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Abstract 

Process uncertainty induced quality issue remains the major challenge that hinders the wider 

adoption of additive manufacturing (AM). The defects occurred significantly compromise 

structural integrity and mechanical properties of fabricated parts. Therefore, there is an urgent need 

in fast, yet reliable AM component certification. Most finite element analysis related methods 

characterize defects based on the thermo-mechanical relationships, which are computationally 

inefficient and cannot capture process uncertainty. In addition, there is a growing trend in data-

driven approaches on characterizing the empirical relationships between thermal history and 
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anomaly occurrences, which focus on modeling on an individual image basis to identify local 

defects. Despite of their effectiveness in local anomaly detection, these methods are quite 

cumbersome when applied to layer-wise anomaly detection. This paper proposes a novel in-situ 

layer-wise anomaly detection method by analyzing the layer-by-layer morphological dynamics of 

melt pools and heat-affected zones (HAZs). Specifically, the thermal images are firstly 

preprocessed based on the g-code to assure unified orientation. Subsequently, the melt pool and 

HAZ are segmented, and the global and morphological transition metrics are developed to 

characterize the morphological dynamics. New layer-wise features are extracted, and supervised 

machine learning methods are applied for layer-wise anomaly detection. The proposed method is 

validated using the directed energy deposition (DED) process, which demonstrates superior 

performance comparing with the benchmark methods. The average computational time is 

significantly shorter than the average build time, enabling in-situ layer-wise certification and real-

time process control. 

 

Keywords: Additive manufacturing, anomaly detection, certification, directed energy deposition, 

morphological analysis, thermal history 

 

1. Introduction 

The metal-based additive manufacturing (AM) technologies have demonstrated their 

significant potential by producing fully functional parts with reduced production time and costs 

for low-volume and high-value complex-shaped components. The AM technologies provide the 

opportunity to manufacture parts of diverse designs in both nonstandard and remote environments, 

which is not feasible for conventional manufacturing processes. Moreover, AM is also capable of 
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reducing the overall time-to-market of new products by accelerating the in-house testing of the 

designed prototypes prior to first market introduction [1][2]. The directed energy deposition (DED) 

process is a widely used metal-based AM process with the capacity of product prototyping, 

production, and component repair. During the fabrication, the feedstock material is deposited while 

being melted and subsequently solidified on top of the previous layer to gradually form the final 

geometry [3]. The high uncertainty in the DED process may lead to quality issues in the final parts, 

including porosity, cracks, and lack of fusion [4]. These issues will significantly compromise the 

mechanical properties and reliability of the fabricated AM components, hindering broader 

adoption of DED technologies in various mission-critical applications. Therefore, there is an 

urgent need in developing reliable certification methods to accelerate the scale up of DED 

technologies [4], [5].  

AM component certification refers to evaluating the conformity of the component during or 

after the fabrication based on the pre-established standards [6]. In practice, AM component 

certification activities are essential to assure the trustworthiness and reliability of the AM 

components, especially for mission-critical applications [7]. To satisfy the needs for certification, 

various anomaly detection methods can provide critical information for AM component 

certification, where different inspection techniques can be adopted to identify and characterize the 

critical flaws (e.g., porosity, and crack) in the fabricated component [8],[9].  

In the DED process, the thermal history is capable of characterizing process dynamics to 

predict material microstructure and its resulting mechanical properties. Various AM process 

modeling studies focus on characterizing process thermal history. Some approaches characterize 

the thermal history using finite element models (FEM) [10], [11]. However, they are usually 

extremely computationally expensive, highly dependent on the design geometry, and very 
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cumbersome to capture process uncertainty [4]. Additionally, notable advancements of sensor 

technologies have enabled in-situ monitoring and anomaly detection towards component 

certification for metal-based AM [4], [12], [13]. Most approaches for in-situ AM process 

monitoring are performed through the feature extraction from thermal images [13]–[15]. 

Alternatively, the layer-wise thermal image series can capture the complete spatiotemporal 

information in a layer-wise manner, which is more robust for anomaly detection of the fabricated 

parts. However, in most studies, only local features extracted from individual thermal images are 

considered, and those approaches cannot be directly applied to layer-wise certification, and the 

key reasons include: 1) the thermal distribution of different layers varies continuously (i.e., 

mushroom effect), and thus it is difficult to establish one benchmark distribution for all the layers 

in one build [4]; 2) given a complicated component, the thermal behavior also varies as a function 

of the printing path, which needs to be accounted for in the anomaly detection method [16]; and 

3) the state-of-the-art approaches are usually purely data-driven and thus do not directly quantify 

the morphological dynamics of melt pools [17], [18], which often makes their anomaly detection 

models and results challenging to interpret.  

To fill these gaps, a new in-situ layer-wise AM anomaly detection method is proposed by 

characterizing the morphological dynamics of the melt pools and heat affected zones (HAZs) 

which are segmented based on specific temperature ranges. In this study, the optimal transport 

problems are leveraged to formulate the morphological dynamics, and a new Wasserstein distance-

based transition metric system is developed to characterize the temporal variation in the melt pool 

and HAZ morphologies, respectively. Subsequently, several new layer-wise key process features 

are extracted and used for layer-wise anomaly detection, facilitated by a supervised machine 

learning framework.  



5 

 

The technical contributions of this paper are summarized as follows. First, it explicitly 

establishes a physics-informed formulation of layer-wise melt pool and HAZ morphology 

dynamics to characterize the stability of thermal history. Second, several novel layer-wise process 

key features are proposed for the layer-wise anomaly detection of the DED process based on the 

melt pool and HAZ transition metrics with validated better performance than the state-of-the-art 

approaches, providing critical information towards AM component certification. The impacts to 

the research community and industries are two-fold. For the AM quality control area, the newly 

proposed method opens the new venue of physics-informed data-driven anomaly detection for AM 

processes, which provides critical information for component-wise certification as well as guiding 

in-situ process control practices for AM quality improvement. For AM industrial practices, reliable 

layer-wise anomaly detection can significantly reduce the needs for post-manufacturing inspection 

for AM components certification, and ultimately accelerate the broader adoption of AM 

technologies in mission-critical applications.  

The remainder of the paper is organized as follows. A literature review on the state-of-the-art 

metal-based AM process anomaly detection techniques is summarized in section 2. The proposed 

methodology for developing the new melt pool and HAZ transition metrics and their properties, 

and layer-wise certification are introduced in section 3. In section 4, case studies of fabricating a 

thin wall and a cylindrical specimen using the DED process are presented, and the performance of 

the proposed method is compared with the benchmark methods. Finally, section 5 presents the 

conclusion and potential future research directions. 

