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ABSTRACT. Assume that y < N are integers, and that (b,y) = 1. Define
an average along the primes in a progression of spacing y, given by integer
(b,y) = 1.
?(y)
Angsi=—> Y.  Am)f(z—n)

N n<N
n=b mody

Above, A is the von Mangoldt function and ¢ is the totient function. We
establish improving and maximal inequalities for these averages. These bounds
are uniform in the choice of progression. For instance, for 1 < r < oo there is
an integer Ny so that for (b,y) = 1, we have
| sup [ANnypflllr <]l
N>Ny r

The implied constant is only a function of r. The uniformity over progressions
imposes several novel elements on the proof.
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1. INTRODUCTION

We study averages over primes in arithmetic progressions, establishing inequal-
ities with constants independent of the choice of progression. As far as we know,
these are new. And the underlying proof entails some new complications, as com-
pared to known results and their proofs. The averages we are concerned with are
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defined as follows. For b,y € N and y < N, and function f : Z — R, define
¢(y)
ANypf = N Z A(n)f(z —n),

n<N
n=b mod y

where A is the von Mangoldt function and ¢ is the Euler totient function. This
is the average of f along the primes in the arithmetic progression {n : n =b
mod y}. We are only interested in the case of (b,y) = 1 of course, hence we use the
totient function ¢(y) above.

As our first result, we establish /" improving type inequalities.

Theorem 1.1. Forr € (1,2), there exists C. > 0, so that for all integers y, there
is a Ny, > 0 such that for all N > N, , and compactly supported function f,

1 1
y T
1.2 m A o < T( ) ™.
( ) (b,y?,):(IH Nyy,beé — C N ||f||£

Above, we set Ny, = ecm‘yé, for any 6 > 0, and C, ;5 sufficiently large.

The right hand side of (1.2) is the correct scale factor for the inequality to hold
uniformly in N. And, it is sharpest when f is assumed to be supported on a
progression of spacing y. It is natural to suppose that IV is sufficiently large, as a
function of y. For the average over all primes, this inequality was established in
[7], with study of the endpoint case in [11]. The novelty here is the uniformity in
choice of arithmetic progression.

We also study the maximal inequality.

Theorem 1.3. For 1 < r < oo, there is a constant C, so that for all integers y,
there is a Ny, > 0 so that
(1.4) | sup [Anypflller < Crllfller

N>N,,

The inequality above is uniform in y and (b,y) = 1.

We prove these theorems using the Siegel-Walfisz Theorem, and methods that are
common to the study of these averages and their ¢” improving and sparse bounds.
The bounds from the Siegel-Walfisz Theorem are ineffective. So, our bounds are
also ineffective.

The uniformity over the progressions introduces important differences with prior
papers studying averages over the primes. We describe them here.

The Hardy-Littlewood circle method is key. The decomposition of the Fourier
transform of the averages leads to two competing sets of properties. The first, is
the height of rational points in the circle. This property was identified by Bourgain
[5], and refined by Tonescu and Wainger [8]. Its role is well understood.

This height is, for our purposes, dictated by the size of Gauss sums associated to
the rational. Most commonly, this height is given by the denominator of the rational
point in its lowest terms. In our setting, these are decoupled. Rational points
whose denominator divides y all have Gauss sums of magnitude one. Specializing
the discussion to the primes, the Gauss sum associated with rational a/q in lowest
terms, is u(q)/#(q). In our setting, the Gauss sums are given by a Ramanujan type
sum along a progression. These are evaluated in Lemma 2.4. And, the height of
a/q is given by lem(q, y)/y. In particular, there are more than y rational points of
height one.
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This is a novel feature, and once identified, only adds a little extra difficulty
to the proof of the improving inequality. In particular, the formulation of the
Fourier multiplier approximation theorem, Theorem 3.14, is different from standard
statements of this type. For the maximal inequality, however, one cannot use the
standard approach. The latter approach uses the Bourgain Multifrequency Maximal
Inequality [5]. It has a bound that is logarithmic in the number of rationals of a
given height. And so, we cannot appeal to it. We use a different inequality at
this point. See Lemma 4.12. Also note that the large number of points of height
one would complicate applications of the Ionescu-Wainger theory, in seeking ¢
estimates. But we do not need to confront them, due to our approach to the
improving inequalities.

The improving inequalities require a second property, call it a Ramanujan height.
It depends upon subtle cancellation and size conditions on certain Ramanujan’s
sums. Again, there is a complication in evaluating these sums, and we need a
progression variant of a familiar identity due to Cohen, see Lemma 2.7. Applying
this identity is not so straightforward. An inverse Fourier transform calculation,
easy in the case of the full sequence of primes, becomes much more involved. See
Lemma 4.9.

In addition, one needs to know that Ramanujan’s sums are typically of size one.
This is quantified in a famous inequality due to Bourgain, stated in Lemma 2.10.
Again, we need a progression version, stated in Lemma 2.11.

