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Key Points:

e An encoder-decoder model (recurrent neural network) is developed to reconstruct Earth’s
global electron density.

e By separating geomagnetic indices from satellite location as inputs, we directly model
total electron density with geomagnetic indices.

e The model captures the spatial variation of density by predicting stable and evident
plumes, roughly consistent with global observations.
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Abstract

The total electron density is a fundamental quantity in the Earth’s magnetosphere and plays an
important role in a number of physical processes, but its dynamic global evolution is not fully
quantified yet. We present an implementation of a specific type of recurrent neural network
(encoder-decoder), which is distinct from previous models, to construct global electron density
based on the multi-year data from Van Allen Probes. The history of geomagnetic indices is first
encoded into a hidden state H, then together with auxiliary information (satellite location), they
are decoded into the quantity of interest (total electron density in this study). In this process the
input of historical geomagnetic indices is detangled from the satellite location and is processed
chronologically by the encoder. As a result, time evolution of geomagnetic indices is explicitly
embedded in the structure and the encoded hidden state H can be viewed as the representation of
the inner magnetospheric state. The magnetospheric state is then decoded to predict global
electron density evolution. Our results show that the model can capture the dynamical evolution
of total electron density with the formation and evolution of stable and evident plume
configurations that roughly agree with global observations. Our findings demonstrate the
importance of applying recurrent neural networks to specify the inner magnetospheric state in a
novel way, which will potentially improve our fundamental understanding of wave and particle
dynamics in the Earth’s magnetosphere.

Plain Language Summary

The global evolution of total electron density in the Earth’s magnetosphere is important for
understanding energetic particle dynamics and their associated wave-particle interactions.
Although physics-based models show reasonable evolution, they do not fully capture all the
dynamical evolution on a global scale. Therefore, data-driven methods by utilizing machine
learning techniques have been developed recently. The recurrent neural network is a variant of
artificial neural networks, and it has been applied to many time-series data. It naturally handles
the time dependence by processing the data chronologically. We develop an encoder-decoder
model based on recurrent neural network and show that by properly designing the architecture,
the model can separate the spacecraft orbital variation and the temporal evolution. We apply it to
global total electron density modeling trained on the Van Allen Probes observation, and the
result shows fairly good performance with stable and evident spatial structures of the
plasmasphere and plumes.

1 Introduction

The plasmasphere is a region in the near-Earth space, extending up to ~7 Earth radii (Rg),
filled with cold (0.1-10 eV) and dense (up to 10" cm™) plasma. It is populated mostly by the
outflow of ions and electrons from the ionosphere and typically has an irregular toroidal shape
around the Earth (Carpenter & Anderson, 1992) with an exponentially decreasing density profile
as the radial distance increases. Previous studies have suggested that the shape of the
plasmasphere is correlated with geomagnetic activity (Carpenter & Seely, 1976; Goldstein,
2007), and the global distribution of cold plasma can become complex during geomagnetically
disturbed periods (Carpenter & Lemaire, 1997; Darrouzet et al., 2009) and highly structured
during quiet periods (Goldstein & Sandel, 2005; Moldwin et al., 1994, 1995, 2003). During
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geomagnetic storms, the outer plasmasphere is often eroded due to an enhanced convection
electric field, forming a region of sharp gradient called “plasmapause”. The erosion starts from
the nightside and propagates to the dayside (Gallagher & Adrian, 2007; Goldstein & Sandel,
2005), where the plasma is convected further away from the plasmasphere and transported
sunward toward the magnetopause via a high-density structure, called “plasmaspheric plume”.
Plasmaspheric plumes at the dayside magnetopause may modify the reconnection rate there
(McFadden et al., 2008; Walsh et al., 2014). As the convection subsides, the corotation
dominates and the plasmasphere gradually recovers through plasma refilling from the ionosphere
during the recovery phase (Dent et al., 2006; Reinisch et al., 2004).

