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Abstract—One of the main problems with using supervised 
machine learning for anomaly-based Network Intrusion Detection 
(NID) in large cyber networks is the massive and dynamic data 
sets used in training and the computational overhead they induce 
in the training phase. In resource-constrained situations, there is 
a lack of powerful machines that would be traditionally used to 
deal with a high computational load. We focus on parallel 
processing designs that work in such resource-constrained use 
cases by lowering the computational overhead of supervised 
machine learning for anomaly-based NID, specifically for Mini-
batch gradient descent. We avoid the black-box approach of 
traditional parallelization frameworks and allow the user to 
maximize the utilization of their scarce computational resources 
by granting greater control over parallelization while leveraging
key aspects of the optimization algorithms being implemented. To 
demonstrate this, we implemented initial data and model parallel 
based designs, using the Compute Unified Device Architecture 
(CUDA) and Message Passing Interface (MPI) libraries, aimed at 
maximizing the use of a limited number of CPUs and GPUs. We 
conducted an initial comparative performance study using a large 
real-world network intrusion dataset called the KDD cup 1999;
our results demonstrate up to 8.5 times more epochs per second 
using just 1 GPU (4000 threads) and up to 37 times faster 
convergence using just 1 compute node (7 cores) when compared 
to a serial approach.

Keywords—parallelization, gradient descent, anomaly detection,
network intrusion detection, resource constraints

I. INTRODUCTION

Cybersecurity is one of the most important modern-day 
challenges due to the ever-growing role of technology in our 
lives. In 2020, global losses from cybercrime totaled over 1 
trillion dollars, which was a substantial increase from 2018 
(around 500 billion dollars) [13]. Detecting intrusions within 
network settings is an important aspect of cybersecurity, since
much of organizational/personal data is stored online and could 
potentially be used by cyber attackers for malicious purposes. 
Cybersecurity issues are especially challenging in resource 
constrained scenarios, where resources to fight such threats are 
limited [21]. Network Intrusion Detection (NID) is an attempt to 
detect malicious behavior within network traffic to prevent 
malicious users from gaining access to confidential information
and is based on the assumption that malicious users will act in a 
way that is different from non-malicious users [1]. 

There are many strategies to detect network intrusions, but 
one of the most popular is anomaly-based NID. Anomaly-based 
NID is a strategy that detects network intrusions based on 
deviations from normal network behavior [2]. Anomaly-based 
NID is a notoriously difficult problem, but Supervised Machine 
Learning (SML) has been shown to be an effective methodology 
for anomaly-based NID [3, 26]. This is due to the fast-testing
phases of machine learning algorithms and how well SML has 
been shown to perform for an anomaly-based NID approach [3, 
26]. However, there are other challenges related to using SML 
for NID. 

With SML, one of the biggest computational challenge is the 
long training phases and the need to utilize potentially massive 
and/or real time/near-real time training data. NID, unlike most 
other SML problems, requires frequent retraining to keep up 
with new vulnerabilities or new methods of intrusion [3, 4]. Not 
only must SML models be frequently retrained, but must do so 
using datasets that can be multiple terabytes or petabytes in size 
[5]. Retraining models with this much data would require 
exceptionally long and/or require expensive computing 
resources. Not only can models get outdated quickly, but 
without this re-training, zero-day attacks, which can be some of 
the most detrimental types of attacks, are much harder to detect 
[6].

Researchers may face limited resources (small companies, 
independent business owners, etc.). Such resource constrained 
situations make NID using SML a difficult solution to 
implement using existing computational frameworks for 
machine learning. Current approaches that focus on speeding up 
training time (such as Keras [22] and TensorFlow [18]) are not 
ideal for users with limited computational resources due to two 
main factors: lack of user input in parallelization and lack of 
optimization for specific learning algorithms. These popular 
approaches often leave the parallelization as a black box that 
generalizes to several different SML algorithms. The lack of 
user input and generalizability of the parallelization approaches 
oftentimes can underutilize the limited resources in situations 
where computational power is scarce. 