Bourgain [2, 3] initiated the study of these discrete averages, with the £ result
for the square integers being an important breakthrough. The first example of
an arithmetic sequence for which the full /7 inequalities were known is Wierdl’s
result for the primes [15]. See Mirek and Trojan [13] for a discussion of this proof.
Averages along the primes, and closely related objects, have been studied by many,
including variational results by [14], thin subsets of the primes [12], Carleson type
theorems [6], and endpoint type results [11,14]. This is the only paper we are aware
of that discusses the uniformity over progressions.

The remainder of the paper begins with §2, where some notation and standard
facts are collected. This section also has the crucial progression variants of some
standard facts about Ramanujan’s sums. These facts are probably known, but we
could not find relevant sources to cite, so we include complete proofs for these facts.
The remaining sections develop the tools along standard lines, while addressing
the complications from the decoupling of the size of the Gauss sum at rational
a/q and g mentioned above. The circle method is used to build approximation
to the multipliers in §3. There are differences in the standard approaches here,
accounting for the fact that the different role that height plays in this argument.
See Definition 3.9. The following section §4 develops the properties of the High
and Low decomposition of the multipliers. These definitions are not completely
standard. The analysis of the Low part depends very much on the progression
versions of the Ramanujan multipliers. The Bourgain Multifrequency Maximal
Inequality cannot be used for the High part. The concluding section §5 is standard
in nature.

2. PRELIMINARIES

For quantities a and b, we write a < b if |a| < C'b for some constant C' > 0. We
write a <, b if they implied constant depends on p.
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For a function f on the integers, fA or Ff denotes the discrete time Fourier
transform of f, defined as

FH6) =Y Fk)e >,
€L

and f or F~! the inverse discrete time Fourier transform,

1
F @)= | Fo)e*m=0 ap.
fla) = [ 7o

Finally, let e(z) := 2™,
Let ¥ denote the Chebyshev function, which counts the primes in a progression.

U(N,y,b)= > AN).

n<N
n=b mod y

The fundamental estimate on it is given here, requiring that the average be suffi-
ciently large, depending upon y and the ¢" index of the inequalities.

Theorem 2.1. [Siegel-Walfisz Theorem] Let J > 1 be an integer. This holds for
allz > 1,y < (logN)? and b mod q.

T

LR Cy - wexp(—cyy/logx),

where the constants C; and cy depend only on J.

U(z,y,b)

Throughout, we denote Ay = {a € Z/qZ : (a,q) = 1}, so that |A,| = ¢(g), the
totient function. This lower bound on the totient function is well known. For all
0 < e <1, we have

d(q) > ¢

We also make use of the major and minor arc decomposition. For integers ¢, s > 1
consider the following sets

Rsz{g €[0,1) ta€h, 257! §q<25}
q
For 0 < e <1/4 and 7 € Rs, with s < je, we define the j-th major arc at a/q as

M, (afa) = (2 - 26721, 2 4 o072,

which are disjoint for € small enough. The j-th major arcs are given by 9; :=
User, M;(7). We define the j-th minor arcs m; as the complement of 901;.
q s

We turn to exponential and Ramanujan’s sums. Define Ramanujan’s sums by
(2.2) m(x) =Y elax/q).
a€hy

Cancellative properties of the Ramanujan’s sums are very important for us, and
expressed in different ways. The first of these is

() =plg)  (¢;7) =1
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Above, p is the Mobius function, the multiplicative function with p(p) = —1 for all
primes p, that vanishes on integers that are not square free. A second example of
the cancellative properties is

ZTd(x) _ {r if r|z
d|r

0 otherwise.

We mention the next cancellation property known as Cohen’s identity

(2.3) S ra+r) = pl@)r (o).
r<q
(r,q)=1
Their relationship to the prime numbers are well known. In this study, we will need
these properties, as well as certain progression versions of them.
Firstly, we examine Ramanujan’s sum restricted to a progression. This formula
must be known, but we were not able to find it in the literature.

Lemma 2.4. Let ¢,y,b € N, with g = ged(q,y), (a,q) =1, (b,g) = 1. If (9,4/9) =
1, let1—gg= %t, where G is the multiplicative inverse of g mod q/g. Then,

0 ifl1<g<gand(g,2)>1
ra ;
(2.5) Z e(—) = u(%) e (“Tbt) if 1 <g<gqand (g, g) =1
e g () eg— ‘
r=b modg ¢ q Lg=q

Proof. The case of g = 1, q are elementary, and we leave them to the reader. Below,
we will assume that g is a proper divisor of ¢q. Let u be a divisor of q. We have

1

(2.6) e(a(b+ ju)/q) = {

Jj=

aq
u

0 u < q
e(ab/q) uw=q

(=)

In the case of u < ¢, note that since a € A, we also have a € A/, hence j — aj
is a permutation on Z/(q/w)Z. And, if u = ¢, there is only a single term in the
summation, so there is no cancellation.

For a set B C Zg, set

S(B) = Z e(sa/q).
seB
We need to evaluate the term S(A), where A = {r € A, : » =0 mod g}. To do
so, we use the Inclusion-Exclusion Principle to write S(A) as a sum of progressions,
as in (2.6).

