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Abstract

Process uncertainty induced quality issue remains the major challenge that hinders the wider
adoption of additive manufacturing (AM). The defects occurred significantly compromise
structural integrity and mechanical properties of fabricated parts. Therefore, there is an urgent need
in fast, yet reliable AM component certification. Most finite element analysis related methods
characterize defects based on the thermo-mechanical relationships, which are computationally
inefficient and cannot capture process uncertainty. In addition, there is a growing trend in data-

driven approaches on characterizing the empirical relationships between thermal history and
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anomaly occurrences, which focus on modeling on an individual image basis to identify local
defects. Despite of their effectiveness in local anomaly detection, these methods are quite
cumbersome when applied to layer-wise anomaly detection. This paper proposes a novel in-situ
layer-wise anomaly detection method by analyzing the layer-by-layer morphological dynamics of
melt pools and heat-affected zones (HAZs). Specifically, the thermal images are firstly
preprocessed based on the g-code to assure unified orientation. Subsequently, the melt pool and
HAZ are segmented, and the global and morphological transition metrics are developed to
characterize the morphological dynamics. New layer-wise features are extracted, and supervised
machine learning methods are applied for layer-wise anomaly detection. The proposed method is
validated using the directed energy deposition (DED) process, which demonstrates superior
performance comparing with the benchmark methods. The average computational time is
significantly shorter than the average build time, enabling in-situ layer-wise certification and real-

time process control.
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morphological analysis, thermal history

1. Introduction

The metal-based additive manufacturing (AM) technologies have demonstrated their
significant potential by producing fully functional parts with reduced production time and costs
for low-volume and high-value complex-shaped components. The AM technologies provide the
opportunity to manufacture parts of diverse designs in both nonstandard and remote environments,

which is not feasible for conventional manufacturing processes. Moreover, AM is also capable of



reducing the overall time-to-market of new products by accelerating the in-house testing of the
designed prototypes prior to first market introduction [1][2]. The directed energy deposition (DED)
process is a widely used metal-based AM process with the capacity of product prototyping,
production, and component repair. During the fabrication, the feedstock material is deposited while
being melted and subsequently solidified on top of the previous layer to gradually form the final
geometry [3]. The high uncertainty in the DED process may lead to quality issues in the final parts,
including porosity, cracks, and lack of fusion [4]. These issues will significantly compromise the
mechanical properties and reliability of the fabricated AM components, hindering broader
adoption of DED technologies in various mission-critical applications. Therefore, there is an
urgent need in developing reliable certification methods to accelerate the scale up of DED
technologies [4], [5]-

AM component certification refers to evaluating the conformity of the component during or
after the fabrication based on the pre-established standards [6]. In practice, AM component
certification activities are essential to assure the trustworthiness and reliability of the AM
components, especially for mission-critical applications [7]. To satisfy the needs for certification,
various anomaly detection methods can provide critical information for AM component
certification, where different inspection techniques can be adopted to identify and characterize the
critical flaws (e.g., porosity, and crack) in the fabricated component [8],[9].

In the DED process, the thermal history is capable of characterizing process dynamics to
predict material microstructure and its resulting mechanical properties. Various AM process
modeling studies focus on characterizing process thermal history. Some approaches characterize
the thermal history using finite element models (FEM) [10], [11]. However, they are usually

extremely computationally expensive, highly dependent on the design geometry, and very



cumbersome to capture process uncertainty [4]. Additionally, notable advancements of sensor
technologies have enabled in-situ monitoring and anomaly detection towards component
certification for metal-based AM [4], [12], [13]. Most approaches for in-situ AM process
monitoring are performed through the feature extraction from thermal images [13]-[15].
Alternatively, the layer-wise thermal image series can capture the complete spatiotemporal
information in a layer-wise manner, which is more robust for anomaly detection of the fabricated
parts. However, in most studies, only local features extracted from individual thermal images are
considered, and those approaches cannot be directly applied to layer-wise certification, and the
key reasons include: 1) the thermal distribution of different layers varies continuously (i.e.,
mushroom effect), and thus it is difficult to establish one benchmark distribution for all the layers
in one build [4]; 2) given a complicated component, the thermal behavior also varies as a function
of the printing path, which needs to be accounted for in the anomaly detection method [16]; and
3) the state-of-the-art approaches are usually purely data-driven and thus do not directly quantify
the morphological dynamics of melt pools [17], [18], which often makes their anomaly detection
models and results challenging to interpret.

To fill these gaps, a new in-situ layer-wise AM anomaly detection method is proposed by
characterizing the morphological dynamics of the melt pools and heat affected zones (HAZs)
which are segmented based on specific temperature ranges. In this study, the optimal transport
problems are leveraged to formulate the morphological dynamics, and a new Wasserstein distance-
based transition metric system is developed to characterize the temporal variation in the melt pool
and HAZ morphologies, respectively. Subsequently, several new layer-wise key process features
are extracted and used for layer-wise anomaly detection, facilitated by a supervised machine

learning framework.



The technical contributions of this paper are summarized as follows. First, it explicitly
establishes a physics-informed formulation of layer-wise melt pool and HAZ morphology
dynamics to characterize the stability of thermal history. Second, several novel layer-wise process
key features are proposed for the layer-wise anomaly detection of the DED process based on the
melt pool and HAZ transition metrics with validated better performance than the state-of-the-art
approaches, providing critical information towards AM component certification. The impacts to
the research community and industries are two-fold. For the AM quality control area, the newly
proposed method opens the new venue of physics-informed data-driven anomaly detection for AM
processes, which provides critical information for component-wise certification as well as guiding
in-situ process control practices for AM quality improvement. For AM industrial practices, reliable
layer-wise anomaly detection can significantly reduce the needs for post-manufacturing inspection
for AM components certification, and ultimately accelerate the broader adoption of AM
technologies in mission-critical applications.