2. Literature Review  

This section briefly summarizes the state-of-the-art methodologies for metal-based AM 

process anomaly detection. The major metrological technologies used for AM anomaly detection 
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are firstly summarized. Subsequently, the defect characterization and modeling techniques based 

upon the data collected using the metrological technologies are summarized. Lastly, the research 

gaps of machine learning based AM anomaly detection are briefly discussed. 

2.1 Metrological Techniques for AM Anomaly Detection 

Most data-driven AM anomaly characterization methods heavily rely on data collected from 

the metrological techniques used. In this section, a comprehensive review and comparison among 

different metrological techniques used for AM quality assurance and certification is conducted. 

The respective merits and limitations of the most widely used metrological approaches are briefly 

summarized in Table 1.  

All the metrological techniques can be briefly categorized into two types, in-situ and post-

manufacturing techniques (as illustrated in Table 1). In cases of in-situ sensing technologies, the 

measurements are taken from the system without interrupting or hampering the AM process. The 

post-manufacturing inspection technologies, on the other hand, can only be used after the 

completion of the part fabrication. Therefore, those in-situ metrological techniques can be used to 

develop real-time process monitoring and quality prediction models, and the post-manufacturing 

approaches can be used to provide the validation for those data-driven models. 

Table 1: Comparison of different metrological techniques 

Approach Data Description Merits Limitations 
Inspection 

Type 

 X-ray 

Computed 

Topography 

(XCT) 

The XCT generates 

3D images of a 

specimen by 

combining cross 

sectional image of  

the object to 

represent internal 

structure   non-

destructively [19], 

[20]. 

• Characterizes 

internal defects and 

structure of the 

object. 

• Generates 3D voxel 

geometry based on 

2D radial slices 

[19] 

• Time intensive 

and costly [20]. 

• Limited size of 

the inspected 

parts. 

• Require high 

capacity 

computer data 

storage [19]. 

Post-

manufacturing 

Magnetic 

Resonance 

The MRI captures 

the cross-sectional 
• Performs scanning 

without radiation. 

• Very expensive. Post-

manufacturing 
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Imaging 

(MRI) 

image of structure 

[21]. 
• Suitable for soft 

structure [21]. 

• Requires 

enclosed space 

due to loud noise 

[20]. 

Ultrasonic 

Testing (UT) 

UT generates phase 

velocity to measure  

flaws in the test 

specimen [22]. 

• Unhazardous 

process [20]. 

• Expensive 

technique. 

• Specimen 

surface needs to 

be accessible and 

smooth [22]. 

Post-

manufacturing 

Pyrometer 

 

Pyrometer captures 

in-situ temperature 

profile as a thermal 

image [12]. 

• Non-contact 

method. 

• Suitable for 

thermal hazardous 

environments [20]. 

 

• Noise affects 

measurement 

efficiency. 

• Loss of thermal 

radiation 

spectrum [20]. 

In-situ 

IR camera 

 

It uses infrared and 

the visual region to 

produce  image of 

the object [20]. 

• Captures thermal 

information with  

images [20]. 

• Range of 

emissivity and 

reflection affects 

accuracy [20]. 

In-situ 

High-speed 

camera 

It captures images of 

high-speed processes 

[20]. 

• Very high image 

capture rate [20]. 

• Lens distortion 

and non-

alignment of 

sensor generate 

erratic  image 

[20]. 

In-situ 

3D Scanner It collects point 

clouds – a type of 

high-density 

data in 3D 

coordinate systems 

in a fast and reliable 

manner [23][24]. 

• More sensitive to 

geometric 

variations of object 

[23]. 

• Only captures 

the 

morphological 

information of 

the scanned 

object [23]. 

In-situ 

 

2.2 Post-manufacturing Anomaly Characterization  

The defect characterization methods, including XCT, MRI, and UT, are widely used for post-

manufacturing anomaly characterization of AM parts [3]–[5]. The XCT technique is used in metal-

based AM to measure porosity occurrences, their spatial distribution, and severity in the build parts 

[12], [25]. The XCT data can be analyzed using the Computer Aided Quality (CAQ) technology 

to trace the porosity orientation in the printed parts [26]. Moreover, the XCT can be analyzed using 

machine learning tools for automatic segmentation of porosity from the scanned images of metallic 
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specimens [27]. Compared to other post-manufacturing methods, XCT can provide detailed 3D 

information even for complex geometries. However, the XCT process usually requires high energy 

and skilled operators to operate the machine. In addition, the XCT machine is subject to high 

capital cost, and the inspection process is extremely time consuming [20].  

MRI is used to track the overall structure of the AM parts using radio frequency pulses and 

powerful magnetic field [21]. The MRI systems can produce the cross-sectional images of the 

structures by capturing magnetic field intensity gradient without ionizing radiation as observed in 

XCT scans [20], [21]. However, in this approach, a complex shape may need to be tested for 

multiple times to obtain precise structural information, making it time consuming and complicated 

in data collection [20].  

The UT technology is also primarily used to characterize the internal structure of parts [28]. 

Basically, the ultrasonic phase velocity is used to characterize the defects like pores and voids in 

AM parts.  In some studies, during experimentation, the samples are printed with a porosity of up 

to 5-15%, and the output denotes that the measured phase velocity is inversely proportional to 

porosity [22], [29]. Moreover, the ultrasonic phase velocity can characterize defects and 

microstructures of AM parts. For example, changing process parameters, like hatch spacing and 

mechanical properties can affect the defect formation, leading to varying pores numbers, sizes and 

shapes, which can be captured by the UT technology [22]. As a non-destructive technique, UT 

measurements can be integrated with other monitoring techniques for developing a comprehensive 

evaluation system for AM parts. It is very important to maintain standard experimental procedures 

including voltage gain, pulse repetition frequency, and good surface finish otherwise few degrees 

of change can deviate important signal information [29]. 
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In summary, although the post-manufacturing approaches generate good information about the 

internal structure and surface properties of the AM parts, they are extremely high skill demanding, 

time consuming, and costly in nature [4], [20]. Therefore, it is challenging and usually impractical 

to extensively apply these post-manufacturing technologies in AM certification. However, the 

detailed information and superior accuracy of post-manufacturing approaches make them a good 

choice for providing limited labeling information for supervised and/or semi-supervised learning 

for in-situ AM certification.  