We showcase two parallel processing designs that represent 
an initial effort towards providing solutions for the general 
problem of formulating parallelization techniques for SML. We 
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evaluate these two initial designs, a distributed memory-based
design and a hybrid distributed/shared memory design. We 
formulate a parallelization scheme that is specific to Mini-batch 
Gradient Descent (MBGD) and can be used for Stochastic 
Gradient Descent (SGD). This allows the design to take 
advantage of the unique properties of MBGD to maximize the 
usage of limited resources. Our approach provides greater 
control to users by allowing them to specify the number of CPU 
cores and number of GPU threads to be used, allowing for the 
utilization of heterogenous computing resources (distributed and 
shared memory architectures) and allowing for scaling over 
available computational resources.

Our distributed memory design uses an architecture based on 
a tree topology parallelization strategy. Unlike common 
approaches to parallelizing SML that typically induce heavy 
bottlenecks like MapReduce or a parameter server approach [18, 
19, 20, 22], a tree topology design is able to scale much better 
due to highly parallelized communication. Our hybrid design 
utilizes both MPI and CUDA, using MPI to perform data 
parallelism on the CPU and using CUDA to perform model 
parallelism on the GPU.

This rest of the paper is divided up into 6 main sections: 
background, related works, methodology, performance analysis, 
and conclusion/future work. The background covers the 
mathematics behind gradient descent and some key 
parallelization concepts. The related works covers relevant 
parallelization methods that have attempted to parallelize 
gradient descent and how our approach differs. The 
methodology explains our models and our initial hypothesis. 
The performance analysis goes over our experimentation and 
discusses our results. The conclusion and future work addresses 
our contributions and our future plans to expand our initial 
models.

II. BACKGROUND

The SML algorithm that is parallelized in this paper is Mini-
batch Gradient Descent (MBGD), which is a variation of 
gradient descent. Gradient descent is a key algorithm used for 
optimizing parameters in the training phase of SML.

MBGD (1) is an iterative process that starts with a group of 
parameters, or weights, that are used to make predictions. These 
weights are then updated using the gradient of a loss function 
that measures how well the model is performing. During each 
iteration, the loss is calculated for a number of given values (a 
mini-batch) in the training dataset (x and y) and the gradient of 
the loss function with respect to a weight ߠ is taken. ߠ is then 
subtracted by a learning rate, φ, times the average gradient of the 
loss function. MBGD is a popular variation of batch gradient 
descent [8] which uses the average gradient calculated across the 
entire dataset rather than just the average gradient from a subset 
of values. Stochastic Gradient Descent (SGD), is simply MBGD 
except with a batch size of one.ߠ = ߠ − ߮∇ఏߠ)ܬ; ;(௜ା௡)ݔ ((௜ା௡)ݕ

To test our parallelization methods, we used logistic 
regression on the KDD Cup 99 dataset to perform binary
classification. We trained our models to determine whether 
certain network activity was malicious or benign. 

In our work, we focused on algorithm designs that leveraged
two key parallel processing approaches for the training phase of 
SML: data parallelism and model parallelism. With data 
parallelism, the training data is split up across nodes and each 
node gets a copy of the model parameters. Each node then trains 
their parameters on their subset of data. The parameters from 
each node are then combined into one model [7]. Whereas in 
model parallelism, the model parameters are distributed across 
nodes and trained on copies of the data. These parameters are 
combined at the end to form a unified model [7].

We experimented on both shared and distributed memory 
architectures. In shared memory architecture each worker has 
access to a global memory location, with communication 
between processors being done in the form of read and write 
operations [9]. On the other hand, distributed memory 
architecture gives each processor its own memory and has 
processors communicate by passing messages [9]. For the 
implementation on shared memory architecture, we used the 
Compute Unified Device Architecture (CUDA) libraries [10].
We specifically used the python implementation, Numba, for 
our experimentation [10]. For distributed memory architecture, 
we used the Python implementation of the Message Passing 
Interface (MPI) library [11].