The remainder of the paper is organized as follows. A literature review on the state-of-the-art
metal-based AM process anomaly detection techniques is summarized in section 2. The proposed
methodology for developing the new melt pool and HAZ transition metrics and their properties,
and layer-wise certification are introduced in section 3. In section 4, case studies of fabricating a
thin wall and a cylindrical specimen using the DED process are presented, and the performance of
the proposed method is compared with the benchmark methods. Finally, section 5 presents the

conclusion and potential future research directions.

2. Literature Review

This section briefly summarizes the state-of-the-art methodologies for metal-based AM

process anomaly detection. The major metrological technologies used for AM anomaly detection



are firstly summarized. Subsequently, the defect characterization and modeling techniques based
upon the data collected using the metrological technologies are summarized. Lastly, the research
gaps of machine learning based AM anomaly detection are briefly discussed.

2.1 Metrological Techniques for AM Anomaly Detection

Most data-driven AM anomaly characterization methods heavily rely on data collected from
the metrological techniques used. In this section, a comprehensive review and comparison among
different metrological techniques used for AM quality assurance and certification is conducted.
The respective merits and limitations of the most widely used metrological approaches are briefly
summarized in Table 1.

All the metrological techniques can be briefly categorized into two types, in-situ and post-
manufacturing techniques (as illustrated in Table 1). In cases of in-situ sensing technologies, the
measurements are taken from the system without interrupting or hampering the AM process. The
post-manufacturing inspection technologies, on the other hand, can only be used after the
completion of the part fabrication. Therefore, those in-situ metrological techniques can be used to
develop real-time process monitoring and quality prediction models, and the post-manufacturing
approaches can be used to provide the validation for those data-driven models.

Table 1: Comparison of different metrological techniques

Approach Data Description Merits Limitations Insllf;lc)telon

X-ray The XCT generates Characterizes Time intensive Post-
Computed 3D images of a internal defects and and costly [20]. manufacturing
Topography | specimen by structure of the Limited size of
(XCT) combining cross object. the inspected

sectional image of Generates 3D voxel parts.

the object to geometry based on Require high

represent internal 2D radial slices capacity

structure non- [19] computer data

destructively [19], storage [19].

[20].
Magnetic The MRI captures Performs scanning Very expensive. | Post-
Resonance the cross-sectional without radiation. manufacturing
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Imaging image of structure e Suitable for soft e Requires

(MRI) [21]. structure [21]. enclosed space
due to loud noise
[20].
Ultrasonic UT generates phase e Unhazardous e Expensive Post-
Testing (UT) | velocity to measure process [20]. technique. manufacturing
flaws in the test e Specimen
specimen [22]. surface needs to

be accessible and
smooth [22].

Pyrometer Pyrometer captures e Non-contact e Noise affects In-situ
in-situ temperature method. measurement
profile as a thermal e Suitable for efficiency.
image [12]. thermal hazardous e [oss of thermal
environments [20]. radiation
spectrum [20].
IR camera It uses infrared and e Captures thermal e Range of In-situ
the visual region to information with emissivity and
produce image of images [20]. reflection affects
the object [20]. accuracy [20].
High-speed | It captures images of | e Very high image e Lens distortion In-situ
camera high-speed processes capture rate [20]. and non-
[20]. alignment of

sensor generate
erratic image

[20].
3D Scanner | It collects point e More sensitive to e Only captures In-situ
clouds — a type of geometric the
high-density variations of object morphological
data in 3D [23]. information of
coordinate systems the scanned
in a fast and reliable object [23].

manner [23][24].

2.2 Post-manufacturing Anomaly Characterization

The defect characterization methods, including XCT, MRI, and UT, are widely used for post-
manufacturing anomaly characterization of AM parts [3]-[5]. The XCT technique is used in metal-
based AM to measure porosity occurrences, their spatial distribution, and severity in the build parts
[12], [25]. The XCT data can be analyzed using the Computer Aided Quality (CAQ) technology
to trace the porosity orientation in the printed parts [26]. Moreover, the XCT can be analyzed using

machine learning tools for automatic segmentation of porosity from the scanned images of metallic



specimens [27]. Compared to other post-manufacturing methods, XCT can provide detailed 3D
information even for complex geometries. However, the XCT process usually requires high energy
and skilled operators to operate the machine. In addition, the XCT machine is subject to high
capital cost, and the inspection process is extremely time consuming [20].

MRI is used to track the overall structure of the AM parts using radio frequency pulses and
powerful magnetic field [21]. The MRI systems can produce the cross-sectional images of the
structures by capturing magnetic field intensity gradient without ionizing radiation as observed in
XCT scans [20], [21]. However, in this approach, a complex shape may need to be tested for
multiple times to obtain precise structural information, making it time consuming and complicated
in data collection [20].

The UT technology is also primarily used to characterize the internal structure of parts [28].
Basically, the ultrasonic phase velocity is used to characterize the defects like pores and voids in
AM parts. In some studies, during experimentation, the samples are printed with a porosity of up
to 5-15%, and the output denotes that the measured phase velocity is inversely proportional to
porosity [22], [29]. Moreover, the ultrasonic phase velocity can characterize defects and
microstructures of AM parts. For example, changing process parameters, like hatch spacing and
mechanical properties can affect the defect formation, leading to varying pores numbers, sizes and
shapes, which can be captured by the UT technology [22]. As a non-destructive technique, UT
measurements can be integrated with other monitoring techniques for developing a comprehensive
evaluation system for AM parts. It is very important to maintain standard experimental procedures
including voltage gain, pulse repetition frequency, and good surface finish otherwise few degrees

of change can deviate important signal information [29].