2.3 In-situ Anomaly Detection and Process Monitoring based on Image Analysis  

In-situ monitoring of the AM process can capture the process uncertainty and thus can certify 

the AM process/part in real time. For in-situ AM process monitoring and anomaly detection, 

multiple data sources of thermal imaging, optical imaging and 3D scanning can be used to capture 

the process information during the fabrication of AM parts. In this section, the recent works in 

anomaly detection are categorized based on the sensing technologies used, namely, thermal 

imaging, video streams, and 3D point cloud. 

The thermal characteristics are identified as one of the most informative process signals for the 

AM process dynamics. During the fabrication of AM parts, the thermal history can be used for 

process monitoring, microstructural assessment, and mechanical properties prediction [30]. In 

general, the AM process thermal history is captured as a high-resolution thermal image stream, 

which are subsequently used for developing data-driven approaches to model process dynamics 

for anomaly detection [12], [31]–[33]. In the specific case of metal-based AM, major proportion 

of the published works are conducted with thermal imaging systems, where the machine learning 

based models are developed for in-situ anomaly detection. In some studies, along with the thermal 

history, the morphological features of the melt pool (e.g., depth, size, and temperature distribution) 
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are extracted for anomaly detection [11], [12], [14]. Furthermore, instantaneous temperatures, melt 

pool orientations and aspect ratios are also estimated based on pyrometry observation for defect 

detection [34]. Besides these, tensor decomposition has been applied to the thermal images for 

dimension reduction, making it easy to model the process-defect relationship [4]. In addition, deep 

learning based models are developed to link the layer-wise images and the ground truth XCT data 

for autonomous anomaly detection and classification [35], [36]. Moreover, unsupervised anomaly 

detection method based on neural networks is also used for distance-based multivariate anomaly 

detection [37]. With only a few exceptions of layer-wise modeling proposed by Seifi et al. [4] and 

Esfahani et al. [16], most of the existing data-driven approaches focus on process monitoring and 

anomaly detection only considering individual thermal images, which fails to characterize layer-

wise process condition and part quality. However, quantifying the morphological variability of the 

multiple melt pools within a layer will provide a new process knowledge driven approach for 

anomaly detection. 

Another stream of research utilizes the in-situ optical video acquisition technique, which has 

become more accessible due to the availability of robust machine vision systems integrated with 

the AM process, enabling highly efficient online anomaly detection and process monitoring [38]–

[40]. Using the video as a spatiotemporal data stream, the integrated spatiotemporal decomposition 

and regression-based modeling is proposed for in-situ anomaly detection and monitoring [41]. In 

addition, this method can be applied to any image-based process monitoring applications where 

the foreground events are random and sparse, and the anomaly is spatially and temporally 

correlated. A recursive estimation procedure for real-time implementation of the algorithm is also 

proposed to handle the challenges of the high dimensionality of the video-image stream. However, 
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the spatial information of the video streams may not be sufficient to distinguish the anomalous 

events from other natural foreground [41], [42]. 

3D point cloud data are used for geometric deviation and surface defect detection of AM parts 

[23], [43]. The machine learning models can be trained with synthetic 3D point clouds rather than 

experimental data that can reduce training time and costs associated with many prints for each 

design [44]. Basically, 3D point clouds are high density data, and used to measure the geometric 

integrity of the AM products fabricated through a variety of processes. Specifically, dimensional 

or surface variation induced by miniature process shifts in AM system can be detected and 

characterized using point cloud based approaches [23]. For instance, the laser-scanned 3D point 

cloud data are used for identifying dimensional variation in AM parts [45]. Although the points 

clouds data are more capable of depicting structural information of the printed parts compared to 

low-dimensional signals, translating the 3D point clouds data into a model is very difficult due to 

the computational complexity and segmentation precision issues [45], [46]. 

2.4 Discussion of Research Gaps 

This subsection discusses the research gaps in the state-of-the-art machine learning-based 

anomaly detection methods for anomaly detection of metal-based AM processes. 

The machine learning models aim to capture the process-defect relationships to distinguish 

between anomaly-inducing samples and healthy samples, with various machine learning models 

being adopted [18], [33]. One group of mostly used machine learning approaches are the deep 

learning related methods, which include convolutional neural network [47][48][49], long-term 

recurrent convolutional networks [50], deep belief networks [51], and self-organizing maps [14]. 

Although these methods demonstrate great success in capturing the patterns to distinguish the 

anomalies from the healthy samples, they also have some major limitations when being applied to 
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layer-wise anomaly detection. First, these models need to be trained using a large training dataset, 

which can be quite costly for layer-wise anomaly detection. Second, most deep learning models 

demonstrate limited model interpretation since they are usually regarded as black-box models. 

Third, it is very challenging for the deep learning related methods to incorporate engineering 

domain knowledge, such as the layer-wise printing trajectory information, in the modeling and 

anomaly detection.  

In addition, various other methods first leverage feature extraction approaches to extract 

critical process features from the high-dimensional raw process signals, and subsequently apply 

various machine learning approaches. The low-dimensional features extracted include melt pool 

geometric features [52], melt pool boundary related morphological characteristics [13], melt pool 

surface temperature related features [14][53], tensor decomposition based features [4], [12], auto-

encoder based features [54] [55], and various summary statistics of the raw signals [56]. Once the 

features extracted,  various machine learning methods, such as support vector machines [4] [13] 

[32] [57], discriminative models [32] [56], and random forests [58], have been used for anomaly 

detection. These methods have demonstrated good performance in anomaly detection for 

individual observations (e.g., single melt pool images). However, they can be quite cumbersome 

when being applied to layer-wise anomaly detection for the following two main reasons. First, the 

thermal distribution of different layers in the same build is continuously varying, and thus it is 

difficult to establish one benchmark distribution for all the layers in one build. Second, given a 

complicated component, the thermal behavior also varies as a function of the printing path, which 

needs to be accounted for in the anomaly detection method.  

To fill the above-mentioned gaps, the proposed method aims to extract layer-wise process 

features that can account for the varying thermal distribution due to different layer change as well 
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as constantly changing printing trajectories. A new in-situ layer-wise AM anomaly detection 

method is proposed by characterizing the morphological dynamics of the melt pools and heat 

affected zones (HAZs) which are segmented based on specific temperature ranges. Subsequently, 

the Wasserstein distance (WD)-based morphological transition metric features can be extracted 

for layer-wise anomaly detection, and a support vector machine based supervised machine learning 

framework is leveraged for layer-wise anomaly detection. 

