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Radiation belt electrons are strongly affected by resonant interactions with
cyclotron-resonant waves. In the case of a particle passing through resonance
with a single, coherent wave, a Hamiltonian formulation is advantageous. With
certain approximations, the Hamiltonian has the same form as that for a plane
pendulum, leading to estimates of the change at resonance of the first adiabatic
invariant /, energy, and pitch angle. In the case of large wave amplitude (relative
to the spatial variation of the background magnetic field), the resonant change
in/ and its conjugate phase angle & are not diffusive but determined by nonlinear
dynamics. A general analytical treatment of slow separatrix crossing has long
been available and can be used to give the changes in / associated with “phase
bunching,” including the detailed dependence on &, in the nonlinear regime.
Here we review this treatment, evaluate it numerically, and relate it to previous
analytical results for nonlinear wave-particle interactions. “Positive phase
bunching” can occur for some particles even in the pendulum Hamiltonian
approximation, though the fraction of such particles may be exponentially
small.

KEYWORDS

wave-particle interactions, radiation belts, nonlinear, hamiltonian, test particle
simulation

1 Introduction

Cyclotron-resonant interactions with whistler mode waves are of major importance
for the dynamics of radiation belt electrons (Bortnik and Thorne, 2007). Many numerical
studies of test particles interacting with coherent, monochromatic waves in an
inhomogeneous background magnetic field have demonstrated that cyclotron-
resonant interactions lead to changes in particle energy and pitch angle, due to the
breaking of an adiabatic invariant (Chang and Inan, 1983; Bortnik et al., 2008). For
sufficiently small amplitude waves these changes are diffusive, associated with a random
wave-particle phase (Albert, 2010), but larger waves induce systematic, asymmetric
changes, whose detailed behavior can be described in terms of phase bunching and
phase trapping (Albert, 1993). Estimates of the associated energy and pitch angle ranges of
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FIGURE 1

Trajectories of 120 particles from numerical integration of the equations of motion specified by the Hamiltonian of Eq. 11, with inhomogeneity
parameter R = 0.1 and wave amplitude parameter A = 0.25. Left: P vs. t, showing systematic decrease associated with phase bunching at resonance.
In this case, all values of AP are negative. Right: Change in P vs. the value of g at resonance. The dotted and dashed vertical lines show the calculated

values g, and gy + 27, respectively, as discussed in the text.

such electrons have been given by, e.g., Albert (2002) and
Albert et al. (2021). These processes are in turn deeply
connected to nonlinear wave generation or growth (Omura
et al., 2008).

For electrons interacting with parallel-propagating whistler
mode waves, phase trapping causes a sustained increase in
particle energy and pitch angle, while phase bunching (that is,
without trapping) causes these quantities to decrease; the lost
particle energy can feed wave growth. Theory and simulation
indicate that for representative wave and particle parameters,
phase bunching has much higher probability than phase trapping
in each resonant interaction. Typical particle trajectories showing
phase bunching, obtained with a Hamiltonian formulation to be
discussed below, are shown in Figures 1, 2. The variables P and g,
defined in Section 3, are related, respectively, to the first adiabatic
invariant I and its conjugate phase & which are reviewed in
Section 2.

Albert (1993) obtained an analytical estimate of the change in
the first adiabatic invariant (and therefore energy and pitch
angle) caused by phase bunching in the highly nonlinear
limit, though the dependence on resonant wave-particle phase
seen in numerical simulations was not accounted for. A more
detailed expression can be written formally as an explicit but
infinite and intractable integral, which must still be evaluated
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numerically; however, averaging over the appropriate phase and
interchanging integrals leads to a much more manageable
expression (Neishtadt, 1999); this is presented in Section 4.
Furthermore, the very general treatment of adiabatic invariant
changes of Cary et al. (1986) can be applied to this problem,
leading to a detailed and reliable approximation that retains the
phase dependence in closed form. This treatment quantitiatively
captures the numerical observation that phase bunching-induced
changes exhibit a spread of values, including some that are in fact
in the positive direction. This is discussed in Section 5.
Depending on the parameters used, adiabatic invariant
increase may be physically significant yet too infrequent to
detect from direct numerical simulation with a small number
of particles.

2 Hamiltonian formulation

Albert (1993) and Albert (2000) derived a Hamiltonian
K (I,&,z) appropriate for motion near a resonance. Recapping
the definitions and results of those papers, equations of motion
for the normalized first adiabatic invariant I =~ (p Ime) (w/2Q)
and the canonically conjugate angle £ (a combination of wave phase
and particle gyrophase) issue from a Hamiltonian K, given by
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FIGURE 2

Trajectories of 120 particles from numerical integration of the equations of motion specified by the Hamiltonian of Eq. 11, with inhomogeneity
parameter R = 0.2 and wave amplitude parameter A = 0.25. Left: P vs. t, showing systematic decrease associated with phase bunching at resonance.
In this case, most but not all values of AP are negative. Right: Change in P vs. the value of g at resonance. The dotted and dashed vertical lines show
the calculated values gy, and gy + 27, respectively, as discussed in the text.