In summary, although the post-manufacturing approaches generate good information about the
internal structure and surface properties of the AM parts, they are extremely high skill demanding,
time consuming, and costly in nature [4], [20]. Therefore, it is challenging and usually impractical
to extensively apply these post-manufacturing technologies in AM certification. However, the
detailed information and superior accuracy of post-manufacturing approaches make them a good
choice for providing limited labeling information for supervised and/or semi-supervised learning
for in-situ AM certification.

2.3 In-situ Anomaly Detection and Process Monitoring based on Image Analysis

In-situ monitoring of the AM process can capture the process uncertainty and thus can certify
the AM process/part in real time. For in-situ AM process monitoring and anomaly detection,
multiple data sources of thermal imaging, optical imaging and 3D scanning can be used to capture
the process information during the fabrication of AM parts. In this section, the recent works in
anomaly detection are categorized based on the sensing technologies used, namely, thermal
imaging, video streams, and 3D point cloud.

The thermal characteristics are identified as one of the most informative process signals for the
AM process dynamics. During the fabrication of AM parts, the thermal history can be used for
process monitoring, microstructural assessment, and mechanical properties prediction [30]. In
general, the AM process thermal history is captured as a high-resolution thermal image stream,
which are subsequently used for developing data-driven approaches to model process dynamics
for anomaly detection [12], [31]-[33]. In the specific case of metal-based AM, major proportion
of the published works are conducted with thermal imaging systems, where the machine learning
based models are developed for in-situ anomaly detection. In some studies, along with the thermal

history, the morphological features of the melt pool (e.g., depth, size, and temperature distribution)



are extracted for anomaly detection [11], [12], [ 14]. Furthermore, instantaneous temperatures, melt
pool orientations and aspect ratios are also estimated based on pyrometry observation for defect
detection [34]. Besides these, tensor decomposition has been applied to the thermal images for
dimension reduction, making it easy to model the process-defect relationship [4]. In addition, deep
learning based models are developed to link the layer-wise images and the ground truth XCT data
for autonomous anomaly detection and classification [35], [36]. Moreover, unsupervised anomaly
detection method based on neural networks is also used for distance-based multivariate anomaly
detection [37]. With only a few exceptions of layer-wise modeling proposed by Seifi ef al. [4] and
Esfahani ef al. [16], most of the existing data-driven approaches focus on process monitoring and
anomaly detection only considering individual thermal images, which fails to characterize layer-
wise process condition and part quality. However, quantifying the morphological variability of the
multiple melt pools within a layer will provide a new process knowledge driven approach for
anomaly detection.

Another stream of research utilizes the in-situ optical video acquisition technique, which has
become more accessible due to the availability of robust machine vision systems integrated with
the AM process, enabling highly efficient online anomaly detection and process monitoring [38]—
[40]. Using the video as a spatiotemporal data stream, the integrated spatiotemporal decomposition
and regression-based modeling is proposed for in-situ anomaly detection and monitoring [41]. In
addition, this method can be applied to any image-based process monitoring applications where
the foreground events are random and sparse, and the anomaly is spatially and temporally
correlated. A recursive estimation procedure for real-time implementation of the algorithm is also

proposed to handle the challenges of the high dimensionality of the video-image stream. However,
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the spatial information of the video streams may not be sufficient to distinguish the anomalous
events from other natural foreground [41], [42].

3D point cloud data are used for geometric deviation and surface defect detection of AM parts
[23], [43]. The machine learning models can be trained with synthetic 3D point clouds rather than
experimental data that can reduce training time and costs associated with many prints for each
design [44]. Basically, 3D point clouds are high density data, and used to measure the geometric
integrity of the AM products fabricated through a variety of processes. Specifically, dimensional
or surface variation induced by miniature process shifts in AM system can be detected and
characterized using point cloud based approaches [23]. For instance, the laser-scanned 3D point
cloud data are used for identifying dimensional variation in AM parts [45]. Although the points
clouds data are more capable of depicting structural information of the printed parts compared to
low-dimensional signals, translating the 3D point clouds data into a model is very difficult due to
the computational complexity and segmentation precision issues [45], [46].

2.4 Discussion of Research Gaps

This subsection discusses the research gaps in the state-of-the-art machine learning-based
anomaly detection methods for anomaly detection of metal-based AM processes.

The machine learning models aim to capture the process-defect relationships to distinguish
between anomaly-inducing samples and healthy samples, with various machine learning models
being adopted [18], [33]. One group of mostly used machine learning approaches are the deep
learning related methods, which include convolutional neural network [47][48][49], long-term
recurrent convolutional networks [50], deep belief networks [51], and self-organizing maps [14].
Although these methods demonstrate great success in capturing the patterns to distinguish the

anomalies from the healthy samples, they also have some major limitations when being applied to
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layer-wise anomaly detection. First, these models need to be trained using a large training dataset,
which can be quite costly for layer-wise anomaly detection. Second, most deep learning models
demonstrate limited model interpretation since they are usually regarded as black-box models.
Third, it is very challenging for the deep learning related methods to incorporate engineering
domain knowledge, such as the layer-wise printing trajectory information, in the modeling and
anomaly detection.