Quantification of the total electron density in the Earth’s magnetosphere is critical, as it
affects many processes, including populating the plasmasphere and the plasmasheet (Elphic et
al., 1997), affecting magnetopause stability (Borovsky & Denton, 2006; Zou et al., 2021), plasma
wave generation and propagation (Chen et al., 2012; Li et al., 2013; Shi et al., 2019), and the loss
and acceleration of energetic particles (Bortnik et al., 2007; Li et al., 2019; Liu et al., 2016;
Malaspina et al., 2020; Thorne et al., 2016). Therefore, it is important to construct an accurate
model of global electron density. Many empirical (Reinisch et al., 2009; Sheeley et al., 2001) and
physics-based models (De Pascuale et al., 2018; Pierrard & Lemaire, 2004; Pierrard et al., 2009)
have been developed. However, due to the lack of direct observation on a global scale, these
models are either simplified with a limited number of parameters, thus lack complex spatio-
temporal variation, or miss some key processes (e.g., the complex electric field evolution). By
taking full advantage of long-term satellite observations, we aim to model the global electron
density using a machine learning technique.

Machine learning is a field with a long and rich history (Bishop, 2006; Cortes & Vapnik,
1995; Van Otterlo & Wiering, 2012). It can be loosely defined as to enable the computers to
learn from data without being explicitly programmed (Samuel, 1959). Deep learning (LeCun et
al., 2015) as a subfield of machine learning benefits from the rapidly growing computing power
and has gained its popularity after AlexNet (Krizhevsky et al., 2017) won several image
classification contests in 2012. Over the recent years, there has been an explosive growth of deep
learning in theory (E et al., 2017; Han et al., 2018; He & Tao, 2021), model structures (He et al.,
2018; Liu et al., 2021; Vaswani et al., 2017; Zhou et al., 2021) and applications (Liu & Tegmark,
2021; Sirignano & Spiliopoulos, 2018). In the field of space physics, the application of machine
learning has started in 1990s, when the early form of neural network is used to provide
relativistic electron fluxes at geosynchronous orbit (Koons and Gorney, 1991), geomagnetic
storm forecasts (Wu and Lundstedt, 1997), and Kp forecasts (Wing et al., 2005). More recently,
deep learning has been applied to solar flare prediction (Nishizuka et al., 2021; Wang et al.,
2020), plasma region classification (Breuillard et al., 2020), electron flux modeling (Chu et al.,
2021; Ma et al., 2021; McGranaghan et al., 2021) and so on. The idea of modeling total electron
density with deep learning is not new and previous studies have demonstrated the ability of deep
learning to capture the plasmaspheric response to geomagnetic activity (Bortnik et al., 2016; Chu
et al., 2017a, 2017b; Zhelavskaya et al., 2017). However, all of the previous methods use fully
connected neural networks to model the relation, which is not necessarily the most natural way to
handle time order information. Because the geomagnetic indices used to model the relation are
time-series and all satellite observations are partly time-series (also contain the location
dependence), we view the problem as time-series nowcasting/forecasting. Compared with
traditional modeling methods including autoregressive moving average models (ARMA; Chen et
al., 1995) and further variant with exogenous variables included (ARMAX; Huang et al., 2005),
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deep learning models show certain advantages in modeling complex non-linear relation without
prior knowledge on the time-series itself and outperform traditional methods in many
applications (Lara-Benitez et al., 2021). In the present study, we apply an encoder-decoder
architecture based on recurrent neural network to model the total electron density with explicit
time evolution in the model structure.

Description of the data and the modeling method is provided in Sections 2 and 3. In
Section 4, we examine the overall model performance and apply the model to two observations
of plumes. Finally, we discuss our current understanding of similar modeling tasks and
summarize the findings in Sections 5 and 6.

2 Data

In this study, we use the in-situ total electron density data from Van Allen Probes (Mauk
et al., 2013), also known as Radiation Belt Storm Probes (RBSP), covering from January 2013 to
October 2019. Van Allen Probes are twin satellites (RBSP-A and B) in a highly elliptical orbit in
the Earth’s inner magnetosphere (< ~5.8 Rg). We use the satellite location of L shell, magnetic
local time (MLT) and magnetic latitude (MLAT), and the total electron density (N.) inferred
from upper hybrid resonance frequency (Kurth et al., 2015) measured by the High Frequency
Receiver (HFR) onboard the Electric and Magnetic Field Instrument Suite and Integrated
Science (EMFISIS) instrument (Kletzing et al., 2013). The MLT is converted into sin(MLT/127)
and cos(MLT/12w) as model input parameters. The time resolution of satellite data is processed
to be of one minute by simple linear interpolation.

