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Abstract—One of the main problems with using supervised
machine learning for anomaly-based Network Intrusion Detection
(NID) in large cyber networks is the massive and dynamic data
sets used in training and the computational overhead they induce
in the training phase. In resource-constrained situations, there is
a lack of powerful machines that would be traditionally used to
deal with a high computational load. We focus on parallel
processing designs that work in such resource-constrained use
cases by lowering the computational overhead of supervised
machine learning for anomaly-based NID, specifically for Mini-
batch gradient descent. We avoid the black-box approach of
traditional parallelization frameworks and allow the user to
maximize the utilization of their scarce computational resources
by granting greater control over parallelization while leveraging
key aspects of the optimization algorithms being implemented. To
demonstrate this, we implemented initial data and model parallel
based designs, using the Compute Unified Device Architecture
(CUDA) and Message Passing Interface (MPI) libraries, aimed at
maximizing the use of a limited number of CPUs and GPUs. We
conducted an initial comparative performance study using a large
real-world network intrusion dataset called the KDD cup 1999;
our results demonstrate up to 8.5 times more epochs per second
using just 1 GPU (4000 threads) and up to 37 times faster
convergence using just 1 compute node (7 cores) when compared
to a serial approach.

Keywords—parallelization, gradient descent, anomaly detection,
network intrusion detection, resource constraints

L INTRODUCTION

Cybersecurity is one of the most important modern-day
challenges due to the ever-growing role of technology in our
lives. In 2020, global losses from cybercrime totaled over 1
trillion dollars, which was a substantial increase from 2018
(around 500 billion dollars) [13]. Detecting intrusions within
network settings is an important aspect of cybersecurity, since
much of organizational/personal data is stored online and could
potentially be used by cyber attackers for malicious purposes.
Cybersecurity issues are especially challenging in resource
constrained scenarios, where resources to fight such threats are
limited [21]. Network Intrusion Detection (NID) is an attempt to
detect malicious behavior within network traffic to prevent
malicious users from gaining access to confidential information
and is based on the assumption that malicious users will act in a
way that is different from non-malicious users [1].
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There are many strategies to detect network intrusions, but
one of the most popular is anomaly-based NID. Anomaly-based
NID is a strategy that detects network intrusions based on
deviations from normal network behavior [2]. Anomaly-based
NID is a notoriously difficult problem, but Supervised Machine
Learning (SML) has been shown to be an effective methodology
for anomaly-based NID [3, 26]. This is due to the fast-testing
phases of machine learning algorithms and how well SML has
been shown to perform for an anomaly-based NID approach [3,
26]. However, there are other challenges related to using SML
for NID.

With SML, one of the biggest computational challenge is the
long training phases and the need to utilize potentially massive
and/or real time/near-real time training data. NID, unlike most
other SML problems, requires frequent retraining to keep up
with new vulnerabilities or new methods of intrusion [3, 4]. Not
only must SML models be frequently retrained, but must do so
using datasets that can be multiple terabytes or petabytes in size
[5]. Retraining models with this much data would require
exceptionally long and/or require expensive computing
resources. Not only can models get outdated quickly, but
without this re-training, zero-day attacks, which can be some of
the most detrimental types of attacks, are much harder to detect

[6].

Researchers may face limited resources (small companies,
independent business owners, etc.). Such resource constrained
situations make NID using SML a difficult solution to
implement using existing computational frameworks for
machine learning. Current approaches that focus on speeding up
training time (such as Keras [22] and TensorFlow [18]) are not
ideal for users with limited computational resources due to two
main factors: lack of user input in parallelization and lack of
optimization for specific learning algorithms. These popular
approaches often leave the parallelization as a black box that
generalizes to several different SML algorithms. The lack of
user input and generalizability of the parallelization approaches
oftentimes can underutilize the limited resources in situations
where computational power is scarce.

We showcase two parallel processing designs that represent
an initial effort towards providing solutions for the general
problem of formulating parallelization techniques for SML. We
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evaluate these two initial designs, a distributed memory-based
design and a hybrid distributed/shared memory design. We
formulate a parallelization scheme that is specific to Mini-batch
Gradient Descent (MBGD) and can be used for Stochastic
Gradient Descent (SGD). This allows the design to take
advantage of the unique properties of MBGD to maximize the
usage of limited resources. Our approach provides greater
control to users by allowing them to specify the number of CPU
cores and number of GPU threads to be used, allowing for the
utilization of heterogenous computing resources (distributed and
shared memory architectures) and allowing for scaling over
available computational resources.