In addition, various other methods first leverage feature extraction approaches to extract
critical process features from the high-dimensional raw process signals, and subsequently apply
various machine learning approaches. The low-dimensional features extracted include melt pool
geometric features [52], melt pool boundary related morphological characteristics [13], melt pool
surface temperature related features [14][53], tensor decomposition based features [4], [12], auto-
encoder based features [54] [55], and various summary statistics of the raw signals [56]. Once the
features extracted, various machine learning methods, such as support vector machines [4] [13]
[32] [57], discriminative models [32] [56], and random forests [58], have been used for anomaly
detection. These methods have demonstrated good performance in anomaly detection for
individual observations (e.g., single melt pool images). However, they can be quite cumbersome
when being applied to layer-wise anomaly detection for the following two main reasons. First, the
thermal distribution of different layers in the same build is continuously varying, and thus it is
difficult to establish one benchmark distribution for all the layers in one build. Second, given a
complicated component, the thermal behavior also varies as a function of the printing path, which
needs to be accounted for in the anomaly detection method.

To fill the above-mentioned gaps, the proposed method aims to extract layer-wise process

features that can account for the varying thermal distribution due to different layer change as well
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as constantly changing printing trajectories. A new in-situ layer-wise AM anomaly detection
method is proposed by characterizing the morphological dynamics of the melt pools and heat
affected zones (HAZs) which are segmented based on specific temperature ranges. Subsequently,
the Wasserstein distance (WD)-based morphological transition metric features can be extracted
for layer-wise anomaly detection, and a support vector machine based supervised machine learning

framework is leveraged for layer-wise anomaly detection.

3. Methodology

In this section, the proposed methodology is introduced. The melt pool and HAZ in the thermal
images are firstly segmented, and subsequently the new melt pool/HAZ transition metrics are
derived by leveraging the Wasserstein distance to quantify the perturbation in a series of melt
pools/HAZs’ morphologies. The resulted transition metrics are used to extract critical layer-wise
features for anomaly detection towards AM part certification. Finally, the supervised learning
method is leveraged for layer-wise anomaly detection based on the labeling information generated
by post-manufacturing inspection methods, such as X-ray CT. The overall steps of the proposed
methodology are illustrated in Figure 1a, and the data visualization of multiple key steps are shown

in Figure 1b-e.
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Figure 1: The proposed method of in-situ layer-wise anomaly detection by characterizing
morphology dynamics of melt pools and HAZs.

3.1 Melt Pool and Heat Affected Zone Identification

The thermal images are captured using a pyrometer camera that consists of a temperature
measurement at each pixel within the field of view of the camera. To compress the thermal image
data without losing useful information for anomaly detection, the widely used concept of heat
affected zones is adopted in this paper together with the melt pool to provide more comprehensive
information to characterize the observed temperature distribution. For the sake of clarify, the heat
affected zone observed in the thermal image is defined as below.

Definition I: Heat affected zone (HAZ). In each thermal image, the region with temperature
readings within a pre-specified temperature range of interests which is lower than the melting
temperature (e.g., R,) of the material is defined as the heat affected zone (HAZ).

The melt pool and HAZ’s morphologies are primarily governed by two major factors, i.e., the

printing path and the AM process stability. Therefore, to quantify the process stability, the printing
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path induced variability needs to be firstly removed from the observed thermal history. During the
AM fabrication, the instantaneous melt pool orientation is determined by the instantaneous printing
direction, which can be calculated from the printing path in the g-code [16]. Therefore, the image
rotation operation is leveraged to align the melt pools with consistent orientation in each layer, as
illustrated in Figure 1(c). Let I* € R"™¢ denote the original thermal image collected at time t,
which is a matrix with dimension r X ¢, where r and ¢ are the numbers of rows and columns,
respectively. Then, the rotated image can be obtained by Equation (1),

Xt(0) = R(I%, (6 — at)) e
where X¢(0) € R"*¢ denotes the rotated image and the function R denotes the image rotation
operation given the pre-specified target orientation 8. Moreover, a® represents the theoretical
instantaneous orientation of the original melt pool (I) that can be obtained from the g-code.
Furthermore, it is also noted that the selection of & may consider the major printing orientation in
the specific layer to minimize the rotation operations needed. As a result of the rotation operations,
the variability of the aligned thermal images (i.e., X*(0)) is mainly determined by the AM process
variability.

Subsequently, the melt pools and HAZs are obtained by segmenting X¢(8) based on the

corresponding temperature ranges of interests, as presented in Equation (2).

(X)), if (X(8)),,, € Ric

X ap = ,
( k)a,b 0, if (Xt(e))a‘b ¢ :Rk

=12 @)

where X{ € R"™*¢ denotes melt pool region in which (), representing the entry at the a-th row
and b-th column (a = 1,2,...,r and b = 1,2, ...,c) with R, = [T,,,, +0) and T, is the melting
temperature of the feedstock material. In addition, X5 € R™¢ denotes HAZ region with R, =

[T(), Tm)-
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3.2 Melt Pool and HAZ Transition Metrics and their Properties

A new transition metric system for both melt pools and HAZs is developed by leveraging the
Wasserstein distance formulation. The newly developed transition metrics are introduced as below.

Definition II: Global Transition Metric (GTM). The GTM, denoted as GTM(XL, X4,
quantifies the global mean transition between consecutive melt pools/HAZs, and can be thus
calculated from the absolute difference between the total summation of the two consecutive melt
pools/HAZs, i.e., X&, and X4, as shown in Equation (3),

GTM(XS, X5 = [17X51, — 17XEH1, | (3)
where 1, represents a v X 1 vector of ones, and thus 17X% 1. equals to the sum of all the entries
in X¢.

Definition III: Morphological Transition Metric (MTM). The MTM focuses on the
instantaneous morphological changes between consecutive melt pools/HAZs. After removing the
effect of GTM, the normalized melt pools/HAZs can be generated as show in Equation (4).

