigations. 322 

 323 

5 Discussions 324 

Total electron density models using artificial neural networks have been developed in 325 
recent studies; however, some questions including how to process geomagnetic indices 326 
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considering its time-series nature remain unsolved. In the present study, we model the total 327 
electron density using encoder-decoder to evaluate how well we can construct the global density 328 
model by naturally taking into account the time order information. Since many global models use 329 
geomagnetic indices (e.g., Sym-H, HP30 and SML) as inputs and the modeled quantity also has 330 
the time-series format, the encoder-decoder structure could be extended to modeling other 331 
quantities observed by satellites.  332 

The history of geomagnetic indices is typically used to drive the model, because the 333 
physical information we need is embedded in these indices. Therefore, the informativeness of the 334 
indices directly limits the model capability, if some fundamental processes are missed from the 335 
relation with these geomagnetic indices (e.g., Obana et al., 2019). While fully connected neural 336 
networks are flexible and proved to be able to approximate virtually any functions with any 337 
accuracy (e.g., Cybenko, 1989; Hornik et al., 1989, 1990), not all model structures can be 338 
optimized for a certain dataset. Therefore, a special network design might be more efficient in 339 
capturing specific structures, like RNN for time order dependence and Convolutional Neural 340 
Network (CNN) for locality variation. Since many space physics data are inherently time-series, 341 
we expect a potential growth of using RNN models in the field. However, predicting an accurate 342 
global evolution from the satellite orbital observation can be challenging in general, especially 343 
when the target variable has a strong spatial variation. In our study, the total electron density 344 
exhibits a strong spatial variation (sharp gradient over L/MLT), which can strongly impact the 345 
model performance. Finally, evaluating the performance of the model itself poses some 346 
challenges. Although commonly used loss functions are able to provide general evaluation of 347 
how the model performs statistically, they do not necessarily describe its performance in a 348 
certain aspect of interest. In our case, we are particularly interested in the plume evolution, yet 349 
we notice that models of similar loss performance can have totally different plume features. This 350 
suggests that more sophisticated metrics are required to evaluate the model performance in a 351 
more comprehensive way. 352 

6 Summary 353 

 We applied an encoder-decoder structure based on recurrent neural network to in-situ 354 
Van Allen Probes data to construct the global electron density distribution in the Earth’s 355 
magnetosphere on the equatorial plane. We introduced the encoder-decoder structure: first, an 356 
LSTM model converts the history of geomagnetic indices into a hidden magnetospheric state and 357 
updates it over time with evolving geomagnetic indices as inputs. Then, a fully connected neural 358 
network takes the magnetospheric state and satellite position as inputs and calculates the total 359 
electron density at any location. By doing this, we have time-order information explicitly 360 
embedded in the model structure. 361 

 Our model reaches comparable performance as the pervious studies; however, a 362 
quantified comparison is difficult since the trained datasets are different and data were processed 363 
differently. We examine the model performance on the evolution of plumes during two 364 
individual events, and the model shows fairly good agreement with the qualitative global 365 
observations by IMAGE EUV and GPS TEC. In both cases, a plume structure formed during 366 
disturbed geomagnetic activities remained stable for an extended period, and finally rotated with 367 
roughly the speed of Earth’s rotation rate as expected during the recovery stage. These findings 368 
suggest that the model learned a general response of global electron density to storm/substorm 369 
activity, with different stages of enhanced convection, stable convection and subsiding 370 
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convection. It is worth noting that the model did not present a sharp and narrow plume structure 371 
as the satellite observed (plume with sharp boundary in Figure 4b); however, improving the 372 
model performance on such a finer spatial resolution is beyond the scope of the present study, 373 
and thus is left as a future investigation.  374 

In summary, our study reports a novel method: encoder-decoder, which is different from 375 
previous studies, and demonstrates its capability of reconstructing the dynamic total electron 376 
density evolution on a global scale from a time-series dataset. By separating geomagnetic indices 377 
from satellite location as inputs, our RNN model (encoder-decoder model) directly models total 378 
electron density in response to geomagnetic indices. The fairly good performance of our density 379 
model using RNN also demonstrates the potential importance of applying it to other physical 380 
quantities (e.g., magnetospheric waves, particle fluxes, etc.) that are partly time-series as well. 381 
The dynamic global models of these physical quantities using RNN will potentially improve our 382 
fundamental understanding of source, loss, and transport of cold plasmas, generation and 383 
propagation of various plasma waves, as well as acceleration, loss, and transport of energetic 384 
particles in the Earth’s magnetosphere in a comprehensive way. 385 

 386 
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