III. RELATED WORKS

In previous work, authors have attempted to parallelize 
machine learning processes [7, 18, 19, 20, 22] and SGD in 
particular [14, 15, 16, 17, 23]. Papers typically focus on either 
CPUs [14, 15, 23, 25] or GPUs [16, 17, 24]. Most research using 
CPUs to parallelize SGD can typically be divided up into two 
basic sub-types: synchronous and asynchronous methods. With 
synchronous approaches to SGD, convergence is more 
deterministic, but communication costs more quickly add up at 
larger scales and this method scales poorly to heterogeneous 
environments. With asynchronous approaches, communication 
costs are minimized and more diverse environments can be used, 
but users can easily run the risk of stale gradients and poor 
convergence.

An approach that is able to utilize both the speed of 
asynchronous approaches and maintain convergence is 
HogWild! [14]. It is one of the most popular asynchronous 
approaches, primarily utilizing data parallelism. HogWild! is 
able to achieve a near linear speed up using non-blocking 
communication and a parameter server topology, but it is limited 
to ML applications that have sparse matrix updates. A more 
recent paper has been able to utilize a lock-free design similar to
the one in HogWild!, but with higher speed ups and less gradient 
staleness [23].

One of the most impressive results from synchronous 
communication largely comes from Das et al. [15], where the 
authors were able to use hundreds of nodes to achieve 
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impressive speed ups, maintain convergence, and not lose too 
much speed to communication. A more recent approach,
EventGraD [25], utilizes a synchronous parallelization scheme 
that has nodes only communicating when a certain condition is 
met; this approach maintains accuracy while drastically 
reducing communication. 

While parallelization on CPUs can lead to impressive speed 
gains, GPUs are popular within the SML community. GPUs can 
certainly achieve great speed ups in SML, but there are 
drawbacks to using GPUs for parallelizing SGD specifically. As 
noted by Shi et al. [16], the need for data communication in SGD 
can be extremely costly when using GPUs and severely limit 
their overall potential. However, many have found that proper 
utilization of communication can render GPUs a much more 
powerful alternative when compared to CPUs [17]. 

A recent paper by Elahi et al. [24] looked at parallelizing 
SGD by using fractional calculus. Their approach allowed them 
to have more fine-grained gradient updates, which allowed for
greater parallelism on a GPU. They were able to see consistent 
speed ups and high accuracy. However, their approach was 
aimed at recommender systems that used sparse, big data.

The most popular approaches to parallelizing GPUs can be 
found in frameworks such as Keras [22] and TensorFlow [18]. 
These approaches are able to achieve high levels of 
parallelization on a limited number of GPUs. However, they do
not allow the user to control the number of cores or threads used 
on GPUs or CPUs and the parallelization method is largely a 
black box. The parallelization methods are also not necessarily 
optimized for a particular SML algorithm like SGD. These 
approaches also utilize a parameter server or MapReduce based 
approach and bottlenecks can limit the scalability of these 
methods [15, 19, 20]. 

Our approach attempts to alleviate some of these issues 
through utilization of a tree topology to reduce the bottlenecks 
in parameter server and MapReduce approaches. We give the 
user direct control in the number of cores or threads used. We
also make an algorithm specific parallelization scheme to 
maximize speed up. Finally, we present a hybrid design that 
utilizes both distributed and shared memory to take advantage 
of the strengths and weaknesses of both and allow for scaling 
over heterogeneous computational resources.

IV. METHODOLOGY

We have two designs: the first is a distributed memory 
design that focuses on maximizing CPU usage (which will be 
referred to as parallel design 1) and the other is a hybrid 
distributed/shared memory design that focuses on maximizing 
GPU usage (this will be referred to as parallel design 2).