Z, = Xi/(17X}1,) “
where ZE, € R™ ¢ denotes the normalized HAZ with k-th temperature range ;. The normalized
melt pools/HAZs are used to develop Wasserstein distance based on the optimal transport
formulation. To better illustrate the formulation of the optimal transport problem, the
terminologies of weight, flow, and work are defined as below.

Definition IV: Weight. The pixel-wise values in the normalized melt pools/HAZ Z, are defined
as the weight, denoted as W,E’i, where i is the one-dimensional index in matrix Zj and i =

1,2, ..., rc. In addition, it denotes the normalized temperature value in the melt pools/HAZs.
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Definition V: Flow. The flow, denoted as F(Z, Zgth) = [# , represents the pixel-
rc

Y rex
wise weight transport from Z% to ZE*! to achieve the identical normalized melt pools/HAZs, as
t+1

illustrated in Figure 2. Here, rc is the total number of pixels in Z}, and Z,

#(2i, 77)

> 7L+

Figure 2: Visualization of flow F(Z¢, ZE'Y), with #**" denoting the transport from the i-th

i
pixel of Z, to the j-th pixel of Z{*2,

Definition VI: Work. The work resulted from a feasible flow F(Z, ZE*!) in matching Z, and

Zi*t is defined as below.
Work(f(z,i, 7L+ ) = tr(D(z,‘;, ZUOYTF(ZE, z,{;“)) )

where D(ZL,ZL) = [”uil - uif]-l”]rcxrc represents the Euclidean distance matrix between

individual pixels in Z& and ZL*?, where ui,i € R'*2 represents the 2D coordinates of the i-th pixel

in Zj,, and uj;' € R represents the 2D coordinates of the j-th pixel in Z{*! (i and j = 1, ..., c).
For clarification purpose, a simple demonstrative example with two simple HAZs along with the

flow and distance matrix between them is presented in Figure 3 to illustrate the definition of

different matrices in the computation of work.
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Figure 3: Visualization of numerical example for computation of work.

The MTM is determined by the optimal flow from Z, to Z5** with the minimum work required
to match between the two normalized melt pools/HAZs, which can be obtained by solving the
optimization problem as illustrated in Table 2.

Table 2: Formulation for optimal flow from Z§ to Zt*!

MTMy"' =  min  Work (F(Z%, Z¢+

7 gy ork (P24 7))

Subject to

Non-negativity #fj”l >0 vVi=1,..,rc; Vj=1,..,rc (6)

Upper bounds of flow e l.t]f“'l =wiit Vj=1,..,rc (7
i1 it]f“'l =wg; Vi=1,..,rc ()

where the objective function is inspired by the Wasserstein distance, which is the minimum

necessary work to transport weight from Z% to match Z5**. Equation (6) enforces non-negativity

tt+1

requirements to each entry in F(Zg, Z;™) (i.e, #;7 ). Equation (7) and (8) specify the upper

bounds of the total incoming and outgoing flow, respectively. More specifically, the constraint (7)
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signifies that the total weight in Zf, matched to the j-th pixel in Zi*" does not exceed wy ', and

similarly the constraint (8) ensures that the total weight in Z5** matched from the i-th pixel in Z

does not exceed wy, ;. The formulated MTM metric is based on the Wasserstein distance with equal
weight distributions, and the weight flows from one distribution to match with the weight of
another distribution.

The rationale of using the WD-based metric is firstly due to its great flexibility in accurately
capturing the morphological dynamics in a series of melt pools and HAZs [59]. The extracted
GTM and MTM features can be used to characterize the instantaneous change of melt pool and
HAZ morphologies which are closely related to AM process stability. Furthermore, the extracted
GTM and MTM features also demonstrate the rotation-invariant property, as shown below. This
favorable property makes it possible to establish one benchmark distribution for all the layers with
completely different printing trajectories.

Proposition: Both GTM and MTM are melt pool rotation-invariant metrics.

Proof: For a given pair of (Z%, Z;'"), denote the optimal solution of Table 2 as F*. Consider
the case that (Zf,Zf™) rotates with an angle @, and denote it as (Zf, Zi*') =
(ZER(a), ZET'R(a)), where R(a) is the rotation matrix. If MTM is melt pool rotation-variant,
then F* will not be the optimal solution of Table 2 with the input (Z%, ZL*'). Assume the optimal

solution is F*, then we can have
Work (F*(2£, Z5™)) < Work (F(Z5, Z5*) ) = Work(F* (ZER(@), ZEHR(@) )
According to the Definition V, for a given flow F, F(ZLR(a), ZL ' R(a)) = F(ZL, ZL*). Thus,

Work(F*(ZER(a), ZE R (@) ) = Work(F* (2, ZE) ) < Work (F7(25, Z5))

19



which indicates Work (T*(Z,ﬁ, Z,i“)) < Work (i‘*(i,ﬁ, Z,ﬁ“)). This, however, is impossible.

Thus, based on the proof by contradiction, MTM is melt pool rotation-invariant.

Similar proof can be applied to GTM. This rotation-invariant property for the proposed GTM
and MTM metrics ensures that layers with different major printing orientations can share the same
benchmark for AM layer-wise certification.