K= ’CO (I, Z) + ICI (I,Z)Sin f,
Ko =1, —c3) — 0,5¢Py (1, 2),

_ 2
\/<I CZ) _1-29
st w

The distance z along the field line plays the role of time, so that
d&/dz = 0KC/0z and dI/dz = —0K /0. Here w is the wave frequency,
Q is the (local, unsigned, nonrelativistic) electron gyrofrequency, s is

ey
Po =

the sign of the particle charge, € is the resonant harmonic number,
and 7, is the parallel wave refractive index, kjc/w. Py is the normalized
magnitude of p;, where p, and p; are components of the physical
momentum relative to the background magnetic field. The sign of p;
is given by 0, = £1. The constant of motion c, relates I and the particle
kinetic energy E through

¢ =1-sty, 2)

where y is the relativistic factor 1 + E/mc*. K; is proportional to
the wave amplitude; it is given in detail by Eqs. A2, A4 of Albert
(2000), and for the special case of a parallel-propagating wave by
Eqgs. 2, 3 of Albert et al. (2021). As given in Appendix C of Albert
(2000), changes in energy E and equatorial pitch angle «, are
related to small resonant changes in I by

AE Al

Qeq/w - (y/st)sin’ay
= Aoy =
mc N4

- (p/mc)2 sin o cos o

Al (3)
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where € # 0, and Q,, is the equatorial value of Q.

At a given location z, the resonant value of I is determined to
lowest order by 0/Cy/0I = 0, which corresponds to the standard
resonance condition

w — kuV" = s€Q/y (4)
This yields
Q
Ires =C + (Se)z_ + O'zserlzpo,res)
w
p L 1+2 0 + (—S€Q>2 ®
Ores = —C s
Vi -1 ¢

which generalize Egs. 5, 6 of Albert et al. (2021) to arbitrary
values of s¢. The z dependence of I, is characterized by d1,,,/0€),
which can be written as

aIres
oQ

Ires - SeazP res
= s&r,qz %

- 6
(1~ 1)Payes ©

For the prototype situation of an electron (s = —1) in primary
resonance (¢ = —1) and heading toward the equator (o, = -1), as
considered here, this quantity is always negative; both z and the
gyrofrequency Q) decrease and I, increases. The correspondence
between Eq. 1 and the gyro-averaged Lorentz equations of
motion was investigated by Albert et al. (2022).
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FIGURE 3

q

-1 o 1

Contours of the pendulum Hamiltonian H(P, g) given by Eq. 10, with A = 0.25. If the inhomogeneity parameter R is small but positive, the
separatrix (shown in black) slowly rises. At resonance near the X-point, particles cross from red contours to blue (phase bunching) or green (phase

trapping) contours.

3 Pendulum hamiltonian

A Taylor expansion of /g in Eq. 1 gives the pendulum-like
form

M(1,&2) = (I~ L) + Fsing @)

where G, = 3*K,/0I* and F, = K1, both evaluated at resonance.
Albert (2000) obtained the estimate

2
-1
G ~ "
SEUZPO

8)

It is convenient to define oz and o as the signs of F, and G,,
respectively, so that F = 0zF, and G = 05G, are positive. Then Eq.
7 can be brought into the same form as Equation 72 of Cary et al.
(1986) by changing variables to

s
T=062, P=GI, gq=&- O'FO'GE. 9)
The equations of motion in these variables are then given by the

Hamiltonian

H(P,q,7) = = (P - Py,)* - 2Asin’ (q/2),

1
3 (10

with P, = GI,.s and A = FG. Typical contours at fixed P,(7) are
shown in Figure 3. For the prototype configuration (with s =€ =
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0, = —1) G, is negative, so dP,./dr = 05G(dl,./dz) is positive.
Albert etal. (2021) and Artemyev et al. (2021) considered a more
general version of Eq. 7 which retains a factor of VT in the wave
term, which can distort the separatrix shape in order to maintain
I> 0. This can lead to “positive phase bunching” for particles with
small initial values of I (Kitahara and Katoh, 2019; Gan et al,,
2020). However, as seen in Figure 2, this can occur even in the
pendulum approximation.
Transforming from P to p = P — P, in Eq. 10 gives

2
K(p,q,r)z%—A(l—cosq—Rq), (11)
where both A and the inhomogeneity parameter R = (dP,./dr)/A
are positive and will be taken as constant. This idealization
eliminates the possibility of phase trapping, which involves
expansion of the Hamiltonian separatrix to engulf neighboring
trajectories.