In this study, geomagnetic indices are used to represent the magnetospheric state. The
solar wind parameters are not used since their time coverage is not continuous with intermittent
gaps. Here we use SML, Hp30, and SYM-H indices as they capture the disturbance of the
geomagnetic field in auroral zone, mid-latitude, and low-latitude, respectively. Thus, they are
good indicators of the overall inner magnetospheric activity. The SML index (Gjerloev, 2012;
Newell & Gjerloev, 2011), obtained from SuperMAG Web Service, is similar to the widely used
AL index but provides full-time coverage during the Van Allen Probe era. The Hp30 index
(Matzka et al., 2021) is from GFZ German Research Centre for Geosciences and is used to
replace the 3-hour Kp index, providing higher temporal resolution of 30 min. These indices are
interpolated at 1-min time resolution to match with the satellite data.

3 Methodology

3.1 Model Structure

We use a well-established architecture called encoder-decoder to model the global
electron density. The architecture differs from the conventional models composed of several
fully connected layers applied in previous studies (Bortnik et al., 2016; Chu et al., 2017a;
Zhelavskaya et al., 2017). Encoder-decoder was first proposed to deal with natural language
processing tasks (Cho et al., 2014) and was later extended to general sequence-to-sequence
modeling (Sutskever et al., 2014). Since geomagnetic indices are time-series and satellite
observations also vary with time, we adapt the architecture to our project, as illustrated in Figure
la. The history of geomagnetic indices is passed to an encoder to obtain the magnetospheric
state. Then, this encoded state and auxiliary satellite information (satellite location) are passed to
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the decoder to obtain the quantity of interest Y (total electron density in our case). The key
component of the encoder-decoder structure is an architecture called Long Short-Term Memory
(LSTM; Hochreiter & Schmidhuber, 1997), which is a modified version of Recurrent Neural
Networks (RNN; Elman, 1990). RNN is first introduced as a type of Artificial Neural Networks
(ANN) to deal with time-series data, where the output of the hidden layer is used as the input of
next time step. As a result, RNN is able to model the temporal dependence of the data and was
later improved with many variants to deal with longer time pattern dependence (Cho et al., 2014;
Gers et al., 1999; Huang et al., 2015). Among all these variants, LSTM is the most popular one
and appears to perform well in many time-series modeling tasks (Lara-Benitez et al., 2021). By
introducing different gates, LSTM can mitigate some limitations of vanilla RNN (e.g., the
gradient vanishing problem), thus is able to sustain deeper architectures and capture longer time
dependence. The detailed description and discussion of LSTM can be found in Staudemeyer &
Morris (2019) and references therein.

To explain the workflow in detail, in the encoder (green block in Figure 1a), at any given
time t (time is denoted in the superscript hereafter), the model output of each LSTM cell (Figure
1b) can be described as Ht = f(H'™1, X"), where f denotes the processes by the LSTM cell, H*
is the LSTM output (also called hidden state) at the current time £. H ™ is the LSTM output
from the previous time step (1 min in this study to match the resolution of the satellite measured
density), which is also used as the input at the current time step. X¢ represents the geomagnetic
indices at the current time. By iteratively updating hidden state H® with its last state H~1 and
current geomagnetic indices X¢ over time, the history of geomagnetic indices is encoded into H,
which is one of the most intuitive ways to handle the time evolution. In the decoder (orange
block in Figure 1a), apart from updating the hidden state with the current geomagnetic indices,
we concatenate the hidden state H with location Loc (L, sin(MLT/12m), cos(MLT/121), MLAT)
and pass them to a two-layer fully connected neural network, with the final output to be the total
electron density (V.). This process is consistent with the previous models (e.g., Bortnik et al.,
2016; Chu et al., 2017a, 2017b; Zhelavskaya et al., 2017).