Our distributed memory design uses an architecture based on
a tree topology parallelization strategy. Unlike common
approaches to parallelizing SML that typically induce heavy
bottlenecks like MapReduce or a parameter server approach [18,
19, 20, 22], a tree topology design is able to scale much better
due to highly parallelized communication. Our hybrid design
utilizes both MPI and CUDA, using MPI to perform data
parallelism on the CPU and using CUDA to perform model
parallelism on the GPU.

This rest of the paper is divided up into 6 main sections:
background, related works, methodology, performance analysis,
and conclusion/future work. The background covers the
mathematics behind gradient descent and some key
parallelization concepts. The related works covers relevant
parallelization methods that have attempted to parallelize
gradient descent and how our approach differs. The
methodology explains our models and our initial hypothesis.
The performance analysis goes over our experimentation and
discusses our results. The conclusion and future work addresses
our contributions and our future plans to expand our initial
models.

IL.

The SML algorithm that is parallelized in this paper is Mini-
batch Gradient Descent (MBGD), which is a variation of
gradient descent. Gradient descent is a key algorithm used for
optimizing parameters in the training phase of SML.

BACKGROUND

MBGD (1) is an iterative process that starts with a group of
parameters, or weights, that are used to make predictions. These
weights are then updated using the gradient of a loss function
that measures how well the model is performing. During each
iteration, the loss is calculated for a number of given values (a
mini-batch) in the training dataset (x and y) and the gradient of
the loss function with respect to a weight 6 is taken. 8 is then
subtracted by a learning rate, ¢, times the average gradient of the
loss function. MBGD is a popular variation of batch gradient
descent [8] which uses the average gradient calculated across the
entire dataset rather than just the average gradient from a subset
of values. Stochastic Gradient Descent (SGD), is simply MBGD
except with a batch size of one.

0 = 6 — Vo] (6; x+; y(+1) )
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To test our parallelization methods, we used logistic
regression on the KDD Cup 99 dataset to perform binary
classification. We trained our models to determine whether
certain network activity was malicious or benign.

In our work, we focused on algorithm designs that leveraged
two key parallel processing approaches for the training phase of
SML: data parallelism and model parallelism. With data
parallelism, the training data is split up across nodes and each
node gets a copy of the model parameters. Each node then trains
their parameters on their subset of data. The parameters from
each node are then combined into one model [7]. Whereas in
model parallelism, the model parameters are distributed across
nodes and trained on copies of the data. These parameters are
combined at the end to form a unified model [7].

We experimented on both shared and distributed memory
architectures. In shared memory architecture each worker has
access to a global memory location, with communication
between processors being done in the form of read and write
operations [9]. On the other hand, distributed memory
architecture gives each processor its own memory and has
processors communicate by passing messages [9]. For the
implementation on shared memory architecture, we used the
Compute Unified Device Architecture (CUDA) libraries [10].
We specifically used the python implementation, Numba, for
our experimentation [10]. For distributed memory architecture,
we used the Python implementation of the Message Passing
Interface (MPI) library [11].

1.

In previous work, authors have attempted to parallelize
machine learning processes [7, 18, 19, 20, 22] and SGD in
particular [14, 15, 16, 17, 23]. Papers typically focus on either
CPUs [14, 15, 23,25] or GPUs [16, 17, 24]. Most research using
CPUs to parallelize SGD can typically be divided up into two
basic sub-types: synchronous and asynchronous methods. With
synchronous approaches to SGD, convergence is more
deterministic, but communication costs more quickly add up at
larger scales and this method scales poorly to heterogeneous
environments. With asynchronous approaches, communication
costs are minimized and more diverse environments can be used,
but users can easily run the risk of stale gradients and poor
convergence.

RELATED WORKS

An approach that is able to utilize both the speed of
asynchronous approaches and maintain convergence is
HogWild! [14]. It is one of the most popular asynchronous
approaches, primarily utilizing data parallelism. HogWild! is
able to achieve a near linear speed up using non-blocking
communication and a parameter server topology, but it is limited
to ML applications that have sparse matrix updates. A more
recent paper has been able to utilize a lock-free design similar to
the one in HogWild!, but with higher speed ups and less gradient
staleness [23].

One of the most impressive results from synchronous
communication largely comes from Das et al. [15], where the
authors were able to use hundreds of nodes to achieve
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impressive speed ups, maintain convergence, and not lose too
much speed to communication. A more recent approach,
EventGraD [25], utilizes a synchronous parallelization scheme
that has nodes only communicating when a certain condition is
met; this approach maintains accuracy while drastically
reducing communication.