Consider the set T, = {b+ ju : 0 < j < q/u}, and note that (2.6) is essentially
an estimate of S(T). Now, suppose g is a proper divisor of g. Then, for all prime
factors p of g, we have

b+jg=b#%0 mod p,
since (b, g) = 1. That is, if r € Ty \ A, it must be divided by a prime factor of q that
does not divide g.

Let Uy be all square free proper divisors of ¢ that are relatively prime to g.
If U, = 0, that means that g and g are powers of the same prime p. Therefore,
A = T,, since for every plq, we conclude that p|g, and b+ jg = b # 0 mod p. So
S(A) = S(T,) and our desired estimate follows from (2.6).
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On the other hand, if U, # 0, consider v € Uy, and let r denote an integer

r=0b+4jg € T,. We have
b+jg=0 modwu iff j=-bg mod u.
This holds since (g,u) = 1. Set 5, = —bg mod u, (we may have b =0 mod u for
some u € Ug,) and 8y = b. Let
={rg+beZ, : r=0, modu},
and notice that we can then write A as
A=T,\ |J R
uelUy

We can now utilize the Inclusion-Exclusion Principle. Let w(n) be the number

of distinct prime factors of n. Then
S(A) )+ > (—1)*MS(Ry).
uelU

The equation above implies that the desired sum in (2.5) is a linear combination
of other sums that can be expressed in the form of (2.6), and can be therefore
estimated. Additionally, (2.6) forces a lot of the sums above to be zero. Specifically,
all of them are zero except for when gu = ¢. In that case, the progression consists
of a single term. This forces ¢/g to be square free, since U, consists of square free
integers. The corresponding coefficient from the Inclusion-Exclusion Principle is
(—=1)%/9) = u(q/g), which means that

S(A) = ua/9)S(Tyy,)
Recalling the definition of f3,/,, we see that 3,,, = —bg = (qt —1). Sor =
b+gg="b+ 1t —b= 1t The result follows from (2.6). O
Secondly, we need a progression version of Cohen’s identity (2.3).

Lemma 2.7. We have for g = ged(y, q)

0
25 teZAq = {M(q/g)Tq/g(x)Tg(x +b) (g,

t=b mod g

Remark 2.9. Note that if g = 1, Lemma 2.7 reduces to the usual Cohen’s identity.
It is expected, because the progression on y and on ¢ become independent. Also if
g = ¢, we will get only the term ¢ = b from the sum in the left hand side of (2.8).
This term is equal 74(z + b), which happens to be the right hand side.

Proof. The sum in question is

> () - (E) T oe(Y)
= e —_— [ —_—
teA, rEA, < rEA, a teA a
t=b modq t=b mod g

By Lemma 2.4, the inner-most sum on the right hand-side is zero, when ged(yg, ) >
1. Continuing with the assumption that ged(g, %) = 1, the sum above is equal to

Z o (w) = ‘u(q/g)Tq(I +bsq/g)

r€Aq q
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where 1 —gg = %s if g < gand s =1 if g = ¢. Ramanujan’s sums are multiplicative,
leading to l

Y mlet) = wla/g)my(x + bsa/g)ry(z +b(1 — gg))

teA,
t=b mod g
= 1(q/9)7q)4()7g(x + D).
The last equality follows from the periodicity of Ramanujan’s sum. O

A final property of Ramanujan’s sums is a fundamental inequality due to Bour-
gain [4]. It implies that typical values of 7,(n) are approximately 1, on average.

Lemma 2.10. Given integer k and € > 0, we have for all integers M > yQ¥

4 S| <o

n<M ¢<Q
The implied constant depends only on €.
We need a progression version of this inequality.

Lemma 2.11. Given integer t and € > 0, and integers b,y, with (b,y) = 1 we have
for all integers M > yQ*

ERP oL T

n<M q<Q
n=b mody (q,y)=1

The implied constant depends only on €.

Notice that the length of the average is required to grow with ¢. That the
constant is independent of ¢ is not recorded as such in the literature, but follows
from a modification of the proof in [9]. The e dependence is traced to an inequality
for the divisor function.

Proof. We follow the proof from [9, §3]. Firstly, we have |7,(n)| < (¢g,n). Secondly,
for ¢ € [1,Q]%, let £(§) be the least common multiple of q1,...,q;. We assume
throughout that all g; are relatively prime to y. The map m — H;Zl 7q; (my + b)
is periodic with period £(q). The condition M > yQ! then implies that for any

7e[1,Ql,

LY Huw<gg ¥ Mo

n<M j=1 n<L(q)j=1
n=b mod y

On the right, we have dropped the modularity assumption on n.
Thirdly, we have, uniformly in ¢ € [1, Q]*, subject to the condition that ¢; are
coprime to y,

t
Z H(qj,ny +b) < QM.

n<L(q) j=1
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We establish this here. Due to the multiplicative structure of the estimate above,
it suffices to consider this case. Counsider the inequality below for prime p ¢y, and
integers t and 1 > x9 > -+ > x4,

t
Z H(p””f ,ny +b) < ptrite.

n<p”l j=1

To see this, note that

t t
S TI@ ny+0) <[> > 0™, ny+10)

n<p*l j=1 j=1 n<p®i

For w; < xj, if p®i||n;y + b for i = 1,2 and ny # ng < p®. Then, p“i|(n1 — n2),
since p 1 y. That is, there are at most p™~™7 values of n such that p"7||ny +b. It
follows that

t

t
> [Ie™ny+ny <Lwm 3 pop

n<p®l j=1 J=1 w; <x;
mlt H Z 1< pmlt H x; < pmlt-l-e
Jj=lw;<z;

Fourth, we have the bound

1
Y = <Qn

L

7e[1,Ql* (@

Pulling together the different estimates gives us this chain of inequalities, which
completes the proof.