The main difference between our model and previous models is in treating the time
sequence of geomagnetic indices and satellite location. Specifically, in the fully connected neural
network, the information from geomagnetic indices and satellite location are entangled (they are
concatenated together before fed to the model). Moreover, in fully connected neural networks,
the “corresponding” hidden state of magnetospheric state H at different times is derived
separately from a sequence of historical geomagnetic indices without an explicit time-
dependence. As a result, the neuron outputs of different times do not have a clear dependence on
each other. In our encoder-decoder model (specifically in the encorder section), the hidden state
H' is updated from the last state H~1 together with geomagnetic indices at time ¢ (Figure 1b),
thus it explicitly depends on the previous hidden state (at time #-1) and can ultimately be viewed
as a representation of the magnetospheric state. In addition, the dependence of H® on H! leads
to a more continuous H over time (possibly producing a smoothly varying total electron density
evolution) and ensures to explicitly take into account the time evolution of the system.

3.2 Data Processing

To process data, we first divide the RBSP observations into inbound and outbound orbits.
Since each bound consists of ~270 minutes of observation, we set the length of the decoder to be
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270, fill it with NaN if the bound is shorter, and truncate it if the bound is longer. Geomagnetic
indices, satellite location, and N, in the decoder are thus 270 minutes long, with a 1-min time
resolution. The dynamics of the plasmasphere occur on timescales that are much longer than a
minute, so 1-min resolution provides sufficient resolution to capture any variations in the large-
scale density distribution. Note that the same resolution was used by Zhelavskaya et al. (2017).
The 270-min length is chosen because it has complete coverage from low/high L shell to
high/low L shell to provide sufficient variability in total electron density for the model to train
on. In the encoder, we set the geomagnetic indices to be 200-hour long with a 10-min time
resolution after the hyperparameter tuning described in section 3.3. In total, we end up with
~26,000 inbounds and outbounds. To divide them into different datasets (for training, validation,
and testing), we first assign calendar dates into 7-day blocks and randomly pick 70% of the
blocks as the training set, 20% as the validation set, and 10% as the test set. We then match the
RBSP-A and RBSP-B sequence to the split time blocks. Note that 7 days is longer than the
plasmaspheric system "memory time", so by doing this we take into account long-term seasonal
and solar cycle variation while avoiding data leakage.

To summarize, the model takes as input 200 hours of geomagnetic indices in the encoder
and 270 minutes of geomagnetic indices and satellite location (L, sin(MLT/12xw), cos(MLT/12m),
MLAT) in the decoder. The model outputs with 270 minutes of the predicted total electron
density. Note that the 200-hour encoder length and 270-min decoder length are only for the
training process and are totally extendable.

3.3 Optimization

The model performance is evaluated on the validation set, based on the difference
between log;, Ne and log;, Ne®, where P denotes the predicted electron density from our
model. We choose the mean square error (MSE) as the loss function and r-square (%, where r
denotes the Pearson correlation coefficient) as the evaluation metrics.

We optimize the hyperparameters in our model using the steps described below.

(a) We choose one hyperparameter from the list: LSTM hidden size, fully connected
layer size, encoder length and encoder time resolution;

(b) We set a range for the hyperparameter. Using Newton’s iteration, we find the
hyperparameter that results in the best model performance, and choose it as the optimized
parameter;

(c) We loop through all hyperparameters, and the above steps (a-b) are performed for
each hyperparameter iteratively;

(d) We repeat the above steps (a-c) until the loss does not improve by 0.002.

Using this method, our final hyperparameters are determined to be the following; (1)
LSTM hidden size is 512; (2) geomagnetic indices in the encoder are 200-hour long with 10-
minute time resolution; (3) fully connected network in the decoder has two layers of 16 neurons
each, with tanh as the activation function.
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4 Results

In this section, we evaluate the performance of the final model that we optimized. Figure
2 shows the comparison between satellite observation and model prediction on (a) training, (b)
validation, and (c) test dataset. For each point on the plot, the x- and y-axis represent log,, Ne
and log,o Ne® respectively. A perfect model would be a diagonal line (y=x) marked with a white
dashed line. For the test dataset, our model accuracy metrics are MSE=0.114 and =0.834,
which is close to those in the training (MSE=0.089 and #"=0.872) and validation sets
(MSE=0.115 and ’=0.841), and is comparable to the previous studies (Bortnik et al., 2016; Chu
et al., 2017a, 2017b; Zhelavskaya et al., 2017). However, we should point out that a direct one-
to-one comparison between the performance of different models can be very challenging because
the datasets for training were processed differently and were obtained from different satellites.
Below we examine the global performance of our model during two events; both are out-of-
sample datasets that were not included in the training process.