3. Methodology 

In this section, the proposed methodology is introduced. The melt pool and HAZ in the thermal 

images are firstly segmented, and subsequently the new melt pool/HAZ transition metrics are 

derived by leveraging the Wasserstein distance to quantify the perturbation in a series of melt 

pools/HAZs’ morphologies. The resulted transition metrics are used to extract critical layer-wise 

features for anomaly detection towards AM part certification. Finally, the supervised learning 

method is leveraged for layer-wise anomaly detection based on the labeling information generated 

by post-manufacturing inspection methods, such as X-ray CT. The overall steps of the proposed 

methodology are illustrated in Figure 1a, and the data visualization of multiple key steps are shown 

in Figure 1b-e. 
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Figure 1: The proposed method of in-situ layer-wise anomaly detection by characterizing 

morphology dynamics of melt pools and HAZs. 

 

3.1 Melt Pool and Heat Affected Zone Identification 

The thermal images are captured using a pyrometer camera that consists of a temperature 

measurement at each pixel within the field of view of the camera. To compress the thermal image 

data without losing useful information for anomaly detection, the widely used concept of heat 

affected zones is adopted in this paper together with the melt pool to provide more comprehensive 

information to characterize the observed temperature distribution. For the sake of clarify, the heat 

affected zone observed in the thermal image is defined as below. 

Definition I: Heat affected zone (HAZ).  In each thermal image, the region with temperature 

readings within a pre-specified temperature range of interests which is lower than the melting 

temperature (e.g., ℛ2) of the material is defined as the heat affected zone (HAZ).  

The melt pool and HAZ’s morphologies are primarily governed by two major factors, i.e., the 

printing path and the AM process stability. Therefore, to quantify the process stability, the printing 
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path induced variability needs to be firstly removed from the observed thermal history. During the 

AM fabrication, the instantaneous melt pool orientation is determined by the instantaneous printing 

direction, which can be calculated from the printing path in the g-code [16]. Therefore, the image 

rotation operation is leveraged to align the melt pools with consistent orientation in each layer, as 

illustrated in Figure 1(c). Let 𝐈𝑡 ∈ ℝ𝑟×𝑐 denote the original thermal image collected at time 𝑡, 

which is a matrix with dimension 𝑟 × 𝑐, where 𝑟 and 𝑐 are the numbers of rows and columns, 

respectively. Then, the rotated image can be obtained by Equation (1),                 

𝐗𝑡(𝜃) = 𝑅(𝐈𝑡 , (𝜃 − 𝛼𝑡)) (1) 

where 𝐗𝑡(𝜃) ∈ ℝ𝑟×𝑐 denotes the rotated image and the function 𝑅 denotes the image rotation 

operation given the pre-specified target orientation 𝜃. Moreover, 𝛼𝑡 represents the theoretical 

instantaneous orientation of the original melt pool (𝐈𝑡) that can be obtained from the g-code. 

Furthermore, it is also noted that the selection of 𝜃 may consider the major printing orientation in 

the specific layer to minimize the rotation operations needed. As a result of the rotation operations, 

the variability of the aligned thermal images (i.e., 𝐗𝑡(𝜃)) is mainly determined by the AM process 

variability. 

Subsequently, the melt pools and HAZs are obtained by segmenting 𝐗𝑡(𝜃) based on the 

corresponding temperature ranges of interests, as presented in Equation (2). 

(𝐗𝑘
𝑡 )𝑎,𝑏 = {

(𝐗𝑡(𝜃))
𝑎,𝑏

,  if (𝐗𝑡(𝜃))
𝑎,𝑏

∈ ℛ𝑘 

0,                   if (𝐗𝑡(𝜃))
𝑎,𝑏

∉ ℛ𝑘

, 𝑘 = 1,2 (2) 

where 𝐗1
𝑡 ∈ ℝ𝑟×𝑐 denotes melt pool region in which (∙)𝑎,𝑏 representing the entry at the 𝑎-th row 

and 𝑏-th column (𝑎 = 1,2, … , 𝑟 and 𝑏 =  1,2, … , 𝑐) with ℛ1 = [𝑇𝑚, +∞) and 𝑇𝑚 is the melting 

temperature of the feedstock material. In addition, 𝐗2
𝑡 ∈ ℝ𝑟×𝑐 denotes HAZ region with ℛ2 =

[𝑇0, 𝑇𝑚). 
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3.2 Melt Pool and HAZ Transition Metrics and their Properties 

A new transition metric system for both melt pools and HAZs is developed by leveraging the 

Wasserstein distance formulation. The newly developed transition metrics are introduced as below.  

Definition II: Global Transition Metric (GTM). The GTM, denoted as GTM(𝐗𝑘
𝑡 , 𝐗𝑘

𝑡+1), 

quantifies the global mean transition between consecutive melt pools/HAZs, and can be thus 

calculated from the absolute difference between the total summation of the two consecutive melt 

pools/HAZs, i.e., 𝐗𝑘
𝑡  and 𝐗𝑘

𝑡+1, as shown in Equation (3), 

GTM(𝐗𝑘
𝑡 , 𝐗𝑘

𝑡+1) = |𝟏𝑟
𝑇𝐗𝑘

𝑡 𝟏𝑐 − 𝟏𝑟
𝑇𝐗𝑘

𝑡+1𝟏𝑐| (3)       

where 𝟏𝑣 represents a 𝑣 × 1 vector of ones, and thus 𝟏𝑟
𝑇𝐗𝑘

𝑡 𝟏𝑐 equals to the sum of all the entries 

in 𝐗𝑘
𝑡 . 

Definition III: Morphological Transition Metric (MTM). The MTM focuses on the 

instantaneous morphological changes between consecutive melt pools/HAZs. After removing the 

effect of GTM, the normalized melt pools/HAZs can be generated as show in Equation (4).  

𝐙𝑘
𝑡 =  𝐗𝑘

𝑡 (𝟏𝑟
𝑇𝐗𝑘

𝑡 𝟏𝑐)⁄  (4) 

where 𝐙𝑘
𝑡 ∈ ℝ𝑟×𝑐  denotes the normalized HAZ with 𝑘-th temperature range ℛ𝑘. The normalized 

melt pools/HAZs are used to develop Wasserstein distance based on the optimal transport 

formulation. To better illustrate the formulation of the optimal transport problem, the 

terminologies of weight, flow, and work are defined as below. 