To find the MTM feature values, the optimization problem in Table 2 can be solved effectively
by an efficient numerical algorithm (i.e., Algorithm 2M) proposed in [60], which is a cascadic
multilevel primal-dual based algorithm. In this algorithm, the WD metrics are iteratively updated,
where the coarse grids are used as the initial solution for solving the problem using the finer grids.
This iterative mechanism significantly reduces the computational time to find the optimal solution.
More specifically, the normalized melt pools/HAZs, denoted as Zi and Z.*! in Table 2, are
corresponding to two distributions between which to calculate the WD metrics in [60], and the
feature MTML**! in our problem is corresponding to the optimal transport between Zf and ZE*!.
Once defining the initiation parameters including grid step size, number of grid levels, and the
sequence of stopping tolerance, the optimal solution is computed following an iterative approach
with different sizes of the grids. The computational cost of this algorithm in the proposed
framework will be examined in the case study (Sec. 4).

3.3 Layer-wise Feature Extraction for Process Anomaly Detection

Based on the new transition metrics developed, the layer-wise features can be extracted. Since
the transition metrics characterize the morphological dynamics of the melt pools and HAZs, their
values should be very small when the AM process is healthy, and relatively large when there is a

process anomaly. As a result, the maximum values of both features are used to quantify the

morphology series' most extreme change for layer-wise anomaly detection. This is similar to the
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idea of using group control chart in statistical quality control in order to control the type I error
rate when simultaneously monitoring multiple data streams [61], [62]. Therefore, the maximum of
all the GTM(X%, X4'1) values is captured from each layer, and thus the relevant layer-wise feature
£GTMF can be calculated in Equation (9),

£GTMF = rpEaTx{GTM(x,'-;,x,';“)} (k=12) 9)
l

where J; represents the set of time stamps within the build of the [-th layer.
In addition, the layer-wise melt pools/HAZs morphological dynamics can be characterized by
the maximum of the multiple MTM values extracted from the consecutive melt pools/HAZs in the

same layer, denoted as #MTMF, as calculated in Equation (10),

MTMf = I?Ea}x{MTM,’Q”l} (k =12) (10)
l

where J; represents the set of time stamps that are within the build of the [-th layer.
3.4 In-situ Layer-wise Anomaly Detection based on Supervised Learning

Supervised learning algorithms can be used to establish a distinction between healthy and
unhealthy layers based on the layer-wise features extracted. The post-manufacturing XCT
scanning can be used to obtain structural quality information of each layer, providing the ground
truth information to the data set. For layer-wise anomaly detection, one layer is labeled as abnormal
if there is at least one porosity observed. It's worth noting that all different machine learning
methods can be used to detect layer-wise anomalies. The support vector machine (SVM) technique
is adopted in this work, because of the flexibility it can offer in learning the decision boundaries
by varying kernel functions. The SVM classifier can be trained by finding the hyperplane that best
separates all data points of distinct classes using a training data set with labeling information, and
the complexity of the hyperplane can be determined through cross validation [63]. In summary,
the newly proposed in-situ layer-wise anomaly detection algorithm is illustrated in Table 3.
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Table 3: The proposed algorithm for in-situ layer-wise anomaly detection for DED processes.

Input: Layer-wise original thermal images {I* € R"*¢}, where t € T;, and T} represents the set of
time stamps that are within the build of the I-th layer.
Qutput: /n-situ layer-wise anomaly detection.

Algorithm:
Step 1 (Melt pool & HAZ identification):
1.1: Rotate original thermal images as X*(8) € R"* based on the Equation (1).
1.2: Generate melt pools/HAZs by segmenting X¢(6) as X}, € R™¢ by using Equation (2) (k =
1,2).
Step 2 (Melt pool & HAZ transition metrics calculation):
2.1: Calculate the GTM (XL, Xi+?) values based on Equation (3).
2.2: Calculate the MTM,f,jt+1 values by solving the optimization problem in Table 2.
Step 3 (Layer-wise feature extraction):
3.1: Compute the #GTMF value using the Equation (9).
3.2: Compute the #MTMY¥ value using Equation (10).
Step 4 (Supervised learning for in-situ layer-wise anomaly detection):
4.1: Train the SVM model using #GTMF, #MTM¥ (k = 1,2) and layer-wise binary response
variable of training dataset.
4.2: Assess the average performance of the model based on the test data set.

4. Case Study

In this section, the proposed in-sifu layer-wise anomaly detection method is validated based on
the data collected from two specimens using the DED process, which is one of the most common
techniques to perform powder-based DED.
4.1 Experimental Setup

The machine used for data collection was the LENS 750 machine manufactured by
OPTOMEC, and the machine is equipped with the 1kW Nd:YAG laser [16]. To evaluate the
robustness of the proposed method, two specimens with different geometries (i.e., one thin wall
and one cylindrical shaped part) were fabricated using the Ti—-6Al-4V powder as the feedstock

material. The process parameters used for both specimen fabrication are listed in Table 4 [16].
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Table 4: Process parameters for fabricating the specimens.

Parameters Thin wall Cylinder
Scan speed 30 inch/min 40 inch/min
Powder feed rate 4 rpm 3 rpm
Hatch spacing 0.02 inch 0.02 inch
Power 300 W 300 W
Layer thickness 0.02 inch 0.015 inch
Nozzle diameter 0.035 inch 0.035 inch
Number of thermal images captured 1557 2827
Number of layers 60 69
Number of abnormal layers 26 58
Infill pattern Unidirectional

For process data collection, the dual-wavelength coaxial pyrometer (Stratonics, Inc.) captures
the temperature distribution from the top view of melt pool. The key benefit of using the pyrometer
camera is that the image data collected demonstrate reduced motion blur, as it has a specific
exposure period (2.0274 ms) with the nominal image collection rate of approximately 6.4 Hz. A

brief sketch of the experimental setup with the sensor positioning is illustrated in Figure 4.