The first case occurred on 26 June 2000 during a modest geomagnetic storm (SYM-H
down to ~ -80 nT with Kp up to 6) in association with a series of substorm activities (Figure 3a).
The plume evolution was observed by global imaging (Goldstein et al., 2004) from the Imager
for the Magnetopause-to-Aurora Global Exploration (IMAGE) mission, which was the first
mission dedicated to imaging the Earth’s magnetosphere (Burch, 2000). The Extreme Ultraviolet
Imager (EUV) measured 30.4 nm light resonantly scattered from He" ions (Sandel et al., 2000) to
estimate total plasma density. Figure 3 shows the comparison between the model prediction
(panel b) and the EUV observations (panel c) at different times (1-4). Since the total density
distribution from the EUV observations requires assumptions, we focus on the plasmaspheric
shape which is identified with the largest He" density gradient (if any) of the EUV measurement.
It is worth noting that the plasmapause identified in the EUV images (corresponding to the edge
intersecting total electron density of 40+10 cm™) is a good proxy (within 0.25 Rg) for the
plasmapause in proton or electron density profiles (Goldstein et al., 2003; Harris et al., 1970;
Horwitz et al., 1990). Statistically, the density profiles of protons and He" ions are
morphologically similar (Goldstein et al., 2019b). The corresponding plasmapause of the
modeled electron density is defined as the contour of 50 cm™ (approximately consistent with the
value of the edge in EUV images, noted above) as marked in red in Figure 3b, with a grey
shadow covering a slightly broader area (20-80 cm™) to denote the plume region. At the
beginning of the day (time (1)), under quiet geomagnetic conditions, the plasmasphere was
saturated with the plasmapause approaching the geosynchronous orbit (L = 6.6). After the main
phase of the geomagnetic storm, at time (2), the plasmasphere showed a sunward surge where
the cold plasma was dragged to the dusk sector due to enhanced convection electric field. During
the storm recovery phase from time (3) to (4), the plume structure wrapped up as it corotated
with the Earth, forming the final tail-like structure. During this process, the model captured the
quick formation of the enhanced density region on the dusk side and the plume feature was stable
over the next ten hours when the geomagnetic substorm activity was strong. Near the end of the
day, the model predicted a gradually rotating plume as the convection subsided, as marked by the
more quiet geomagnetic indices, which is consistent with the previous study (Goldstein et al.,
2014b). We estimated the approximate rotation rate of the predicted plume from 1:30 to 5:00 UT
to be 0.9 times of the Earth’s rotation rate. During the entire period, the model showed complete
plume evolution over 15 hours and the animation is included in Movie S1 and S2 in the
Supporting Information.
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The second event was on 7 September 2015 when a major substorm occurred with the
peak SML < -2,000 nT, associated with a geomagnetic storm with SYM-H down to ~-100 nT
and Kp up to ~6 (Figure 4a). RBSP-A observed a long-lived plume during the period, while the
Global Positioning System (GPS) also measured strong enhancements of total electron content
(TEC) near the dusk sector. By measuring the delay of GPS signals traveling through the
ionosphere, the TEC along the signal path can be estimated and serves as a reference for the total
electron density. Figure 4b shows the one-to-one comparison between the RBSP-A observation
(darker color) and the model prediction (lighter color), and the plume periods (light blue shadow)
are identified with a density change by a factor of 5 within AL < 0.5 at L > 4. Figure 4c shows
the comparison between the modeled density and the RBSP-B observation. It is worth noting that
RBSP-B did not observe a similar trend as RBSP-A did during this period, indicative of a very
confined spatial extent of the plume. The global view on the equatorial plane (Figure 4d)
presents the modeled plasmapause (red) and plume (grey shadow), and measured equatorial TEC
(color-coded). The GPS TEC measurements were gridded to 2 x 6 deg cells and mapped to the
equatorial plane using the TO1 magnetic field model (Tsyganenko, 2002a, 2002b). Green lines
represent simulated plasmapause from test particle simulations (PTP; Goldstein et al. (2005,
2014a, 2014b, 2019a)), which started at 00 UT on 7 September 7 2015 using an initial
plasmapause specified by O’Brien and Moldwin (2003) and solved with 10s time steps driven by
Kp and the OMNI solar wind electric field with the scaling factor /= 0.2. The PTP simulation is
useful for showing the overall plasmaspheric response to solar activity (Goldstein et al., 2019a),
including sunward surge, plume formation and rotation with the Earth, and is a good reference
for the model to compare with on a large scale, as the reliable observation of the plasmapause
location on a global scale is not always available. The RBSP-A trajectory (where the plume was
identified shown in Figure 4b) is plotted with the cyan line with the satellite location marked
with star in Figure 4d. Starting from 16:00 UT, the substorm reached its peak activity as shown
in Figure 4a, and RBSP-A encountered the enhanced density region on the dusk side. In the
meantime, the equatorial TEC significantly increased in the noon-dusk sector. For the next 8
hours (time(3) to time(7)), the convection pattern was suggested to be stable from the PTP
simulation, and RBSP-A entered the plume region again with fewer disturbances inside the
plume. During the second plume period (0004 UT), the RBSP-A trajectory overlapped with the
modelled plume region, which suggests that the model captured the plume location accurately.
The plume shape from the RNN model became narrower and rotated duskward, as the PTP
simulation suggested.