% Z {Z |Tq(n)|} <<% Z Z ﬁqj,yn—i-b

n<M q<Q 1 n<M = j=1
n=b mody (q,y)=1 (;E[(tf)%] 1n=b “mod y
S o | (TR
ge(l Q q n<L(q) =1
(v,£(9)=1
t+e
< Z Q < Qt+26-

£(q)

qe[1,Ql*

3. APPROXIMATION

Our strategy of proving the desired results consists of firstly approximating our
kernel by another multiplier. We opt to do that on the Fourier side, and obtain
an error that is easily controlled. This is established in Theorem 3.14. The next
step is to take a closer look at the approximating multiplier and split it into two
pieces, one that is well behaved on the time domain, and one that is well-behaved
in the frequency domain. We call these pieces the Low and High parts and they
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are thoroughly discussed in the next section. The principal result of this section is
to prove Theorem 3.14, the approximation result for

Ay () = % > A(m)e(—nb).
n<N
n=b mod y

This is the Fourier transform of our averaging kernel. The standard average over
the integers from 1 to N is a multiplier with kernel

My (0) = % > e(—n).
n<N

The progression version of the average over the integers congruent to b mod y, and
less than IV is denoted by My . As a Fourier multiplier, its kernel is

J\YN,y,b(e):% S e(-nb)

n<N
n=b mod y

:e(—b@)% Z e(—nyb)

N-—b
<L 220
n=Ty

= e(—b0) M n—s (y0).
Y
We record an elementary relation between these two definitions.
(3.1) My y(6) = M2 (y9) (1 + O(b]0))

Also note that because of the relative sizes of b and y, we always have % < 1. This

means that there can only be at most one integer ng € [2=2, &), Therefore

y 'y

= L My, (6), if [N Nyn7 =
(32) Mu (9) = N];b /\N/U( ) ye(fnoe) 1 [Ny—b ]’%)
v v Mnyy(0) — S, i[5 ) NZ = {no}

Let ||z|| denote the distance of real number = from its nearest integer. For the
complete average, the estimate below is elementary.

— 1 . 1
n<N

The progression version of this inequality is

My y0(0) < mln{l, }
! Nllyoll

Our primary focus is on the multiplier /AlNyyyb. The first step in approximating
it is taken here, where we focus our attention around the origin.
J
Lemma 3.3. For all J > 1, there is a 0 < ¢ < 1 so that for |0] < w, and

y < log” (N), there holds for all b € A,

EN,y,b(H) - J\/ZN/y(yﬁ) < exp(—cy/log N).
Proof. We establish the closely related inequality

(3.4) Any(0) = My, (0) < exp(—cy/log N).
Then appeal to (3.1) and (3.2)to see the Lemma as written.



10 GIANNITSI, LACEY, MOUSAVI, AND RAHIMI

The left hand-side of (3.4) equals

?(y) y
VX [pe- e,

n<N
n=b mod y

We will use a trivial bound for n < v/N. Apply the Siegel-Walfisz Theorem 2.1 and
Abel summation to see that

% 3 {A(n)—%}e(—n@)

= ) (@ (N.g.5) ~ N/l e(N0)
~ WV, 8) - VN 6()e (VD)
N
(3.5) —2772'%9/ [W(t,,b) — t/6(y))]e(—0t) di + O(VN).

VN
Each term is at most exp(—cyy/log N). The integral is the one that uses the
information on #. We have
(log N)”
N
This is enough to finish the proof. O

(3.5) < - Nexp(—csVN).

The approximation result on a so-called major arc is below. Recall that from
their definition this concerns points in neighborhoods around rationals whose de-
nominators have controlled magnitudes. The statement introduces the parameters
¢ = lem(y,q) and g = ged(y,q) which play an important role in what follows.
One should also note that the Gauss sum in (3.7) depends upon these parameters,
and has itself a complicated expression. Nevertheless, it is explicitly evaluated in
Lemma 2.4.

Lemma 3.6. For all J > 1, there is a 0 < ¢ < 1 so that the following holds. For
y,q <log” (N), set ¢ = Ly =lem(y, q), and g = ged(y, q). With (a,q) = 1, suppose
that |€ — ] < bgj#. We have the inequality below.

ANy p(8) = T(g, @) Mye(£( = 2)) + Oexp(—c/1og N)),

where

(3.7) Y(a,q) = oly) Z e(—ra/q).