While parallelization on CPUs can lead to impressive speed
gains, GPUs are popular within the SML community. GPUs can
certainly achieve great speed ups in SML, but there are
drawbacks to using GPUs for parallelizing SGD specifically. As
noted by Shi et al. [ 16], the need for data communication in SGD
can be extremely costly when using GPUs and severely limit
their overall potential. However, many have found that proper
utilization of communication can render GPUs a much more
powerful alternative when compared to CPUs [17].

A recent paper by Elahi et al. [24] looked at parallelizing
SGD by using fractional calculus. Their approach allowed them
to have more fine-grained gradient updates, which allowed for
greater parallelism on a GPU. They were able to see consistent
speed ups and high accuracy. However, their approach was
aimed at recommender systems that used sparse, big data.

The most popular approaches to parallelizing GPUs can be
found in frameworks such as Keras [22] and TensorFlow [18].
These approaches are able to achieve high levels of
parallelization on a limited number of GPUs. However, they do
not allow the user to control the number of cores or threads used
on GPUs or CPUs and the parallelization method is largely a
black box. The parallelization methods are also not necessarily
optimized for a particular SML algorithm like SGD. These
approaches also utilize a parameter server or MapReduce based
approach and bottlenecks can limit the scalability of these
methods [15, 19, 20].

Our approach attempts to alleviate some of these issues
through utilization of a tree topology to reduce the bottlenecks
in parameter server and MapReduce approaches. We give the
user direct control in the number of cores or threads used. We
also make an algorithm specific parallelization scheme to
maximize speed up. Finally, we present a hybrid design that
utilizes both distributed and shared memory to take advantage
of the strengths and weaknesses of both and allow for scaling
over heterogeneous computational resources.

IV.  METHODOLOGY

We have two designs: the first is a distributed memory
design that focuses on maximizing CPU usage (which will be
referred to as parallel design 1) and the other is a hybrid
distributed/shared memory design that focuses on maximizing
GPU usage (this will be referred to as parallel design 2).

Parallel design 1 focuses solely on CPUs since, in cases with
limited resources, there may not be access to a GPU. Not only
this, but CPUs generally consume less power than GPUs, which
makes them a more valuable asset in situations with limited
resources. For the CPU, a tree topology design was chosen to
limit communication bottlenecks and increase scalability to a
higher number of devices in cases without resource constraints.
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Our hybrid design was chosen due to the fact that, if GPUs
are available to be used, they are a powerful resource for
parallelizing MBGD [17]. Here, we utilize CPUs and GPUs in
tandem to take advantage of their respective strengths and
weaknesses. We utilize GPUs to do most of the calculations
involved in updating model parameters due to their high
computing power, and utilize CPUs to combine the parameters
efficiently due to the GPU’s weaknesses in communication [16].
We also allow the user to control the number of threads and
cores used in both designs, avoiding the black-box approach that
is frequently found in other parallelization methods. User
control is essential here since the program itself cannot make
any assumptions about which resources are available (eg, the
program cannot simply select the max available threads, since
the scarce computational resources in a limited-resource
scenario will likely not be just used for NID). However, a default
number of threads/cores could be easily implemented to account
for less experienced users.

A. Parallel Design 1 (Distributed Memory)

Parallel design 1 (Fig. 1) utilizes a tree-based topology to
allow for overlapped communication during training and to
reduce the bottleneck that comes from approaches like
parameter server. The way this design works is that every node
gets a subset of the training data and a copy of the model
parameters (data parallelism). Each node then runs
asynchronously for a user-specified number of epochs, at which
point the nodes each send their parameters to the node above
them. The nodes that receive these parameters must average
them with their own parameters and send them up to the node
above them. This process keeps repeating until the server node
receives the parameters from the two nodes below it. The server
node then averages its own parameters with the ones it received
and broadcasts these averaged parameters back down the tree.
This process keeps repeating until a node’s weights reach
convergence. Once a node converges, training is considered to

be complete.
‘Worker Node / ‘Worker Node
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Fig. 1. Parallel Design 1

B. Parallel Design 2 (Hybrid Distributed-Shared Memory)

Our parallel design 2 (Fig. 2) focuses on utilizing the
maximum number of threads possible in a GPU. The user sets
the number of threads to utilize, and the design uses as many of
those threads as possible to parallelize training.