Parallel design 1 focuses solely on CPUs since, in cases with 
limited resources, there may not be access to a GPU. Not only 
this, but CPUs generally consume less power than GPUs, which 
makes them a more valuable asset in situations with limited 
resources. For the CPU, a tree topology design was chosen to 
limit communication bottlenecks and increase scalability to a 
higher number of devices in cases without resource constraints. 

Our hybrid design was chosen due to the fact that, if GPUs 
are available to be used, they are a powerful resource for 
parallelizing MBGD [17]. Here, we utilize CPUs and GPUs in 
tandem to take advantage of their respective strengths and 
weaknesses. We utilize GPUs to do most of the calculations 
involved in updating model parameters due to their high 
computing power, and utilize CPUs to combine the parameters 
efficiently due to the GPU’s weaknesses in communication [16]. 
We also allow the user to control the number of threads and 
cores used in both designs, avoiding the black-box approach that 
is frequently found in other parallelization methods. User 
control is essential here since the program itself cannot make 
any assumptions about which resources are available (eg, the 
program cannot simply select the max available threads, since 
the scarce computational resources in a limited-resource 
scenario will likely not be just used for NID). However, a default 
number of threads/cores could be easily implemented to account 
for less experienced users.

A. Parallel Design 1 (Distributed Memory)
Parallel design 1 (Fig. 1) utilizes a tree-based topology to 

allow for overlapped communication during training and to 
reduce the bottleneck that comes from approaches like 
parameter server. The way this design works is that every node 
gets a subset of the training data and a copy of the model 
parameters (data parallelism). Each node then runs 
asynchronously for a user-specified number of epochs, at which 
point the nodes each send their parameters to the node above 
them. The nodes that receive these parameters must average 
them with their own parameters and send them up to the node 
above them. This process keeps repeating until the server node 
receives the parameters from the two nodes below it. The server 
node then averages its own parameters with the ones it received 
and broadcasts these averaged parameters back down the tree. 
This process keeps repeating until a node’s weights reach 
convergence. Once a node converges, training is considered to 
be complete.

Fig. 1. Parallel Design 1

B. Parallel Design 2 (Hybrid Distributed-Shared Memory)
Our parallel design 2 (Fig. 2) focuses on utilizing the 

maximum number of threads possible in a GPU. The user sets 
the number of threads to utilize, and the design uses as many of 
those threads as possible to parallelize training.

The way that this design works is that each CPU core will 
get a partition of the data (data parallelism) and will send copies 
of the data to various partitions on the GPU (GPU blocks). These 
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partitions will each have one thread for each parameter there is 
to be trained. Each partition will then train each parameter in 
parallel (model parallelism) and send the trained parameters 
back to the CPU once they are done training. The CPU then 
combines all the parameters from the GPU, forming the final 
trained model.

Fig. 2. Parallel Design 2

We hypothesize that parallel design 2 would have faster 
epochs per second due to the generally higher computational 
power of the GPUs. However, parallel design 2 not only has high 
levels of data parallelism and model parallelism, but also does 
so fully asynchronously. We suspected that while this high 
degree of parallelism and lack of synchronicity would allow for 
faster computation, it may lead to stale gradients and weight 
updates. 

We predicted the opposite for parallel design 1; we assumed 
the accuracy would be much higher due to the frequent 
synchronization, but the design would not complete training 
much faster than the serial implementation. Parallel Design 1 
allows for frequent synchronization, which should reduce the 
staleness of the gradients. However, with increased 
communication costs, we expected the runtime would be slower 
overall. Not just this, but the CPU’s computing power being 
generally lower than the GPUs made us predict that parallel 
design 1 would perform generally slower overall due to slower 
calculations during gradient descent.

In the next section, we will perform experimentation to 
analyze if our hypotheses for the models hold.

V. PERFORMANCE ANALYSIS

In this section, we will describe the experimental setup and 
provide analysis of the experimental results. We will cover the 
computational resources used, the experimental results, and 
perform analysis of the results. We generally see that both the 
designs can achieve higher epochs per second than the serial 
design, but parallel design 2 lacks in accuracy and parallel 
design 1 appears to reach a communication bottleneck.