Definition IV: Weight. The pixel-wise values in the normalized melt pools/HAZ 𝐙𝑘
𝑡  are defined 

as the weight, denoted as 𝑤𝑘,𝑖
𝑡 , where 𝑖 is the one-dimensional index in matrix 𝐙𝑘

𝑡  and 𝑖 =

1,2, … , 𝑟𝑐. In addition, it denotes the normalized temperature value in the melt pools/HAZs. 
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Definition V: Flow. The flow, denoted as 𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1) = [𝒻𝑖𝑗
𝑡,𝑡+1]

𝑟𝑐×𝑟𝑐
, represents the pixel-

wise weight transport from 𝐙𝑘
𝑡  to 𝐙𝑘

𝑡+1 to achieve the identical normalized melt pools/HAZs, as 

illustrated in Figure 2. Here,  𝑟𝑐  is the total number of pixels in 𝐙𝑘
𝑡  and 𝐙𝑘

𝑡+1.  

 

Figure 2: Visualization of flow 𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1), with 𝒻𝑖𝑗
𝑡,𝑡+1

 denoting the transport from the 𝑖-th 

pixel of 𝐙𝑘
𝑡  to the 𝑗-th pixel of 𝐙𝑘

𝑡+1. 

Definition VI: Work. The work resulted from a feasible flow 𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1) in matching 𝐙𝑘
𝑡  and 

𝐙𝑘
𝑡+1 is defined as below. 

Work(𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1)) = tr(𝐃(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1)𝑇𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1)) (5) 

where 𝐃(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1) = [‖𝒖𝑘,𝑖
𝑡 − 𝒖𝑘,𝑗

𝑡+1‖]
𝑟𝑐×𝑟𝑐

 represents the Euclidean distance matrix between 

individual pixels in 𝐙𝑘
𝑡  and 𝐙𝑘

𝑡+1, where 𝒖𝑘,𝑖
𝑡 ∈ ℝ1×2 represents the 2D coordinates of the 𝑖-th pixel 

in 𝐙𝑘
𝑡 , and 𝒖𝑘,𝑗

𝑡+1 ∈ ℝ1×2 represents the 2D coordinates of the 𝑗-th pixel in 𝐙𝑘
𝑡+1 (𝑖 and 𝑗 = 1, … , 𝑟𝑐). 

For clarification purpose, a simple demonstrative example with two simple HAZs along with the 

flow and distance matrix between them is presented in Figure 3 to illustrate the definition of 

different matrices in the computation of work.  
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Figure 3: Visualization of numerical example for computation of work. 

 

The MTM is determined by the optimal flow from 𝐙𝑘
𝑡  to 𝐙𝑘

𝑡+1 with the minimum work required 

to match between the two normalized melt pools/HAZs, which can be obtained by solving the 

optimization problem as illustrated in Table 2.  

Table 2: Formulation for optimal flow from 𝐙𝑘
𝑡  to 𝐙𝑘

𝑡+1 

MTM𝑘
𝑡,𝑡+1 = min

𝓕(𝐙𝑘
𝑡 ,𝐙𝑘

𝑡+1)
Work (𝓕(𝐙𝑘

𝑡 , 𝐙𝑘
𝑡+1)) 

Subject to 

Non-negativity 𝒻𝑖𝑗
𝑡,𝑡+1  ≥ 0        ∀𝑖 = 1, … , 𝑟𝑐;  ∀𝑗 = 1, … , 𝑟𝑐 (6) 

Upper bounds of flow 

 
∑ 𝒻𝑖𝑗

𝑡,𝑡+1 = 𝑤𝑘,𝑗
𝑡+1𝑟𝑐

𝑖=1     ∀𝑗 = 1, … , 𝑟𝑐  (7) 

∑ 𝒻𝑖𝑗
𝑡,𝑡+1 = 𝑤𝑘,𝑖

𝑡𝑟𝑐
𝑗=1       ∀𝑖 = 1, … , 𝑟𝑐  (8) 

 

where the objective function is inspired by the Wasserstein distance, which is the minimum 

necessary work to transport weight from 𝐙𝑘
𝑡  to match 𝐙𝑘

𝑡+1. Equation (6) enforces non-negativity 

requirements to each entry in 𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1) (i.e., 𝒻𝑖𝑗
𝑡,𝑡+1

). Equation (7) and (8) specify the upper 

bounds of the total incoming and outgoing flow, respectively. More specifically, the constraint (7) 
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signifies that the total weight in 𝐙𝑘
𝑡  matched to the 𝑗-th pixel in 𝐙𝑘

𝑡+1 does not exceed 𝑤𝑘,𝑗
𝑡+1, and 

similarly the constraint (8) ensures that the total weight in 𝐙𝑘
𝑡+1 matched from the 𝑖-th pixel in 𝐙𝑘

𝑡  

does not exceed 𝑤𝑘,𝑖
𝑡 . The formulated MTM metric is based on the Wasserstein distance with equal 

weight distributions, and the weight flows from one distribution to match with the weight of 

another distribution.  

The rationale of using the WD-based metric is firstly due to its great flexibility in accurately 

capturing the morphological dynamics in a series of melt pools and HAZs [59]. The extracted 

GTM and MTM features can be used to characterize the instantaneous change of melt pool and 

HAZ morphologies which are closely related to AM process stability. Furthermore, the extracted 

GTM and MTM features also demonstrate the rotation-invariant property, as shown below. This 

favorable property makes it possible to establish one benchmark distribution for all the layers with 

completely different printing trajectories.  

Proposition: Both GTM and MTM are melt pool rotation-invariant metrics.  

Proof: For a given pair of (𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1), denote the optimal solution of Table 2 as 𝓕∗. Consider 

the case that (𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1) rotates with an angle 𝛼, and denote it as (𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1) =

(𝐙𝑘
𝑡 𝐑(𝛼), 𝐙𝑘

𝑡+1𝐑(𝛼)), where 𝐑(𝛼) is  the rotation matrix. If MTM is melt pool rotation-variant, 

then 𝓕∗ will not be the optimal solution of Table 2 with the input (𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1). Assume the optimal 

solution is 𝓕̃∗, then we can have 

Work (𝓕̃∗(𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1)) < Work (𝓕∗(𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1)) = Work(𝓕∗(𝐙𝑘
𝑡 𝐑(𝛼), 𝐙𝑘

𝑡+1𝐑(𝛼))) 

According to the Definition V, for a given flow 𝓕, 𝓕(𝐙𝑘
𝑡 𝐑(𝛼), 𝐙𝑘

𝑡+1𝐑(𝛼)) = 𝓕(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1). Thus,  

Work(𝓕∗(𝐙𝑘
𝑡 𝐑(𝛼), 𝐙𝑘

𝑡+1𝐑(𝛼))) = Work(𝓕∗(𝐙𝑘
𝑡 , 𝐙𝑘

𝑡+1)) ≤ Work (𝓕̃∗(𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1)) 
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which indicates Work (𝓕̃∗(𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1)) < Work (𝓕̃∗(𝐙̃𝑘
𝑡 , 𝐙̃𝑘

𝑡+1)). This, however, is impossible. 