TE€EA,
r=b mod g

Proof. The sum defining A N,yb(§) is divided into residue classes mod ¢. Consider
the conditions

n=>b mod y, n=r mod q.
If g := ged(y, q) and b £ r mod g, there is no solution. Otherwise, the conditions
above are equivalent to n = 8, mod ¢, where ¢ = lem(q, y), for some choice of £,.
The choice of 5, can be made more explicit using a generalized Chinese Remainder
Theorem, but that is not necessary for our purposes.
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We will write { = £ + 0, where [0] < log‘]%. Observe that

Av©="2 S Am)e(-n(a/g+9)
r<q n<N

r=b mod g n=b mody
n=r mod q

= ) Z e(—ra/q) - # Z A(n) e(—n#).

r<q n<N
r=b mod g n=0, mod £

Without loss of generality assume that n is a prime. If ged(r,q) > 1, then n|q. It
gives the contribution of at most

e+1
_(b(]g\/])q Zlog(n) < Ly])g )
nlq
So we conclude that
~ 14
Avanl) =50 5 eloraf- S X Aw)e(-ns)
¢( TEA, n<N
r=b mod g n=p, mod £

+ O(exp(—cj+/log N)).

By our hypotheses, Lemma 3.3 applies to the inner most sum, for each r € A,
(with a different choice of J, that is larger by a square). It follows that

/AlNyyyb(a/q—FG) = % Z e(%)]T/I\N/g(M) + O(exp(—cy+/log N)).
rEA,

r=b modg

That completes our proof.
O

In (3.7), the sum is a progression restricted Ramanujan’s sum as in Lemma 2.4.
Applying the latter, we have

Lemma 3.8. We have this equality for Y(a,q), defined in (3.7).

0 ifl1<g<gand(g,%)>1
Y(a,q) = { S n(a/g)e(—abt/g) if 1 <g<gand(g,)=1
e(—ba/q) ifg=gq.

This formula has implications for how the proof should be organized. Typically,
one expects the Gauss sum at rational a/q to decay at a rate dictated by ¢g. That
is not the case here.

(1) If ¢ | y, then g = ¢, and Y(a,q) = e(—ba/q). That is, there is no decay
in the height of the Gauss sum. This is reflection of the fact our sum is
restricted to a progression.

(2) If 1 < g = ged(q,y) < g, and (g,q/g) = 1, there is some decay in the Gauss
sum, but only at the rate of g/q.

(3) If (¢,y) = 1, then |Y(a, q)| = ¢(q)~'. These rational points act as if there
is no progression.
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In particular, there are more than ¢(y) rational points % with |Y(a, q)| ~ 1, And,
our estimates should be independent of y. This situation is rather different from
most of the literature on this type of subject. This next definition is used to keep
track of the relationship between the rational point and the value of the Gauss sum.

Definition 3.9. Define the height (with respect to y) of a rational a/q with (a, q) =
1, or an integer ¢ to be

hy(a/Q) = hy(‘]) = {

0 if1<g<qand(g,§)>1
¢/y otherwise

Here, and throughout, g = ged(y, ¢) and ¢ = lem(y, ¢). In particular, we have for
any € > 0,

(3.10) 1T (a,q)| < hy(q)~ T, whenever hy(q) > 0.

We chose to refer to this height as the Ramanujan height. The “traditional”
notion of height, as that term is frequently used in the related literature, is dictated,
essentially, by the magnitude of the denominator. For our study, this is not good
enough, as it does not take into consideration the restriction to a progression. There
is again the dependence on the denominator ¢, which is indicated by the existence
of the least common multiple in the formula, however notice that the part of ¢ that
actually contributes is the part that is co-prime with y. And the same applies to y
as well.

Proof of (3.10). From (3.7), if hy(a/q) = 0, then Y(g,a) is also zero. Otherwise

oy) _ 9oy
Y(a,q)| = —=% =
D=5 /e
If g = q, the expression above is 1, so that (3.10) trivially holds. If 1 < g < ¢, we

have ¢(yq/g) > ¢(y)p(q/g), so that (3.10) follows in this case as well.

O

It is important to observe that there are a potentially large number of rational
points of a given height r. The exact number is

(3.11) Ha/q : hylg) =7} = > ¢lq)

q:L/y=r
(g9,m)=1
= > olgr)
gly
(g,m)=1
_ _ Y

Approaches to different aspects of this question are then limited by these bounds.
This notation is needed for the statement of our principal approximation result.
For 0 <& < 1, let £ :=1lem(y, q) and

(3.12) L§%,(6) == (g, a) My (€ — a/a)) 7 (€ — a/q),
where 7 is a non-negative Schwartz function such that 111 /16,1/16) <0 < 1[_1/4,1/4]
and

(3.13) (&) = n(tE).
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One should not fail to note that the cutoff function n above is scaled by (2, to
ensure that the major arcs remain disjoint, meaning the support of the multipliers
is disjoint as well. The importance of this cutoff will also come into play in the
next section when discussing the Low Part, as it allows us to use a multiplicative
property of the spatial domain that is important for our estimates.

Theorem 3.14. We have the estimate below, uniformly in 0 < £ < 1, uniformly
forbe Ay,

(3.15) Avyo= D> Y LYLE + Eny(©),

g<N-—1/10 a€A,

where

(3.16) HENy()HLoo < exp(—c’y/log N).

for a positive constant ¢’ that depends on y.