It is interesting to note that although the model does not provide an accurate one-to-one
agreement with the RBSP observation during some periods (Figure 4b), it predicts a stable plume
at roughly the same location from a global view (Figure 4d; also see animation in Movie S3 and
S4 in the Supporting Information), which means that the model learned a global response of total
electron density evolution to geomagnetic activity fairly well. However, an accurate global
density model with the perfect agreement with the observed plume location requires further
investigations.

5 Discussions

Total electron density models using artificial neural networks have been developed in
recent studies; however, some questions including how to process geomagnetic indices
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considering its time-series nature remain unsolved. In the present study, we model the total
electron density using encoder-decoder to evaluate how well we can construct the global density
model by naturally taking into account the time order information. Since many global models use
geomagnetic indices (e.g., Sym-H, HP30 and SML) as inputs and the modeled quantity also has
the time-series format, the encoder-decoder structure could be extended to modeling other
quantities observed by satellites.

The history of geomagnetic indices is typically used to drive the model, because the
physical information we need is embedded in these indices. Therefore, the informativeness of the
indices directly limits the model capability, if some fundamental processes are missed from the
relation with these geomagnetic indices (e.g., Obana et al., 2019). While fully connected neural
networks are flexible and proved to be able to approximate virtually any functions with any
accuracy (e.g., Cybenko, 1989; Hornik et al., 1989, 1990), not all model structures can be
optimized for a certain dataset. Therefore, a special network design might be more efficient in
capturing specific structures, like RNN for time order dependence and Convolutional Neural
Network (CNN) for locality variation. Since many space physics data are inherently time-series,
we expect a potential growth of using RNN models in the field. However, predicting an accurate
global evolution from the satellite orbital observation can be challenging in general, especially
when the target variable has a strong spatial variation. In our study, the total electron density
exhibits a strong spatial variation (sharp gradient over L/MLT), which can strongly impact the
model performance. Finally, evaluating the performance of the model itself poses some
challenges. Although commonly used loss functions are able to provide general evaluation of
how the model performs statistically, they do not necessarily describe its performance in a
certain aspect of interest. In our case, we are particularly interested in the plume evolution, yet
we notice that models of similar loss performance can have totally different plume features. This
suggests that more sophisticated metrics are required to evaluate the model performance in a
more comprehensive way.

6 Summary

We applied an encoder-decoder structure based on recurrent neural network to in-situ
Van Allen Probes data to construct the global electron density distribution in the Earth’s
magnetosphere on the equatorial plane. We introduced the encoder-decoder structure: first, an
LSTM model converts the history of geomagnetic indices into a hidden magnetospheric state and
updates it over time with evolving geomagnetic indices as inputs. Then, a fully connected neural
network takes the magnetospheric state and satellite position as inputs and calculates the total
electron density at any location. By doing this, we have time-order information explicitly
embedded in the model structure.