Thus, based on the proof by contradiction, MTM is melt pool rotation-invariant.  

Similar proof can be applied to GTM. This rotation-invariant property for the proposed GTM 

and MTM metrics ensures that layers with different major printing orientations can share the same 

benchmark for AM layer-wise certification. 

To find the MTM feature values, the optimization problem in Table 2 can be solved effectively 

by an efficient numerical algorithm (i.e., Algorithm 2M) proposed in [60], which is a cascadic 

multilevel primal-dual based algorithm. In this algorithm, the WD metrics are iteratively updated, 

where the coarse grids are used as the initial solution for solving the problem using the finer grids. 

This iterative mechanism significantly reduces the computational time to find the optimal solution. 

More specifically, the normalized melt pools/HAZs, denoted as 𝐙𝑘
𝑡  and 𝐙𝑘

𝑡+1 in Table 2, are 

corresponding to two distributions between which to calculate the WD metrics in [60], and the 

feature MTM𝑘
𝑡,𝑡+1 in our problem is corresponding to the optimal transport between 𝐙𝑘

𝑡  and 𝐙𝑘
𝑡+1. 

Once defining the initiation parameters including grid step size, number of grid levels, and the 

sequence of stopping tolerance, the optimal solution is computed following an iterative approach 

with different sizes of the grids. The computational cost of this algorithm in the proposed 

framework will be examined in the case study (Sec. 4).  

3.3 Layer-wise Feature Extraction for Process Anomaly Detection 

Based on the new transition metrics developed, the layer-wise features can be extracted. Since 

the transition metrics characterize the morphological dynamics of the melt pools and HAZs, their 

values should be very small when the AM process is healthy, and relatively large when there is a 

process anomaly. As a result, the maximum values of both features are used to quantify the 

morphology series' most extreme change for layer-wise anomaly detection. This is similar to the 
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idea of using group control chart in statistical quality control in order to control the type I error 

rate when simultaneously monitoring multiple data streams [61], [62]. Therefore, the maximum of 

all the GTM(𝐗𝑘
𝑡 , 𝐗𝑘

𝑡+1) values is captured from each layer, and thus the relevant layer-wise feature 

ℓGTM𝑙
𝑘 can be calculated in Equation (9), 

ℓGTM𝑙
𝑘 = max

𝑡∈𝒯𝑙

{GTM(𝐗𝑘
𝑡 , 𝐗𝑘

𝑡+1)}      (𝑘 = 1,2)   (9) 

where 𝒯𝑙 represents the set of time stamps within the build of the 𝑙-th layer. 

In addition, the layer-wise melt pools/HAZs morphological dynamics can be characterized by 

the maximum of the multiple MTM values extracted from the consecutive melt pools/HAZs in the 

same layer, denoted as ℓMTM𝑙
𝑘, as calculated in Equation (10), 

ℓMTM𝑙
𝑘 = max

𝑡∈𝒯𝑙

{MTM𝑘
𝑡,𝑡+1}    (𝑘 = 1,2) (10)       

where 𝒯𝑙 represents the set of time stamps that are within the build of the 𝑙-th layer.  

3.4 In-situ Layer-wise Anomaly Detection based on Supervised Learning 

Supervised learning algorithms can be used to establish a distinction between healthy and 

unhealthy layers based on the layer-wise features extracted. The post-manufacturing XCT 

scanning can be used to obtain structural quality information of each layer, providing the ground 

truth information to the data set. For layer-wise anomaly detection, one layer is labeled as abnormal 

if there is at least one porosity observed. It's worth noting that all different machine learning 

methods can be used to detect layer-wise anomalies. The support vector machine (SVM) technique 

is adopted in this work, because of the flexibility it can offer in learning the decision boundaries 

by varying kernel functions. The SVM classifier can be trained by finding the hyperplane that best 

separates all data points of distinct classes using a training data set with labeling information, and 

the complexity of the hyperplane can be determined through cross validation [63]. In summary, 

the newly proposed in-situ layer-wise anomaly detection algorithm is illustrated in Table 3. 
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Table 3: The proposed algorithm for in-situ layer-wise anomaly detection for DED processes. 

Input: Layer-wise original thermal images {𝐈𝑡 ∈ ℝ𝑟×𝑐},  where 𝑡 ∈ 𝒯𝑙, and 𝒯𝑙 represents the set of 

time stamps that are within the build of the 𝑙-th layer. 

Output: In-situ layer-wise anomaly detection. 

 

Algorithm: 

Step 1 (Melt pool & HAZ identification): 

1.1: Rotate original thermal images as 𝐗𝑡(𝜃) ∈ ℝ𝑟×𝑐 based on the Equation (1). 

1.2: Generate melt pools/HAZs by segmenting 𝐗𝑡(𝜃) as 𝐗𝑘
𝑡 ∈ ℝ𝑟×𝑐  by using Equation (2) (𝑘 =

1,2). 

Step 2 (Melt pool & HAZ transition metrics calculation): 

2.1: Calculate the GTM(𝐗𝑘
𝑡 , 𝐗𝑘

𝑡+1) values based on Equation (3). 

2.2: Calculate the MTM𝑘
𝑡,𝑡+1

 values by solving the optimization problem in Table 2. 

Step 3 (Layer-wise feature extraction): 

3.1: Compute the ℓGTM𝑙
𝑘 value using the Equation (9). 

3.2: Compute the ℓMTM𝑙
𝑘 value using Equation (10). 

Step 4 (Supervised learning for in-situ layer-wise anomaly detection): 

4.1: Train the SVM model using ℓGTM𝑙
𝑘, ℓMTM𝑙

𝑘 (𝑘 = 1,2) and layer-wise binary response 

variable of training dataset. 

4.2: Assess the average performance of the model based on the test data set. 

 

4. Case Study 

In this section, the proposed in-situ layer-wise anomaly detection method is validated based on 

the data collected from two specimens using the DED process, which is one of the most common 

techniques to perform powder-based DED. 