Proof. Let y® ~ R = 2" ~ eV1°8(N) for a sufficiently small choice of ¢ > 0.
Fix a choice of ¢ € T. Using Dirichlet’s Approximation Theorem, we can choose
0<a<q< N0 with a € A,, so that ¢ — %| < The proof will be
organized around the relative sizes of ¢ and R.

We have this estimate for ‘large’ major arcs. For each fixed s > r/2, the quantity

1
gN1/10 "

Y(q,a) is at most y2~°, which has small contribution. We also bound MN\/@ < 1.
So, using Lemma 2.4 we have

> > IO < 3 max

s2r/2 $€Rs s>r/2

Y(q, a) My o(0(€ — g»

o) e -1/2
E —2L 1
< 2 o rflffds @ < Rlog(N)yR

< R~V4,

The implication of this estimate is that we need not concern ourselves with this
part of what will end up being the High term of our decomposition.

The remaining analysis is split according to the relative sizes of ¢ and R. In
the case of ¢ > R, concerning the function /AlNyyyb we are in the setting of classical
estimates of Vinogradov. The particular result we apply to in this setting is the
main result of Balog and Perelli [1]. It gives us

Any(6) < % (NR™Y2 4+ VRN + R¥" N7 (log N)*®
< yR™Y?(log N)*® < R7Y/3,

under our assumptions on R and y.

We establish a corresponding estimate for (the remaining part of) the High and
Low terms. This will establish (3.16). Assume that 1 < s < r/2. We know that
('(§— %) should be less than 1/4 so that ny (€~ %) # 0. So [¢'(§— %) = £/(E-%).
For R < ¢ < N'/1° one must note that for % #* Z—: € R, we have

1 1
¢ N1/10 - N1/104

a
“ar
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1 s 1
> N1/10 (27" - ﬁ)
1 —s5—1
> —N1/102 .

This implies that , for ¢/ = lem(y, ¢’), we get the upper bound

! v 1

a
=)< K .
7)< Nee— o < W7

My e (€'(€ -

To complete the proof, we now consider the following three cases, dictated by
the relative sizes of ¢ and R, as well as s and r.
Case 1: So if ¢ > R, let ¢/ =1lem(q/,y)

2. X Lw©
sgr/2%¢%ens

<X Y SO e )

él
s<r/2 %75;_:6735 ¢( )

< Z max
q'~28
s<r/2

()

!/

Mo (£(6 - %))] |

There is a uniform bound, in s, on the number of a’/¢’ that contributes above. So

o 1 B
Z Z LN:Z(§)<<ZWZ#<<R1'

s<r/2 a_yga’ s<r/2
/ G£9ER, /

We conclude that both Z; and the High and Low terms are small if ¢ > R. This
concludes the proof of (3.16) in this case.

Case 2: If ¢ < R and s < r/2 and a/q # d'/q¢, then £ and a'/q’ are far apart.
Namely,

¢ a N 1 ¢ al 1 1 N 1
q qq’ q Rq' N1/10 2Rq"
This implies that
a 4 2°R

My e (0(€ — ?)) < m <5

Using this, we then have
> > Ly ©
s<r/2 o e
q

’
v
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Case 3: Finally, when ¢ < R and a/q = o’/q¢’, Lemma 3.6 immediately implies
that

ANy (€) = L&) + O(R™Y),

and our proof is complete. O

4. PROPERTIES OF THE HiGH AND LOw PARTS

We are now ready to define the High and Low part. Crucially, the definitions use
the Ramanujan height, Definition 3.9. For an integer Q < N'/10 with Q a power
of 2, we set

(4.1) Hiyy,q = Z Z L?\}?y’

51 Q<hy(g)<N1/10 2€R,
(4.2) Lonyo= Y. > L.
q:hy(9)<Q %GRS

The terms Ly’ are defined in (3.12). Again, the division into High and Low parts
is done via the height function hy(g). The norm inequalities for these terms are as
follows.

Lemma 4.3. Foralle > 0,1 <7 <2 and 1 < Q < (logN)°"', and finite sets
F C Z supported in [0, N|, we have that there exists Ny, > 0 so that for N > Ny, r,
the High term satisfies

(4.4) [Hin.yo* 17| < Q1| F|V/2,

(4.5) | sup  [Hiny,q*1pll|, < Q| F|/2,
N=2n>Ny,

and the Low term satisfies
(4.6) [Lon 4,0 * 1rle= < Q“(y/N)/"|FIV/T,

(4.7) | sup  |Lony.q* 1rllle < Q°|F|'".
N=2">N, ,

The power of y/N is needed to keep the estimate scale free. The constant N, , is
the same as in Theorem 1.3. The maximal inequalities (4.5) and (4.7) are £" — £",
so the power of y/N is not needed. (And, they are sharpest when F is restricted
to a progression of spacing y.)

4.1. Control of the Low Part. The estimates for the Low part are more chal-
lenging, so we address them first. Define

(/I\)N,q(g) = Mny0,0(£) 02 (€).