A. Experimental Setup
Our testing was all done on the KDD Cup 99 dataset [12]. 

While this may be an older dataset, the focus of this paper is the 
parallel processing designs and computational efficiency rather 
than over real-life efficacy. Moreover, KDD is still a widely 

used dataset with a wide range of attacks. We utilized an 80-20 
split for the training/testing data. For preprocessing, we dropped 
duplicates, one-hot encoded categorical features, and 
standardized and normalized numerical features. 

The compute node used for our experiments was an Intel(R) 
Xeon(R) CPU E5-2620 v4 @ 2.10GHz and the GPU accelerator 
was a Tesla P100-PCIE-16GB. Our testing was only done on a 
maximum of 2 CPUs for parallel design 1 and a maximum of 2 
GPUs for parallel design 2. The compute nodes were connected 
on a 10 Gbe network. This was done to mimic the conditions of 
extreme resource constraints.

To test our hypothesis on how the models would perform, 
we used a few key performance metrics: epochs per second, time 
to convergence (parallel design 1 only; parallel design 2 ran for 
a pre-determined number of epochs), and cross entropy loss. We 
used the epochs per second as well as the time to convergence 
in lieu of the speedup of both models and we used cross entropy 
to measure the accuracy.

To determine convergence for Parallel Design 1, we had 
each core check if its weight updates had dropped below a 
certain threshold, 0.00003. Once any weight update drops below 
this threshold, we consider convergence to have occurred. We 
decided on this threshold through testing. The threshold for the 
serialized model was 0.000005. This was, again, decided on by 
testing focused on finding a threshold with the best cross entropy 
loss. In Parallel Design 1, the nodes would run asynchronously 
for 20 epochs and then synchronize during our experimentation. 
For parallel design 2, which involves GPU computing, we 
conducted experiments to appropriately tune the parameters in 
the classification algorithm, specifically, learning rate of the 
classification algorithm.

In the graphs (Fig. 4, 6), we did not calculate the epochs per 
second by looking at total epochs run across all devices, but 
rather epochs run in parallel. For example, if 2 nodes ran 800 
epochs each in 10 seconds, we would calculate epochs per 
second as 800/10 rather than 1600/10.

B. Results and Analysis
We looked at the epochs per second to judge the 

performance of the design and the cross-entropy loss to make 
sure no accuracy was lost while decreasing training time. For 
parallel design 1, we also measured time to converge, since that 
design converged when weight updates were below a certain 
threshold. Parallel design 2 only runs for predetermined number 
of epochs. Therefore, the time it takes to run is proportional to 
the epochs per second it can achieve. For parallel design 1 the 
epochs per second is useful, but since the model also generally 
converges much faster, the parallel runtime displayed 
dramatically different results from the epochs per second.

For parallel design 2, we ran experiments with both one and
two GPUs. Our design has each CPU core controlling one GPU, 
but in the future, we plan to allow one CPU core to control 
multiple GPUs. Here, as the number of threads increases, we can 
see a steady growth in the epochs per second of the design (Fig. 
4). The maximum gain in epochs per second we see from both 
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one GPU and two GPUs is around 8.5 times using 4000 CUDA 
threads. Utilizing two GPUs also seems to work better at higher 
thread counts (we tested from 200-4000 threads), because more 
threads are available when utilizing 2 GPUs. 

The biggest drawback to using this parallelization scheme is 
the low cross entropy loss. It hovers around 0.2 (Fig. 3), which 
is poor, especially for an NID application, where high precision 
is required. The serial design was able to obtain a significantly 
better accuracy.

