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Introduction
Predators pose an existential threat to prey survival, and 

prey species have evolved numerous strategies for mitigating 
predation risk (Preisser et al. 2005, Weissburg et al. 2014). 
Prey may alter their behavior (Lima and Bednekoff 1999, Smee 
and Weissburg 2006), morphology (Relyea 2002, Miner et al. 
2005), or life history (Kats and Dill 1998, Brown et al. 2013) to 
reduce their vulnerability to consumers. Behavioral responses 
to consumers are ubiquitous and occur in organisms ranging 
from bivalves (Smee and Weissburg 2006) to mammals (Fortin 
et al. 2005) and can be effective in reducing mortality caused 
by predation (Smee and Weissburg 2006, Flynn and Smee 
2010).

Marsh periwinkles Littoraria irrorata are commonly found 
in salt marshes along the coastlines of the Atlantic Ocean and 
Gulf of Mexico (GOM). They can decimate marsh grasses and 
create large bare patches when uncontrolled by predators (Sil-
liman and Bertness 2002). Periwinkles provide an important 
food source for numerous species of fish and invertebrates 
(Zengel et al. 2016). Climbing behavior of periwinkles (Warren 
1985, Robinson and Rabalais 2019) as well as other snails in 
both marine and freshwater systems is a well—known response 
to chemical exudates from predators (Jacobsen and Stabell 
2004, Belgrad and Smith 2014). To avoid consumers such as 
blue crabs Callinectes sapidus, periwinkles will climb the stems 
of marsh plants including Spartina alterniflora (Warren 1985, 
Carroll et al. 2018, Robinson and Rabalais 2019).

Studies examining the climbing behavior of periwinkles are 
often conducted on scales of hours to days (Henry et al. 1993, 
Robinson and Rabalais 2019). We tested shorter term respons-
es of marsh periwinkles to predation risk cues from blue crabs 
and measured both climbing and burrowing behaviors as well 
as time inactive. Burrowing is not typically investigated in this 
species, but we noticed periwinkles burrowing in preliminary 
observations. We sought to examine behavior on shorter time 
scales to ascertain how quickly periwinkles react to predation 
risk and if their short—term behavior is consistent with those 
documented over longer durations. Further, using periwinkle 
climbing behavior as a bioindicator in behavioral assays can be 

a useful experimental tool, and short—term experiments are 
preferred for this purpose.

Materials and Methods
Marsh periwinkles were collected from Airport Marsh on 

Dauphin Island, AL during the summer of 2022. Blue crabs 
were collected from crab pots in Mobile Bay, AL. Periwinkles 
were housed in aerated seawater tanks (salinity 20) until use 
in experiments. They remained in the lab for at least 72 h 
before being tested and were used within 2 weeks from the 
date of original collection. Periwinkles were not fed after col-
lection. Blue crabs were housed in a separate tank and fed an 
ad libitum diet of periwinkles, oysters, and fish scraps 3 times 
per week. We did not document food preferences, but all food 
items were consumed within 24 hours. 

Behavioral assays were conducted in 2.0 L round glass 
aquaria (15 cm diameter x 25 cm tall). Sand was collected from 
beaches on Dauphin Island, thoroughly flushed with freshwa-
ter and allowed to dry, and then added to each jar to a depth 
of 5.0 cm. One liter of seawater (salinity 20) was added to 
each aquaria. Seawater was taken directly from the GOM and 
stored in a tank (2.0 m diameter x 0.5 m deep) for 3—7 days 
to allow particulate matter to settle out and ambient chemical 
cues to breakdown. Salinity was adjusted to the desired level of 
20 by adding deionized water or salt (Instant Ocean™). 

Our experiment consisted of 2 treatments: a control of sea-
water and a predation risk treatment containing water from 
a tank housing blue crabs. To make the predator water treat-
ment, 6 blue crabs were housed in a 238 L mesocosm and fed 
3—5 hours before behavior experiments were initiated. For 
control aquaria, 1.0 L of seawater was added, and for aquaria 
in the predation risk treatment, we added 0.5 L of seawater 
and 0.5 L of water from the blue crab tank. One periwinkle 
was added to each aquarium and manipulated with a stick so 
that its aperture opening faced the sediment, and its behav-
ior was monitored for 10 min. Eighteen pairs of aquaria were 
tested such that a control and treatment were tested simultane-
ously. 
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We measured the time(s) taken for snails to initiate move-
ment and the total time spent active. These behaviors were 
compared among treatments (control, predator water) using 
ANOVA in JMP Pro 14.0. We also compared the frequency 
of climbing on the sides of the aquaria and burrowing using a 
binary response of yes the behavior occurred or no it did not 
occur. Some individuals exhibited both behaviors and were 
scored as yes for both. Five individuals from each treatment 
remained inactive for the duration of the experiment and 
were excluded from analysis, resulting in n = 13 for each treat-
ment. Chi—square tests were used to compare the frequency of 
climbing or burrowing between treatments in JMP Pro 14.0.