Our model reaches comparable performance as the pervious studies; however, a
quantified comparison is difficult since the trained datasets are different and data were processed
differently. We examine the model performance on the evolution of plumes during two
individual events, and the model shows fairly good agreement with the qualitative global
observations by IMAGE EUYV and GPS TEC. In both cases, a plume structure formed during
disturbed geomagnetic activities remained stable for an extended period, and finally rotated with
roughly the speed of Earth’s rotation rate as expected during the recovery stage. These findings
suggest that the model learned a general response of global electron density to storm/substorm
activity, with different stages of enhanced convection, stable convection and subsiding
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convection. It is worth noting that the model did not present a sharp and narrow plume structure
as the satellite observed (plume with sharp boundary in Figure 4b); however, improving the
model performance on such a finer spatial resolution is beyond the scope of the present study,
and thus is left as a future investigation.

In summary, our study reports a novel method: encoder-decoder, which is different from
previous studies, and demonstrates its capability of reconstructing the dynamic total electron
density evolution on a global scale from a time-series dataset. By separating geomagnetic indices
from satellite location as inputs, our RNN model (encoder-decoder model) directly models total
electron density in response to geomagnetic indices. The fairly good performance of our density
model using RNN also demonstrates the potential importance of applying it to other physical
quantities (e.g., magnetospheric waves, particle fluxes, etc.) that are partly time-series as well.
The dynamic global models of these physical quantities using RNN will potentially improve our
fundamental understanding of source, loss, and transport of cold plasmas, generation and
propagation of various plasma waves, as well as acceleration, loss, and transport of energetic
particles in the Earth’s magnetosphere in a comprehensive way.

Data Availability Statement

The Van Allen Probes total electron density data from the EMFISIS instrument were obtained
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training in the present study are publicly available at
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www.openmadrigal.org. All data used to produced figures are publicly available at
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Figure 1. Schematics of the proposed encoder-decoder network. (a) The architecture of an
encoder-decoder network with geomagnetic indices X (from X™™ to X~1) encoded into the
hidden state H, and later decoded into total electron density Y at location Loc. (b) The
architecture of a typical LSTM cell at time &, which consists of cell input X¢, cell state C*, hidden
state/cell output H® and four gates (yellow boxes) to control the information flow (modified from
Olah (2015)).
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708  Figure 2. Model performance for different datasets of total electron density. (a) Comparison of
709  observed (x-axis) and modeled electron density (y-axis) for the training set, color-coded by the
710  percentage of data in the corresponding region; (b) same as (a) but for the validation set; (c)

711  same as (a) but for the test set.
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Figure 3. An event study of the modeled electron density on 26 June 2000. (a) SYM-H (blue),
SML (orange), and Kp (green) of the event. The times of four snapshots are marked with red
dotted vertical lines. (b) The Earth is at the center of each plot and the contour of 50 cm’ for the
modeled electron density indicates the nominal plasmapause (red) on the equatorial plane. Grey
shadow shows a broader region of 20-80 cm™ indicating plume. (¢) IMAGE EUV observation
modified from Goldstein et al. (2004). The color intensity is EUV equatorial He™ abundance, as
shown by the colorbar at the bottom. The dotted lines indicate the geosynchronous orbit.
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Figure 4. Case comparison on 7-8 September 2015. (a) SYM-H (blue), SML (orange), and Kp
(green) of the event. Times of the four snapshots are marked with red dotted lines. (b) Line plot
of the RBSP-A observation and the corresponding model prediction (lighter color with suffix
“P”). L shell is plotted with smaller dots, and the plume period is marked with cyan shadow. (c)
Same as (b) but for the RBSP-B observation. (d) Red dots represent the contour of 50 cm” for
the modeled electron density as an indication of plasmapause. Grey shadow covers the regions of
20-80 cm™ indicating plume. Green dots (PTP) are simulated plasmapause. Cyan line represents
the RBSP-A trajectory of two plume periods with the star symbol indicating the satellite location
at that time. GPS TEC measurements (color-coded) are mapped to the equatorial plane.
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Figure 4.
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