The way that this design works is that each CPU core will
get a partition of the data (data parallelism) and will send copies
of the data to various partitions on the GPU (GPU blocks). These
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partitions will each have one thread for each parameter there is
to be trained. Each partition will then train each parameter in
parallel (model parallelism) and send the trained parameters
back to the CPU once they are done training. The CPU then
combines all the parameters from the GPU, forming the final
trained model.

: ! CPU i 1
: S I R e | i
| ] CORE CORE 1 1
: i : i
. : /A\ Y\\ . :
/GPU ; L GPU\
Gey [ [Fery (°F - =|[ ‘GRU | | GPU
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Fig. 2. Parallel Design 2

We hypothesize that parallel design 2 would have faster
epochs per second due to the generally higher computational
power of the GPUs. However, parallel design 2 not only has high
levels of data parallelism and model parallelism, but also does
so fully asynchronously. We suspected that while this high
degree of parallelism and lack of synchronicity would allow for
faster computation, it may lead to stale gradients and weight
updates.

We predicted the opposite for parallel design 1; we assumed
the accuracy would be much higher due to the frequent
synchronization, but the design would not complete training
much faster than the serial implementation. Parallel Design 1
allows for frequent synchronization, which should reduce the
staleness of the gradients. However, with increased
communication costs, we expected the runtime would be slower
overall. Not just this, but the CPU’s computing power being
generally lower than the GPUs made us predict that parallel
design 1 would perform generally slower overall due to slower
calculations during gradient descent.

In the next section, we will perform experimentation to
analyze if our hypotheses for the models hold.

V.

In this section, we will describe the experimental setup and
provide analysis of the experimental results. We will cover the
computational resources used, the experimental results, and
perform analysis of the results. We generally see that both the
designs can achieve higher epochs per second than the serial
design, but parallel design 2 lacks in accuracy and parallel
design 1 appears to reach a communication bottleneck.

PERFORMANCE ANALYSIS

A. Experimental Setup

Our testing was all done on the KDD Cup 99 dataset [12].
While this may be an older dataset, the focus of this paper is the
parallel processing designs and computational efficiency rather
than over real-life efficacy. Moreover, KDD is still a widely
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used dataset with a wide range of attacks. We utilized an 80-20
split for the training/testing data. For preprocessing, we dropped
duplicates, one-hot encoded categorical features, and
standardized and normalized numerical features.

The compute node used for our experiments was an Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz and the GPU accelerator
was a Tesla P100-PCIE-16GB. Our testing was only done on a
maximum of 2 CPUs for parallel design 1 and a maximum of 2
GPUs for parallel design 2. The compute nodes were connected
on a 10 Gbe network. This was done to mimic the conditions of
extreme resource constraints.

To test our hypothesis on how the models would perform,
we used a few key performance metrics: epochs per second, time
to convergence (parallel design 1 only; parallel design 2 ran for
a pre-determined number of epochs), and cross entropy loss. We
used the epochs per second as well as the time to convergence
in lieu of the speedup of both models and we used cross entropy
to measure the accuracy.

To determine convergence for Parallel Design 1, we had
each core check if its weight updates had dropped below a
certain threshold, 0.00003. Once any weight update drops below
this threshold, we consider convergence to have occurred. We
decided on this threshold through testing. The threshold for the
serialized model was 0.000005. This was, again, decided on by
testing focused on finding a threshold with the best cross entropy
loss. In Parallel Design 1, the nodes would run asynchronously
for 20 epochs and then synchronize during our experimentation.
For parallel design 2, which involves GPU computing, we
conducted experiments to appropriately tune the parameters in
the classification algorithm, specifically, learning rate of the
classification algorithm.

In the graphs (Fig. 4, 6), we did not calculate the epochs per
second by looking at total epochs run across all devices, but
rather epochs run in parallel. For example, if 2 nodes ran 800
epochs each in 10 seconds, we would calculate epochs per
second as 800/10 rather than 1600/10.

B. Results and Analysis

We looked at the epochs per second to judge the
performance of the design and the cross-entropy loss to make
sure no accuracy was lost while decreasing training time. For
parallel design 1, we also measured time to converge, since that
design converged when weight updates were below a certain
threshold. Parallel design 2 only runs for predetermined number
of epochs. Therefore, the time it takes to run is proportional to
the epochs per second it can achieve. For parallel design 1 the
epochs per second is useful, but since the model also generally
converges much faster, the parallel runtime displayed
dramatically different results from the epochs per second.