We record the elementary inequality for ®x 4.
Proposition 4.8. We have the estimate
Dy q(z) < nn(z).

Proof. Recall from (3.13) that 7 is a non-negative Schwartz function with 1;_; /16,1/16] <
N < 1{_1/4,1/4- The function 72 then has spatial scale ?? < /N, while Mo is
an average of length N/¢, along a progression of spacing ¢. Then, the conclusion
above is clear. O
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We invert the Fourier transform of the Low term. Experts will recognize that this
step is typically routine, leading directly to Ramanujan’s sums. In this instance,
the proof is notably more complicated.

Lemma 4.9. With the notation of (4.2), we have

(4.10) Lonya(®) < ylyps(e) 3 %w@).
(qq’:;)Qzl

Here, { =, =lem(q, y), and 14(x) is the Ramanujan function from (2.2).

Proof. For any ¢, we can calculate as follows.

FUY LY 5——

a€hy
= X dearf) T [ Bl - afamle - o/ 5 etae) de
r€A, a€hy
r=b mod g

) _
“S Y Y et =n/a) [ SO 0)e(w) do

reA, a€hy
r=b modg

P(y)

- @N,q(x)m GZA: Tq(z — 1)
r=b mod g
= ) S /)13 17 0V~ )

A change of variables allows us to pull the sum over a € A, outside the integral.
And, we use Lemma 2.7 in the last line.

Take ¢ = hy(q) = {/y =q/g. As (g,q/g) = 1. Note that ®x 4 is just a function
of £. It means that ®u 4 does not depend on g and only depends on ¢’ and y. We
have

Lowaol) = 3 @) S u(a/0)1 017275070 — ).

q:hy (9)<Q
Observe that ged(g/g,g) = 1, if and only if ged(q/g,y) = 1. This obvious but im-

portant property makes the condition L(g/g.9)=1 independent of g, and only depends
on ¢ ,y. So
o(y)
Lonyq@)=> Y @ gy @y =)
q7'<Q g\y Y
(9:4")=1
oy
Py o T4(x — D).
= 2 ol ¢ o(q")d(y) ()27l
q <Q gly
(y,4")=1

Next we use well-known Ramanujan’s sum property

rorn
E : -
E 0 otherwise.

alr
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Applying this property gives us

1(q')
Lon,y,q(z) = Z Py q(2) o(q' g (2)yLyjz—b
‘ q)
'<Q
(y,9")=1
Tog' \ T
< (y1y|mfb) Z | 1 (,)|77N(:E)
. o(q")
q'<Q
(¢',y)=1
Hence we have the result. O

We address the fixed scale estimate (4.6) here. We appeal to details in this proof
to prove the maximal estimate (4.7).

Proof of (4.6). We of course use (4.10), together with Holder’s inequality. That
gives us

LONyny *]_F(:Z?) = Z ]_F(Z) LONﬁyﬁQ(ZE — Z)

(4.11) < An(z)By (2),

where

’

Av@ =y Y lz %] vz — 2)

rz=z+b mody 7 <Q
(@' y)=1

By(@) =y Y  1le()n(-2).
r=z+b mody

We have treated yny (z — ) as a measure, in our inequality above. The second term
satisfies | By|loe < [(y/N)|F|]'/7. The first term is controlled by Lemma 2.10.
Recalling the familiar lower bound on the totient function ¢(q) > ¢*~¢, we see that
[AN]lco < Q°. That completes the proof. O

Proof of (4.7). We take advantage of (4.11) again, along with the fact that we
always have [|An| e < Q° and

| sup BN||éS<<|F|1/S, l<r<s<?,
N>N,

Yy,

by the usual maximal function estimates. O

4.2. Properties of the High Term. The first inequality is the fixed scale ¢2
estimate.

Proof of (4.4). This is entirely elementary. By Plancherel, it suffices to estimate

IHvgol~< > | X Y I¥,

LOO
5:2571IKNI/10 o 25< g5t a€hy
hy(9)>Q
< E 2—s(1=¢)

s:25t1>Q
< Q_1+6-
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We have taken care to define the functions {i‘]l\}qu 2% < g < 2571} so that they
have disjoint support. That is done by inserting n(¢?(¢ — a/q)) into the definition
of LF? in (3.12). And the L> norm of Ly, is at most ¢(y)/¢(¢) < hy(q)~'*c. O

For the maximal function estimate (4.5), it is typical to apply the Bourgain
Multifrequency Maximal Inequality from [5]. Also, in the typical setting, the height
of the rationals and the number of rationals are coupled. In the current setting, this
is no longer true. Following this path would result in an estimate that is logarithmic
in y, because of the estimate (3.11).

Instead, we recall an inequality from [10, Lemma 2.1]. It requires the multi-
frequency base points to share a common denominator, and the averages be over
scales large relative to the common denominator. The constant in the maximal
inequality is then independent of the number of base points.

Lemma 4.12. Letry,...,ry be distinct rational points in T, with common denom-
inator D < 2%. Then, we have

(4.13)

sup f-l{i 720 =) F0) }@)| ||, < 151l
j=1

n>2d

In our application of this lemma, the number of distinct rational points a/q with
25 < hy(q/q) < 2571 is at most Cy?22*.