Trajectories of 120 particles from numerical integration of
the equations of motion specified by the Hamiltonian of Eq. 11
are shown in Figure 1, with inhomogeneity parameter R = 0.1
and wave amplitude parameter A = 0.25. In this case, all values
of AP are negative. In Figure 2 the wave amplitude parameter A
is the same but the inhomogeneity parameter has been
increased to R = 0.2, resulting in positive AP for some values
of g at resonance.
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FIGURE 4

Top: Contours of K(p, q) for parameters R = 0.2 and A = 0.25, color-coded by g- (the value of g at p = 0). Middle: The function appearing in the
integral of Eq. 13. Bottom: The colored symbols show AP vs. g« from numerical evaluation of Eq. 13, which is negative for most but not all values of g-.
The horizontal dashed line shows the averaged value, and the horizontal dotted line shows the value — (8/7) VA applicable to R = 0. The black symbols

show the values from Figure 2.

4 Integral expression for changes in
invariant

Contours of K, from Eq. 11, are shown in the top panel of
Figure 4, The linearly unstable X-point obeys tan g, = R/\/1 — R2
and the stable O-point obeys tangq, = R/ (—V1 — R?), with the
branch choices — 27 < g, < = 371/2 and — 371/2 < g, < — 7. The
value gy, is the second location where the curve through an X-
point crosses p = 0, with g, < q, < @uurn < qx + 2. Finally, g- refers
to where a general trajectory crosses p = 0, with g, < g+ < qx
+ 2m.

The change in P can be expressed as

B dr/dr _ —-0H [0q
AP = qu dq/dr qu 0K /op
B J’ Asing dq (12)
\/2 [K+A(l-cosq—Rq)]
Frontiers in Astronomy and Space Sciences
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The integral over g is taken from — co to the value g+ and then
back to g = —0c0, where g« is the value of q as the curve crosses p =
0. It is sufficient to integrate from — 0o to g- and double the result.
It is convenient to define h = (K + A)/AR and a = 1/R, so that

AP = \/gr* __singdg (13)
R ) h—acosq=q
Note that h(p, q + 27m) = h(p, q) + 2m.

This infinite, oscillatory integral is carried out along contours
of h(p, q). The middle panel shows values of the integrand, and
indicates that a wide range of g values contribute to the total
integral. The bottom panel shows numerical evaluations (in
color), which are generally negative but can be positive near
G« = Guurn OF g+ = gy + 27. Also shown, as black symbols, are the
values from the simulations of Figure 2. The excellent agreement
is expected since Eq. 13 and the equations of motion from Eq. 11
should be exactly equivalent.
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FIGURE 5

Contours of a two-lobe Hamiltonian of the form of Eqg. 19. The contour colors correspond to those of Figure 3.

4.1 Average value of AP

The integral for AP cannot be carried out in closed form, but it
can be averaged with respect to g- analytically. Averaging with respect
to g« is equivalent to averaging with respect to h (Cary et al., 1986; Itin
etal.,, 2000), with the range gy, to g, + 27 corresponding to the range
h, to hy + 27 (since hy,, = h,). Following Neishtadt (1999) and
Artemyev et al. (2018), the curves are integrated separately over the
ranges q < ¢, (region 1) and q > g, (region 2), with the latter
combined with the (p, q) island (region 3). For region 1,

I J’hx+2”dh j‘ix sing dq
) —wh—acosqg-q
qx
= J qusinq[\/hx+27r—acosq—q - \/hx—acosq—q

dx
:—J 2dqsing\/h, —acosq—q.

qx—2m
(14)
Next, noting that along the g axis h = hyg = acosq + ¢,
qx+21 hy+2m s
L+ = j dqj dh——d
qx ho Vh_ucosq_q (15)
qx+2m
:J 2dqsinq\/hx+2n—acosq—q.
ax
Thus I, + I, + I; = 0. Finally, I5 can be expressed as
Qturn hy 1
L= [ g [
a m  h—acosq—q (16)

Gturn
= J 2dqsing\|h, —acosq—q.

qx
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Writing sing = (asing — 1)/a + 1/a leads to I3 = S/a, with

qturn
S= J 2dqn\h, —acosq - q,

qx

17)

which is the area of the (p, q) island. The average of AP over
regions 1 and 2 is then

(apy = Y2AR ¢

21 (18)

which becomes —(8/7)VA as R — 0, in agreement with the
estimate obtained by Albert (1993).