For parallel design 2, we ran experiments with both one and
two GPUs. Our design has each CPU core controlling one GPU,
but in the future, we plan to allow one CPU core to control
multiple GPUs. Here, as the number of threads increases, we can
see a steady growth in the epochs per second of the design (Fig.
4). The maximum gain in epochs per second we see from both
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one GPU and two GPUs is around 8.5 times using 4000 CUDA
threads. Utilizing two GPUs also seems to work better at higher
thread counts (we tested from 200-4000 threads), because more
threads are available when utilizing 2 GPUs.

The biggest drawback to using this parallelization scheme is
the low cross entropy loss. It hovers around 0.2 (Fig. 3), which
is poor, especially for an NID application, where high precision
is required. The serial design was able to obtain a significantly
better accuracy.
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Fig. 3. Cross Entropy Loss Versus Number of CUDA Threads for Parallel
Design 2
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Fig. 4. Epochs per Second Versus Number of CUDA Threads for Parallel
Design 2

Since CPUs are typically more accessible than GPUs due to
their costs, parallel design 1’s results indicate a possible solution
for resource and cost constrained scenarios. Here, the seven and
three core results are for one CPU, while the 15-core result is for
two 2 CPUs. Even with just one CPU, this design (Fig. 6) rivals
the speeds of parallel design 2 (Fig. 4) in terms of epochs per
second and can achieve better accuracy (Figs. 3, 5), comparable
to or better than the serialized design. Considering how much
more accessible and cheaper CPUs are compared to GPUs,
parallel design 1 is potentially a useful approach in scenarios
where cheaper resources are preferred/available.

Additionally, the results in Fig. 7 indicate that parallel design
1 runs several magnitudes faster than the serial implementation
when just measuring time to convergence. With just three cores,
we see improvements by 8 times; with 7 cores, a 37 times
improvement; with 15 cores, nearly a 40 times improvement.
Parallel design 1 can get a similar, if not better, accuracy than

the serial design in a much lower number of epochs, while being
able to achieve higher epochs per second (Fig. 6).

However, a main limitation of parallel design 1 begins to
emerge in Fig. 6 and 7: the rising communication costs limiting
how much faster the model can converge. The decrease in
runtime from three to seven cores is much higher than the
decrease in runtime from seven to fifteen cores. This may
introduce a problem at higher core numbers if this design is to
be used at a greater scale. However, moving from 1 device to 2
devices may also be a limiting factor; communication within a
single device has lower communication costs than
communication between devices. Further testing would yield a
better understanding of the scalability of this design.
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Fig. 5. Cross Entropy Loss Versus Number of Cores for Parallel Design 1
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Fig. 7. Parallel Runtime (s) Versus Number of Cores for Parallel Design 1

C. Discussion

Regarding Parallel Design 2, our hypotheses largely hold. It
was unable to maintain high accuracy likely due to the highly
asynchronous and parallel approach but was able to achieve
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much faster epochs per second. To address the lack of accuracy
in Parallel Design 2, utilizing different optimization approaches
and doing further hyperparameter optimization may prove
fruitful. However, while the maximum epochs per second was
greater for parallel design 2 when compared to parallel design 1,
it was not greater by much.

Parallel design 1 had a much faster convergence and epochs
per second than expected. Not only this, but the accuracy was
also able to remain quite high. The main surprise about parallel
design 1 was the appearance of a potential bottleneck at 15 cores.
While the lack of performance improvement gained from 7 to
15 processors may be because the 15 processors are distributed
over 2 devices while the 7 processors are only on 1 device, it is
still a noteworthy result.

VL

Our future work revolves around improving parallel design
2 to have a lower loss and improved epochs per second. We also
want to see if we can allow for one CPU core to utilize the
computing power of multiple GPUs rather than each CPU core
controlling one GPU. We will also expand our performance
study of both the initial designs for higher numbers of compute
nodes and GPUs and see if these approaches are scalable.

CONCLUSION AND FUTURE WORK

We also plan to complete a hybrid MPI and CUDA design
that uses a tree topology-based strategy. This approach aims to
take advantage of both CPUs and GPUs, but also aims to
leverage the tree topology’s parallelized communication. We
have done limited testing but have been able to see around 3x
faster epochs per second using 2 GPUs thus far for the design.

Our work showcases initial designs that demonstrate faster
convergence and epochs per second on limited resources,
utilizing both CPUs and GPUs at their maximum potential. With
this work, those with limited access to computational resources
can utilize SML-based anomaly detection to avoid the immense
destruction that can come from NID.
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