4.1 Experimental Setup   

The machine used for data collection was the LENS 750 machine manufactured by 

OPTOMEC, and the machine is equipped with the 1kW Nd:YAG laser [16]. To evaluate the 

robustness of the proposed method, two specimens with different geometries (i.e., one thin wall 

and one cylindrical shaped part) were fabricated using the Ti–6Al–4V powder as the feedstock 

material. The process parameters used for both specimen fabrication are listed in Table 4 [16].  
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Table 4: Process parameters for fabricating the specimens. 

Parameters Thin wall Cylinder 

Scan speed 30 inch/min 40 inch/min 

Powder feed rate 4 rpm 3 rpm 

Hatch spacing 0.02 inch 0.02 inch 

Power 300 W 300 W 

Layer thickness 0.02 inch 0.015 inch 

Nozzle diameter 0.035 inch 0.035 inch 

Number of thermal images captured 1557 2827 

Number of layers  60 69 

Number of abnormal layers  26 58 

Infill pattern - 
Unidirectional  

(180° rotation between layers) 

 

For process data collection, the dual-wavelength coaxial pyrometer (Stratonics, Inc.) captures 

the temperature distribution from the top view of melt pool. The key benefit of using the pyrometer 

camera is that the image data collected demonstrate reduced motion blur, as it has a specific 

exposure period (2.0274 ms) with the nominal image collection rate of approximately 6.4 Hz. A 

brief sketch of the experimental setup with the sensor positioning is illustrated in Figure 4.  

  

Figure 4: Experimental Setup. 
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Each observed thermal image is in the form of a 752×480 matrix, which consists of the 

temperature values at each pixel within the range of 1000-2500 °C. During the thin wall 

fabrication, the captured melt pools in each layer represent identical orientation, due to its 

unidirectional printing path. However, for the cylindrical specimen, the layer-wise melt pools 

demonstrate varying orientations due to the complex printing paths. Furthermore, using the XCT 

inspection (Skyscan 1172) technology, the porosities in the printed specimens were characterized, 

and thus the layer-wise process data were labeled using the porosity characterization results [14]. 

All the layers that include at least one pore with diameter larger than 0.05 mm were labeled as 

unhealthy [3]. 

4.2 Benchmark Method Selection  

Two benchmark methods of layer-wise AM process anomaly detection are selected to compare 

with the proposed method. The first benchmark method was the layer-wise anomaly detection 

model proposed by Seifi et al. [3], which leveraged multi-linear principal component analysis 

(MPCA). In this approach, the MPCA algorithm was used for dimensionality reduction for each 

single thermal image, and then the volume of the convex hull formed by the extracted MPCs from 

each layer was employed as a layer-wise process feature for anomaly detection. In addition, the 

maximum norm value of the residual from the MPCA modeling within a layer was used as a 

secondary layer-wise feature during classification for anomaly detection. The effectiveness of this 

benchmark method was validated by comparing with the traditional machine learning driven 

anomaly detection approaches.     

More recently, in-situ layer-wise certification of Direct Laser Deposition (DLD) process based 

on image series analysis was proposed by Esfahani et al. [16]. This method leverages the image 

registration technique to characterize the thermal history dynamics in the layer-wise thermal 
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images. Moreover, the Gaussian process (GP) models were employed to characterize the 

unexplained variation component by the image registration operation. The effectiveness of this 

benchmark method was validated by comparing with the approach proposed by Seifi et al. [4].     

4.3 Results and Discussions 

In this study, to compare the effectiveness of the proposed and the benchmark methods, both 

thin wall and cylinder data set were randomly split into the training layer set (80%) and testing 

layer set (20%), and 200 replications of this evaluation were performed to assess the average 

performance. Basically, using the training layer set the Gaussian SVM classification model can be 

trained when the GTM and MTM features have been defined, which can then be used to predict 

the labels of newly observed layers. Specifically, the classifier is fed a vector of response labels (0 

for healthy, 1 for unhealthy) and a matrix of four predictors: the GTM and MTM extracted from 

the melt pool and tail region, respectively. The features of GTM and MTM are associated with the 

segmented melt pools/HAZs of thermal images, and the selection of temperature range of interests 

to segment the HAZ affects the extracted features and the prediction accuracy. In this case, the 

melt pool regions were segmented based on the melting point of the feedstock material and above, 

i.e., ℛ1 = [1636, +∞), and the HAZs were segmented considering some specific temperature to 

the melting point of the feedstock material, i.e., ℛ2 = [𝑇0, 1636), which can define as the tail 

region of the melt pool.  

The lower bound 𝑇0 of the tail region temperature range can be considered as the tuning 

parameter in the proposed approach. By tuning the value of 𝑇0, the effect of different temperature 

ranges of interests on the extracted features in both the thin wall and cylindrical specimen can be 

depicted as shown in the Figure 5. It can be observed that different values of 𝑇0 lead to different 
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distinguishability between the healthy and unhealthy layers for both specimens, demonstrating the 

necessity of parameter tuning for the lower bound temperature 𝑇0. 

 
Figure 5: Extracted layer-wise features of ℓ𝐺𝑇𝑀 (𝑥-axis) vs ℓ𝑀𝑇𝑀 (𝑦-axis) for different 

temperature ranges of interest, where blue circles denote healthy layers and red crosses denote 

unhealthy layers. 

Four key performance metrics (i.e., accuracy, recall, precision, and Fscore) are used to evaluate 

both methods given the same data set. The four metrics are commonly used in evaluating 

supervised learning methods [4], [13], [16], and are defined as below. 

Accuracy =
TP+TN

TP+FP+TN+FN
  (11) 

Recall =
TP

TP+FN
  (12) 

Precision =
TP

TP+FP
  (13) 

Fscore = 2 ×
Precision×Recall

Precision+Recall
  (14) 

where TP, TN, FN, and FP denote True-Positive, True-Negative, False-Negative and False-

Positive, respectively, which are the key elements in confusion matrix. More specifically, True-

Positive (TP) denotes accurate prediction of unhealthy layers, whereas True-Negative (TN) 

represents the layers accurately predicted as healthy. In addition, False-Negative (FN) denotes the 
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unhealthy layers predicted inaccurately as healthy, while False-Positive (FP) represents the 

inaccurate prediction of healthy layers as unhealthy. Moreover, the Fscore represents the harmonic 

mean of precision and recall, which is used in this paper as the key indicator for performance 

comparison.  