Results and Discussion
Periwinkles became active within 5 minutes of placement 

into the aquaria, and we did not find significant differences in 
the time for periwinkles to initiate activity among predation 
risk treatments and controls (F

1,25 
= 1.43, p = 0.24). However, 

periwinkles in predation risk treatments were significantly 
more active than those in controls (F

1,25 
= 8.76, p < 0.01, Fig-

ure 1A). Unlike previous studies, we did not find significant 
differences among treatments regarding frequency of climbing 
(χ2 = 3.47, p = 0.06, Figure 1B), and climbing occurred more 
frequently in controls than in predation risk treatments. How-
ever, we found significantly more periwinkles burrowed in the 
predation risk treatments than in controls (χ2 = 10.4, p < 0.01, 
Figure 1B). In the controls, only a single periwinkle burrowed, 
while 9 or 70% burrowed in the predation risk treatments. In 
the predation risk treatments, of the 9 periwinkles that bur-
rowed, 5 of them climbed the side of the jar first, before re-
turning to the sediment and burrowed.

Climbing behavior is a well—known response to predation 
risk in marsh periwinkles (Warren 1985), and we were sur-
prised that climbing was not different among treatments in 
our study and tended to be more common in controls than 
predation risk treatments. Although we measured climbing 
on the sides of our aquaria, in preliminary trials we also used 

PVC dowels (sensu Carroll et al. 2018) but our periwinkles did 
not climb on those either. A couple of methodological differ-
ences between this work and prior studies examining climbing 
behavior may account for differences observed. For example, 
earlier studies have been conducted over the span of hours 
(Warren 1985, Carroll et al. 2018) to days (Robinson and Rab-
alais 2019) and use multiple individuals per treatment (Carroll 
et al. 2018, Robinson and Rabalais 2019). Perhaps a longer 
experimental duration would have resulted in similar findings 
as periwinkles in the predation risk treatments tended to be 
more active, and given time may have found a preference to 
be out of the water. However, burrowing behavior in response 
to predation risk has rarely been reported for this species, and 
our results suggest that periwinkles may have different types 
of responses to predation risk. Burrowing responses may have 
been more noticeable in our experimental set up than in larg-
er scale mesocosms where this behavior could be easily over-
looked. We also used predator—conditioned water rather than 
live crabs as used by other scientists, which might also account 
for differences in responses (Carroll et al. 2018, Robinson and 
Rabalais 2019). The climbing behavior of periwinkles may vary 
among populations, which might also account for notable dif-
ferences found in this study (Carroll et al. 2018).

Our results indicate that marsh periwinkles may burrow in 
response to predation risk, and future studies examining anti—
predator behavior in this species should monitor this behav-
ior as well as climbing frequency. The methods here provide 
a short—term behavioral assay that can be used to ascertain 
periwinkle responses to predation risk and provides a useful 
tool as a bioindicator. Such short—term experiments like this 
one are probably less ecologically relevant than previous work 
performed for longer durations (Robinson and Rabalais 2019). 
However, short—term bioassays such as this can be useful for 
investigating the specific identity of chemical exudates released 
by predators and provide a new behavior and time frame for 
such investigations.

SC2

FIGURE 1. Behavior of marsh periwinkles (Littoraria irrorate) in laboratory experiments. Control—clean seawater.  Predation risk—seawater from an aquar-
iam housing blue crabs, Callinectes sapidus.  A. Mean ± se seconds marsh periwinkles were active in control and predation risk treatments. * indicates 
significant difference (ANOVA, p < 0.05) B. Number of marsh periwinkles displaying climbing or burrowing behavior in control and predation risk treat-
ments.  * indicates significant difference (Chi-Square test, p < 0.05) between control and predation risk.
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