Proof of (4.5). In the definition of the High term, we fix s with 2° > Q/2, and
consider the maximal function formed over the kernels

Iy = Z Z L (Jl\}?y
q:2°<hy(q)<2°tt a€hq

The sum above is over at most Cy222° rational points. A denominator is gq’, where
g divides y and ¢’ < 2°*!. Their common denominator is then at most Cy22. This
means that we can apply (4.13) for the supremum over N = 2" > 3225,

Recall that we only consider N > N,, o = Cy?“, for a large absolute constant C.
For values of N, o < 2" = N < Cy22%, turn to the fixed scale case, namely (4.4),
to conclude that

| sup Iy fl, < 2709 2.
n: Ny 2<2n=N<Cy22s

For the remaining supremum, the definition of I'; s needs a slight adjustment in
order to apply (4.13). Define

Flyns= 3 > Y(g,0)My (€ — a/q)ipe (€ — a/q).
q:25<h,(q)<2°tt a€h,y

Here, we have modified the definition of L% in (3.12) by replacing the average
Mye(0(€ = a/q)) by M (€ — a/q) and (€ — a/q) by e (€ — a/q). With this
definition, by a square function argument, we have

[ N (L s ¥ R 11/ - W ([t S R
n: N=27>Cy22s n: N=27>Cy22s

< 272079 £|13.
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And then, we have a direct application of (4.13) to control the supremum below.

H sup |1:‘Ns>kf|H < 2_5(1_6)|\f|\2.
n: N=2n>Cy22s 2

We conclude (4.5) by summing over s such that 2° > Q. O

5. PROOF OF THE MAIN INEQUALITIES

5.1. The Maximal Function Estimates. We prove (1.4). To do so, it suffices
to suppose that the function f on Z is the indicator of of a set F'. Indeed, we will
prove a weak-type estimate for the maximal function. We need only consider the

weak-type estimate at heights 0 < A < 1.

Fix 1 <r < 2, and let € = %1. Below, N will always be a power of 2. We

trivially have
Yo I Angplelh < ATHE
N=2n<2x™ !

So, we can restrict attention to N > A Importing this condition allows us
to take advantage of the maximal inequalities (4.5) and (4.7), which means we can
allow @ to be as large as

Q< (log 2)5’"*1)07"’ — )\Cr.
Take Q ~ A~1+7/2_ We will show that for No = max{N,,,2* " },

(5.1) { sup Anyplr > A < {QN "+ Q2T A2} F|
N>Np

< /\—r+€(1—r/2) |F|
K AT F).

This proves the restricted weak type estimate ¢! — £9°°, where s =r —e€. Asr
decreases to one, so does s. We deduce the restricted weak type inequality for all
1 < r < 2. Interpolation completes the argument.

Recall our approximation (3.15). Use the value of @ above in the definition of
the High and Low terms in (4.1) and (4.2), respectively. Then,

ANy =Lony.o+Hinyo+ENy0-

Then, by (4.7), we have

[{ sup [Lony,@*1r[ > A/3} < QAT"[F].

N>Np
This is the first half of (5.1). The estimate below matches the second half of (5.1),
and it follows from (4.5).
{ sup [Hinyq*1r| > A/3} < Q7*FA7?|F].
N>Np

Last of all, recalling (3.16), we have

{ sup [Eny#1p| > A/3} <A™ Y |[Eny«lp3
N>No N>Ng

< A Zexp(—d/ ATV R
This is better than the second half of (5.1). So, it completes the proof.
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5.2. Fixed Scale Estimates. We prove the estimate (1.1). By duality, that esti-
mate is the same as
(5.2) Y tanoimg) < (L) (Lian)”
' N AN bt Es g < (N' |) (N' |) ’
where F' and G are subsets of an interval E of length N.
Observe that trivially
Yy
N
This implies that the inequality (5.2) is true, unless

Y y
(Anyplr,g) <log N N |F| - N|G|'

2
Y —r’

So it suffices to only study this case.
We take N > N, ,, and 0 < e < Tl—&} small, and apply the High/Low decomposi-
tion with parameter ) to be determined later. Using the estimates (4.4) and (4.6),

we have
v o e (Y 12,y 1/2
N<H1N,y,Q*1F79> <Q ' (N |F|) (NlGl) ’

y . Yy 1/r Y
L Lonya g < Q (%1F) " Zid.

Optimize over ) so that the right hand sides above are approximately equal. We

obtain o
(i)

1 1
1+2¢ (Y B
Q= (1))
By (5.3), this is an allowed choice for us.
So our estimate becomes
y y Lie Yy Lye
N (ANyplr,g) < (N |F|) (N'GD
Above €’ < ¢re. Thus, we see that (5.2) holds for 1 < r < 2.

Remark 5.4. The estimate above could be improved to a sparse bound for the
maximal function. However, the notion of a sparse bound would have to be refined
to one that is adapted to progressions. Not having a ready application of such a
result, we do not pursue the details herein.
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