As mentioned above the tuning parameter affects the extracted features and subsequently the 

prediction results. Therefore, by tuning the temperature range of the tail region, the performance 

metrics are listed as shown in the Table 5, where ℛ1 is always fixed and ℛ2 changes as the 𝑇0 

value is tuned. From Table 5, it is observed that in the case of thin wall, 𝑇0 = 1000℃ (bolded) 

provides the highest Fscore value. Furthermore, in the case of cylinder, the Fscore value shows the 

best results when 𝑇0 = 1400℃ (bolded).  

Table 5: Performance comparison by tuning temperature range of interest (ℛ2). 

Specimen Metric 
𝑇0 

1000℃ 1100℃ 1200℃ 1300℃ 1400℃ 1500℃ 

Thin wall 

Accuracy  96.00% 95.95% 96.65% 94.45% 88.35% 92.95% 

Precision 96.80% 97.70% 97.35% 92.42% 87.96% 98.03% 

Recall 99.82% 93.77% 94.04% 95.64% 89.37% 86.11% 

F-score 96.04% 95.10% 94.85% 93.18% 87.42% 90.33% 

Cylinder 

Accuracy  84.73% 84.09% 80.73% 83.00% 86.05% 83.00% 

Precision 82.50% 84.27% 81.55% 81.68% 83.27% 82.24% 

Recall 97.91% 97.88% 96.83% 99.81% 100.00% 98.31% 

F-score 90.07% 90.27% 88.13% 89.52% 90.67% 89.23% 

 

The performance metrics of the proposed and benchmark methods are summarized in Table 6. 

Furthermore, a number of sample size values were explored to examine the effects of the sample 

size used in fitting the GP model for the error matrix in Esfahani et al. [16] for a fair comparison. 

When comparing the Fscore, it is observed that the proposed method outperforms both benchmark 

methods for the thin wall specimen. Moreover, for the cylindrical specimen, the proposed method 

outperforms Seifi et al. [4] in all four metrics, and demonstrates comparable (or slightly better) 
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Fscore results with Esfahani et al. [16]. The good performance of the proposed method is mainly 

due to its joint consideration of the layer-wise melt pools/HAZs morphological dynamics. In 

addition, given the robustness in the performance of the proposed method in both thin wall and 

cylindrical specimens, the proposed method can be applied for in-situ layer-wise anomaly 

detection for intricate shaped parts. 

Table 6: Performance comparison summary. 

 

Specimen 
Metric 

Proposed 

Method  

Seifi et 

al. [4] 

Esfahani et al. [16] 

s=50 s=100 s=150 s=200 s=300 s=400 

Thin wall Accuracy  96.38% 94.67% 93.54% 93.17% 93.00% 93.92% 93.12% 93.25% 

Precision 97.36% 95.91% 94.75% 91.88% 91.63% 93.64% 91.85% 92.50% 

Recall 94.47% 90.98% 91.20% 93.58% 93.58% 93.68% 93.68% 93.58% 

F-score 95.34% 93.24% 92.36% 92.10% 91.97% 93.06% 92.10% 92.38% 

Cylinder Accuracy  85.07% 73.60% 84.29% 84.21% 83.96% 83.93% 83.11% 83.21% 

Precision 84.71% 81.46% 84.97% 84.96% 84.86% 84.85% 84.76% 84.78% 

Recall 100.00% 88.05% 99.18% 98.94% 98.72% 98.68% 97.76% 97.89% 

F-score 91.56% 84.12% 91.26% 91.18% 91.02% 91.00% 90.52% 90.59% 

 

There are three possible reasons for the classification errors observed in the case study. Firstly, 

the discrete data sampling of the pyrometer camera may potentially lead to a lot of missing data in 

the thermal data collection, resulting in missing defect inducing process information. Second, the 

characterization of XCT scanning may be subject to noise and error, leading to occasional labeling 

errors in the data set. Third, the proposed in-situ layer-wise anomaly detection approach ignores 

the impacts of re-melting between consecutive layers and adjacent tracks, which may eliminate 

some porosities formed in the preceding layer/track during subsequent layer/track deposition. 

The average computational efficiency of the proposed method is illustrated in Figure 6, where 

the average computation time and the average build time for each layer is compared for both 

specimens. The processor used to implement the proposed method was Intel® Core™ Processor 

i7-7700 CPU @ 3.60GHz. It is worth noting that the average computation for the proposed method 

takes significantly shorter time than its corresponding layer-wise build time for both thin wall and 
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cylinder specimen. As a result, the proposed method can facilitate layer-wise AM certification in 

real time, potentially enabling real-time process control for quality improvement.  

 

Figure 6: Layer-wise average computation time of the proposed method. 

5. Conclusion and Future Work 

The quality issues are the major barriers for wider and sustainable industrial adoption of the 

AM technology, and there is a need of reliable techniques to detect quality issues (i.e., porosity, 

mini cracks, lack of fusion, etc.) in AM processes. Different approaches like FEMs are used to 

characterize the anomaly based on thermomechanical relationship, but they cannot realistically 

capture process uncertainty. These limitations are addressed by the data-driven approaches where 

usually the individual thermal images of the melt pools are used for local anomaly prediction. Few 

approaches are proposed for layer-wise anomaly detection, and the extracted features cannot 

explicitly characterize melt pool/HAZ morphological dynamics.  

This paper proposes a novel formulation of melt pools and HAZs morphological dynamics 

through which the new melt pool/HAZ transition metrics are derived. Furthermore, novel layer-
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wise process key features are derived from the characterization of melt pools/HAZ morphological 

dynamics for AM layer-wise anomaly detection. Specifically, morphological transition between 

consecutive melt pools/HAZs along with the global temperature shift are extracted as the novel 

features. Based on the extracted layer-wise features, the SVM classification approach is used for 

in-situ layer-wise anomaly detection. The specimens of a thin wall and a cylinder were fabricated 

using the DED process to validate the proposed methodology. The anomaly detection accuracy of 

the proposed model is reasonably high and outperforms both benchmark methods, which are both 

state-of-the-art AM layer-wise anomaly detection methods.  

For future research, a couple of interesting topics remain open. First, the inter-layer and inter-

track dependence during fabrication can be characterized to quantify the re-melting effect between 

the adjacent layers/tracks. Second, a part certification framework can be established to quantify 

the size and severity of the defects and their impact to the part functionality. Finally, layer-wise 

process control algorithms can be used in conjunction with the in-situ monitoring scheme to adjust 

process parameters for quality improvement of the AM parts. 
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