5 Two-lobe hamiltonian

Cary et al. (1986) (hereafter CET) gives a comprehensive
treatment of adiabatic invariant breaking due to crossing the
separatrix of a Hamiltonian H (IT, Q) with the form
HZ _ Q2

2

HLQ,t) = w + 0H (I1, Q, et), (19)
where IT and Q are a pair of action-angle variables and the
small quantity € indicates that the crossing is slow. This form
is chosen to facilitate analysis of motion near the X-point, but
Appendix A of CET shows how an arbitrary Hamiltonian may
be put into this form to arbitrary order in e (the several
typesetting errors in Eq. 10 notwithstanding). The phase
portrait of this Hamiltonian has two lobes; typical contours
of Eq. 19 are shown in Figure 5.
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The colored symbols show AP vs. g.. from Eq. 20, which is negative for most but not all values of g«. The solid horizontal line shows the averaged
value, and the red dashed horizontal line shows the value from Eq. 18. The black symbols show the values from Figure 2. The dotted and dashed
vertical lines show the calculated values q.,» and gy + 27, respectively, as discussed in the text.

Following a very complex sequence of calculations based on
Eq. 19, two special cases are considered, described as symmetric
and antisymmetric (which refer to the growth rates of the two
lobes shown in 5, not their shapes). The symmetric case was
applied to drift orbit bifurcation by Oztiirk and Wolf (2007). The
antisymmetric case applies to the pendulum Hamiltonian of Eq.
7 and its transformed version Eq. 11, which are of the same form
as, respectively, Equation 72 and the subsequent one of CET.
With a minor typesetting correction, Equation 84 of CET gives

AP = —§A1/2 - ﬂlzlog ﬁ‘
i TAY ho 20)
_2RAV? (1 + ,u)log|;4| ~log I(1+p)
2 V2m ||
where Equation 75 of CET has been used, and the notation
h
“= ZnI(;A 1)

has been introduced. Related expressions were presented by
Neishtadt (1987). The leading term of Eq. 20 is the same as
the estimate of Albert (1993).

To evaluate o and p in terms of K(p, g, 7) of Eq. 11, it is
necessary to shift K by a constant:

ho(q:) =K(p=0,g.7) - K(p = 0,9, + 27, 7), (22)

so that ho(q, + 27) = 0 for consistency with the derivation. It can
be shown that K(g-) is an increasing function of g« between gy,
and g, + 2, so hy < 0, and that y correspondingly increases from
- 1t0 0. Eq. 9 of Tennyson et al. (1986), which was written in
terms of my = ||, is equivalent if A = w = 1.

Evaluation of Eq. 20 is shown in color in Figure 6. Also
shown, as a black curve, are the values from Eq. 13. These two
formulations are not exactly equivalent, but are in excellent
agreement.
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Equation 20 can be approximated near y = 0 as

8 1
AP = - —AY* + RA" log —‘ (23)
hus 21y
and near y = -1 as
8 16 1
AP =~ - —A"" +2RA1 — =9 || 24
7 %8RV <1 T u y“) (24)

where y, = 0.5772 is the Euler constant. For small values of R,
these estimates are positive only for very narrow ranges of y,
approximately

1 —8/mR
<—e 25
|ul 7 (25)

or

2
1+ pu<=e R
H<R

(26)

respectively. For R = 0.5, these values are approximately 10~ and

0.3, while for R = 0.2 they are 5 x 1077 and 0.02, respectively. Thus

AP > 0 only for particles with ¢ near — 1 or extremely near y = 0.
Equation 20 can be averaged over y, giving

8 R 16
AP =——A1/2[1——<1 1 —)] 27
(AP) = — g \L+log 27)
This value is shown as the thick black line in Figure 6, and agrees
very well with Eq. (18), shown as the dashed red line.
Finally, comparing Eqs. 27, 18 gives the estimate

S=—16 [l—ﬂ—R<1+log 16)],

NGy R R (28)

which should be useful in situations where R is slowly changing,
and the probability of phase trapping is proportional to the rate
of change of S (Artemyev et al., 2018).
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6 Summary

Wave-particle interactions are frequently treated with a
pendulum Hamiltonian equivalent to Eq. 11. With the wave
amplitude parameter A and the inhomogeneity parameter R held
constant, phase trapping does not occur, and changes in adiabatic
invariant P due to phase bunching are formally expressible by the
integral in Eq. 13. This result depends on the wave-particle phase
q at resonance; positive values can occur but are uncommon.
Averaging over that phase gives the more tractable expression 18,
which is always negative.

Equation 20, which is a special case of a detailed analysis
of the two-lobe Hamiltonian of Eq. 19, gives the change in P
as an explicit function of g at resonance. Its average value, Eq.
27, agrees very well with Eq. 18, and it also accurately
reproduces the numerically observed dependence on g,
including positive values of AP (see Figure 6). Analytical
estimates of the fraction of particles with these positive values
were obtained, which are exponentially small for small values
of R. Finally, combining the two treatments gives a good
analytical approximation to the area bounded by the
pendulum separatrix, whose rate of increase determines
the probability of phase trapping.
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