Fig. 3. Cross Entropy Loss Versus Number of CUDA Threads for Parallel 
Design 2

Fig. 4. Epochs per Second Versus Number of CUDA Threads for Parallel 
Design 2

Since CPUs are typically more accessible than GPUs due to 
their costs, parallel design 1’s results indicate a possible solution 
for resource and cost constrained scenarios. Here, the seven and 
three core results are for one CPU, while the 15-core result is for 
two 2 CPUs. Even with just one CPU, this design (Fig. 6) rivals 
the speeds of parallel design 2 (Fig. 4) in terms of epochs per 
second and can achieve better accuracy (Figs. 3, 5), comparable 
to or better than the serialized design. Considering how much 
more accessible and cheaper CPUs are compared to GPUs, 
parallel design 1 is potentially a useful approach in scenarios 
where cheaper resources are preferred/available.

Additionally, the results in Fig. 7 indicate that parallel design 
1 runs several magnitudes faster than the serial implementation
when just measuring time to convergence. With just three cores, 
we see improvements by 8 times; with 7 cores, a 37 times 
improvement; with 15 cores, nearly a 40 times improvement.
Parallel design 1 can get a similar, if not better, accuracy than 

the serial design in a much lower number of epochs, while being 
able to achieve higher epochs per second (Fig. 6). 

However, a main limitation of parallel design 1 begins to 
emerge in Fig. 6 and 7: the rising communication costs limiting
how much faster the model can converge. The decrease in 
runtime from three to seven cores is much higher than the 
decrease in runtime from seven to fifteen cores. This may 
introduce a problem at higher core numbers if this design is to 
be used at a greater scale. However, moving from 1 device to 2 
devices may also be a limiting factor; communication within a
single device has lower communication costs than 
communication between devices. Further testing would yield a 
better understanding of the scalability of this design.

Fig. 5. Cross Entropy Loss Versus Number of Cores for Parallel Design 1

Fig. 6. Epochs per Second Versus Number of Cores for Parallel Design 1

Fig. 7. Parallel Runtime (s) Versus Number of Cores for Parallel Design 1

C. Discussion
Regarding Parallel Design 2, our hypotheses largely hold. It

was unable to maintain high accuracy likely due to the highly 
asynchronous and parallel approach but was able to achieve 

752

Authorized licensed use limited to: CAL POLY POMONA. Downloaded on February 27,2023 at 19:01:14 UTC from IEEE Xplore.  Restrictions apply. 



much faster epochs per second. To address the lack of accuracy 
in Parallel Design 2, utilizing different optimization approaches 
and doing further hyperparameter optimization may prove 
fruitful. However, while the maximum epochs per second was 
greater for parallel design 2 when compared to parallel design 1, 
it was not greater by much. 

Parallel design 1 had a much faster convergence and epochs
per second than expected. Not only this, but the accuracy was 
also able to remain quite high. The main surprise about parallel 
design 1 was the appearance of a potential bottleneck at 15 cores. 
While the lack of performance improvement gained from 7 to 
15 processors may be because the 15 processors are distributed 
over 2 devices while the 7 processors are only on 1 device, it is 
still a noteworthy result.

VI. CONCLUSION AND FUTURE WORK

Our future work revolves around improving parallel design 
2 to have a lower loss and improved epochs per second. We also 
want to see if we can allow for one CPU core to utilize the 
computing power of multiple GPUs rather than each CPU core 
controlling one GPU. We will also expand our performance 
study of both the initial designs for higher numbers of compute 
nodes and GPUs and see if these approaches are scalable.

We also plan to complete a hybrid MPI and CUDA design 
that uses a tree topology-based strategy. This approach aims to 
take advantage of both CPUs and GPUs, but also aims to 
leverage the tree topology’s parallelized communication. We 
have done limited testing but have been able to see around 3x 
faster epochs per second using 2 GPUs thus far for the design.

Our work showcases initial designs that demonstrate faster 
convergence and epochs per second on limited resources, 
utilizing both CPUs and GPUs at their maximum potential. With 
this work, those with limited access to computational resources 
can utilize SML-based anomaly detection to avoid the immense 
destruction that can come from NID.
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