Pyrometer ------------

Laser Source

Nozzle --------------

Laser Beam-------------

Build Part ---» : ‘

Substrate

Figure 4: Experimental Setup.
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Each observed thermal image is in the form of a 752x480 matrix, which consists of the
temperature values at each pixel within the range of 1000-2500 °C. During the thin wall
fabrication, the captured melt pools in each layer represent identical orientation, due to its
unidirectional printing path. However, for the cylindrical specimen, the layer-wise melt pools
demonstrate varying orientations due to the complex printing paths. Furthermore, using the XCT
inspection (Skyscan 1172) technology, the porosities in the printed specimens were characterized,
and thus the layer-wise process data were labeled using the porosity characterization results [14].
All the layers that include at least one pore with diameter larger than 0.05 mm were labeled as
unhealthy [3].

4.2 Benchmark Method Selection

Two benchmark methods of layer-wise AM process anomaly detection are selected to compare
with the proposed method. The first benchmark method was the layer-wise anomaly detection
model proposed by Seifi et al. [3], which leveraged multi-linear principal component analysis
(MPCA). In this approach, the MPCA algorithm was used for dimensionality reduction for each
single thermal image, and then the volume of the convex hull formed by the extracted MPCs from
each layer was employed as a layer-wise process feature for anomaly detection. In addition, the
maximum norm value of the residual from the MPCA modeling within a layer was used as a
secondary layer-wise feature during classification for anomaly detection. The effectiveness of this
benchmark method was validated by comparing with the traditional machine learning driven
anomaly detection approaches.

More recently, in-situ layer-wise certification of Direct Laser Deposition (DLD) process based
on image series analysis was proposed by Esfahani et al. [16]. This method leverages the image

registration technique to characterize the thermal history dynamics in the layer-wise thermal
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images. Moreover, the Gaussian process (GP) models were employed to characterize the
unexplained variation component by the image registration operation. The effectiveness of this
benchmark method was validated by comparing with the approach proposed by Seifi et al. [4].
4.3 Results and Discussions

In this study, to compare the effectiveness of the proposed and the benchmark methods, both
thin wall and cylinder data set were randomly split into the training layer set (80%) and testing
layer set (20%), and 200 replications of this evaluation were performed to assess the average
performance. Basically, using the training layer set the Gaussian SVM classification model can be
trained when the GTM and MTM features have been defined, which can then be used to predict
the labels of newly observed layers. Specifically, the classifier is fed a vector of response labels (0
for healthy, 1 for unhealthy) and a matrix of four predictors: the GTM and MTM extracted from
the melt pool and tail region, respectively. The features of GTM and MTM are associated with the
segmented melt pools/HAZs of thermal images, and the selection of temperature range of interests
to segment the HAZ affects the extracted features and the prediction accuracy. In this case, the
melt pool regions were segmented based on the melting point of the feedstock material and above,
i.e., Ry = [1636,+00), and the HAZs were segmented considering some specific temperature to
the melting point of the feedstock material, i.e., R, = [Ty, 1636), which can define as the tail
region of the melt pool.

The lower bound T, of the tail region temperature range can be considered as the tuning
parameter in the proposed approach. By tuning the value of T, the effect of different temperature
ranges of interests on the extracted features in both the thin wall and cylindrical specimen can be

depicted as shown in the Figure 5. It can be observed that different values of T, lead to different
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distinguishability between the healthy and unhealthy layers for both specimens, demonstrating the

necessity of parameter tuning for the lower bound temperature T,.

Specimen | R, = [1636,+%] | R, =[1000,1636] R, = [1400,1636] R, = [1500,1636]
18 8 18 I8
16 : 16 16 . o> 16
. ",,.“
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12 12 12 12 -
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
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Figure 5: Extracted layer-wise features of #GTM (x-axis) vs #MTM (y-axis) for different
temperature ranges of interest, where blue circles denote healthy layers and red crosses denote
unhealthy layers.

Four key performance metrics (i.e., accuracy, recall, precision, and Fscore) are used to evaluate
both methods given the same data set. The four metrics are commonly used in evaluating
supervised learning methods [4], [13], [16], and are defined as below.

TP+TN

Accuracy = ——————— (11)
TP+FP+TN+FN
TP
Recall = (12)
TP+FN
TP
Precision = 1
TP+FP ( 3)
PrecisionxRecall
Fscore = 2 X ——— (14)
Precision+Recall

where TP, TN, FN, and FP denote True-Positive, True-Negative, False-Negative and False-
Positive, respectively, which are the key elements in confusion matrix. More specifically, True-
Positive (TP) denotes accurate prediction of unhealthy layers, whereas True-Negative (TN)

represents the layers accurately predicted as healthy. In addition, False-Negative (FN) denotes the
26



unhealthy layers predicted inaccurately as healthy, while False-Positive (FP) represents the
inaccurate prediction of healthy layers as unhealthy. Moreover, the Fscore represents the harmonic
mean of precision and recall, which is used in this paper as the key indicator for performance
comparison.

As mentioned above the tuning parameter affects the extracted features and subsequently the
prediction results. Therefore, by tuning the temperature range of the tail region, the performance
metrics are listed as shown in the Table 5, where R, is always fixed and R, changes as the T
value is tuned. From Table 5, it is observed that in the case of thin wall, T, = 1000°C (bolded)
provides the highest Fscore value. Furthermore, in the case of cylinder, the Fscore value shows the
best results when T, = 1400°C (bolded).

Table 5: Performance comparison by tuning temperature range of interest (R,).

To

Specimen Metric
1000°C 1100°C 1200°C 1300°C 1400°C 1500°C

Accuracy 96.00% 95.95% 96.65% 94.45% 88.35% 92.95%
Precision 96.80% 97.70% 97.35% 92.42% 87.96% 98.03%

Thin wall
Recall 99.82% 93.77% 94.04% 95.64% 89.37% 86.11%
F-score 96.04% 95.10% 94.85% 93.18% 87.42% 90.33%
Accuracy 84.73% 84.09% 80.73% 83.00% 86.05% 83.00%
. Precision 82.50% 84.27% 81.55% 81.68% 83.27% 82.24%
Cylinder

Recall 97.91% 97.88% 96.83% 99.81% 100.00% 98.31%
F-score 90.07% 90.27% 88.13% 89.52% 90.67% 89.23%

The performance metrics of the proposed and benchmark methods are summarized in Table 6.
Furthermore, a number of sample size values were explored to examine the effects of the sample
size used in fitting the GP model for the error matrix in Esfahani ef al. [16] for a fair comparison.
When comparing the Fscore, it is observed that the proposed method outperforms both benchmark
methods for the thin wall specimen. Moreover, for the cylindrical specimen, the proposed method

outperforms Seifi et al. [4] in all four metrics, and demonstrates comparable (or slightly better)
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Fscore results with Esfahani et al. [16]. The good performance of the proposed method is mainly
due to its joint consideration of the layer-wise melt pools/HAZs morphological dynamics. In
addition, given the robustness in the performance of the proposed method in both thin wall and
cylindrical specimens, the proposed method can be applied for in-situ layer-wise anomaly
detection for intricate shaped parts.

Table 6: Performance comparison summary.

Metric Proposed  Seifi et Esfahani et al. [16]
Specimen Method  al [4] s=50 s=100 s=150 =200 s=300 =400

Thin wall Accuracy 96.38% 94.67% 93.54% 93.17% 93.00% 93.92% 93.12% 93.25%
Precision 97.36% 9591% 94.75% 91.88% 91.63% 93.64% 91.85% 92.50%

Recall 94.47% 90.98% 91.20% 93.58% 93.58% 93.68% 93.68% 93.58%

F-score  95.34% 93.24% 92.36% 92.10% 91.97% 93.06% 92.10% 92.38%

Cylinder  Accuracy 85.07% 73.60% 84.29% 84.21% 83.96% 83.93% 83.11% 83.21%
Precision 84.71% 81.46% 84.97% 84.96% 84.86% 84.85% 84.76% 84.78%

Recall  100.00% 88.05% 99.18% 98.94% 98.72% 98.68% 97.76% 97.89%

F-score  91.56% 84.12% 91.26% 91.18% 91.02% 91.00% 90.52% 90.59%

There are three possible reasons for the classification errors observed in the case study. Firstly,
the discrete data sampling of the pyrometer camera may potentially lead to a lot of missing data in
the thermal data collection, resulting in missing defect inducing process information. Second, the
characterization of XCT scanning may be subject to noise and error, leading to occasional labeling
errors in the data set. Third, the proposed in-situ layer-wise anomaly detection approach ignores
the impacts of re-melting between consecutive layers and adjacent tracks, which may eliminate
some porosities formed in the preceding layer/track during subsequent layer/track deposition.

The average computational efficiency of the proposed method is illustrated in Figure 6, where
the average computation time and the average build time for each layer is compared for both
specimens. The processor used to implement the proposed method was Intel® Core™ Processor
17-7700 CPU @ 3.60GHz. It is worth noting that the average computation for the proposed method
takes significantly shorter time than its corresponding layer-wise build time for both thin wall and
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cylinder specimen. As a result, the proposed method can facilitate layer-wise AM certification in

real time, potentially enabling real-time process control for quality improvement.

14 . -
[ ILayer-wise computation time

12+ B ayer-wise build time

Time (s)

O i i
Thin Wall Cylinder

Figure 6: Layer-wise average computation time of the proposed method.

5. Conclusion and Future Work

The quality issues are the major barriers for wider and sustainable industrial adoption of the
AM technology, and there is a need of reliable techniques to detect quality issues (i.e., porosity,
mini cracks, lack of fusion, etc.) in AM processes. Different approaches like FEMs are used to
characterize the anomaly based on thermomechanical relationship, but they cannot realistically
capture process uncertainty. These limitations are addressed by the data-driven approaches where
usually the individual thermal images of the melt pools are used for local anomaly prediction. Few
approaches are proposed for layer-wise anomaly detection, and the extracted features cannot
explicitly characterize melt pool/HAZ morphological dynamics.

This paper proposes a novel formulation of melt pools and HAZs morphological dynamics

through which the new melt pool/HAZ transition metrics are derived. Furthermore, novel layer-
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wise process key features are derived from the characterization of melt pools/HAZ morphological
dynamics for AM layer-wise anomaly detection. Specifically, morphological transition between
consecutive melt pools/HAZs along with the global temperature shift are extracted as the novel
features. Based on the extracted layer-wise features, the SVM classification approach is used for
in-situ layer-wise anomaly detection. The specimens of a thin wall and a cylinder were fabricated
using the DED process to validate the proposed methodology. The anomaly detection accuracy of
the proposed model is reasonably high and outperforms both benchmark methods, which are both
state-of-the-art AM layer-wise anomaly detection methods.

For future research, a couple of interesting topics remain open. First, the inter-layer and inter-
track dependence during fabrication can be characterized to quantify the re-melting effect between
the adjacent layers/tracks. Second, a part certification framework can be established to quantify
the size and severity of the defects and their impact to the part functionality. Finally, layer-wise
process control algorithms can be used in conjunction with the in-situ monitoring scheme to adjust

process parameters for quality improvement of the AM parts.
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