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COMPACTNESS OF COMMUTATOR OF RIESZ TRANSFORMS
IN THE TWO WEIGHT SETTING

MICHAEL LACEY AND JI LI

Abstract. We characterize the compactness of commutators in the Bloom setting.
Namely, for a suitably non-degenerate Calderén—Zygmund operator T, and a pair of
weights ; | € Ay, the commutator [T; b] is compact from LP() ! LP(!) ifandonlyifb e
VMO, where = (=1)1=P. This extends the work of the first author, Holmes and Wick.
The weighted VMO spaces are different from the classical VMO space. In dimension d
= 1, compactly supported and smooth functions are dense in VMO, but this need not
hold in dimensions d > 2. Moreover, the commutator in the product setting with
respect to little VMO space is also investigated.

1. Introduction

Let be a weight on RY, i.e. a function that is positive almost everywhere and is
locally integrable. For 1 < p < 1, define LP() to be the space of functions f satisfying

1=

ININTI R if(x)jP(x)dx P< 1.
In [1], Bloom considered the behavior of the commutator [b; H] : LP() ! LP(!),
where H is the Hilbert transform on R. When = | = 1, it is well-known that the

boundedness of [b; H] is characterized by b € BMO(R) [2,12], and the compactness
of [b; H] is characterized by b € VMO(R) [14]. Bloom worked out the setting for
;1 € Ap(R) and , !. He showed that for 1< p< 1, two weights !; € A, and =
(=1)%=P, [b;H] is bounded from LP() to LP(!) if and only if the symbol b is in the
weighted BMO space BMO(R) (for the definitions of A, weight and BMO(R), see
section 2). Recently, Holmes, Wick and the first author [4] established this character-
ization of two-weight boundedness for the commutator of Riesz transforms [b; R;] in RY, d
> 2,j = 1;:::;d, using a new method via representation formula from Hyténen and
decomposition via paraproducts. It was further studied by Lerner—-Ombrosi—Rivera-Rios
[11] via sparse domination, and by Hytonen [7] via a new weak factorization technique
(comparing to [15]).
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2 MICHAEL LACEY AND JI LI

However, characterization of the two-weight compactness of [b;R;], j = 1;:::;d,
([b; H] in dimension 1) is missing up to now. We fill in this gap as follows.

Theorem 1.1. Suppose 1 < p< 1, two weights; € A, and = (=)'*P. Suppose that b

b € VMO(RY) if and only if the commutator [b;R;] : LP() ! LP() is compact.

Some approaches to this Theorem will not succeed. For instance, Uchiyama [15] used
the fact that VMO(RY) is the closure of Ccl)(Rd) (smooth functions with compact sup-
port) under the BMO(RY) norm. However, this is not necessarily true in the two weight
setting when d > 2, see §4. Another recent argument of Hyténen [8] shows that com-
pactness can be extrapolated, recovering compactness of commutators in the one weight
setting. It would be interesting to extend that argument to the two weight setting.

The sufficiency of Theorem 1.1 holds more generally. We note that this sufficiency
argument holds not just for Riesz transforms but also for general Calderén-Zygmund
operators T with the associated kernel K(x;y). We formulate it as follows. Recall that
a Calderén-Zygmund operator T (bounded on L%(RY)) associated to a -standard kernel
K(x; y) is an integral operator def%ned initially on f € C¢ (R9Y):

T(f)(x) := d K(x; y)f(y)dy; x <suppf;

R
where K(x; y) satisfies the size and smoothness estimates

C

KOGY) S ——
x-yl

i
jK(x + h;y) - K(x;y)j+ jK(x;y + h)- K(x;y)j < ij-J\;j“*

for all jx - yj > 2jhj> 0 and a fixed € (0;1].

Theorem 1.2. Suppose T is a Calderén-Zygmund operator as above, 1 < p< 1, two
weights ; € A, and = (=)'*P, and b € VMO(RY). Then the commutator [b; T]is compact
from LP() to LP().

The main idea of proving this argument is to split [b; T] into two parts, A and B, where
the norm of A is at most , and B is a compact operator.

Next we provide the argument for the necessity of Theorem 1.1. We note that this
necessity argument holds for general operators with the non-degenerate condition on the
kernel (formulated in [7]). We state it as follows.

We say that the operator T satisfies the non-degenerate condition if: there exist
positive constants co and Co such that for every x € RY and r > 0, there exists
y € B(x; Cor)nB(x; r) for which the kernel K(x;y) satisfies

. . 1
(1.3) jK(x;y)j=2 —5
Col
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Theorem 1.4. Suppose 1 < p< 1, two weights; € A, and = (=)*P, b e BMO(RY).
Suppose that T satisfies the non-degenerate condition and that [b;T] is compact from
LP() to LP(). Then b e VMO(R®).

The main idea of proving this argument is to seek a contradiction, which, in its simplest
form, is that there is no bounded operator T : “°(N) ! ‘P(N) with Tej = Te,, 0 for
all j; k € N. Here, e;j is the standard basis for ‘°(N). Thus, the main step is to construct
norm one, disjointly supported functions fg;g — LP() such that [b; T]lgj= , 0.

Remark 1.5. We point out that if T is a Calderon—Zygmund operator on L2(RY) and T
satisfies the non-degenerate condition, then we obtain that there exist absolute constants
3 < A; < A, such that for any ball B = B(xg; r), there is another ball 8 := B(yg; r) such
that A;r < jx- yj < Ayr, and for all (x;y) € (B x B), K(x;y) does not change sign
and (1.3) holds. In fact, this argument is enough for us to deduce the above theorem.

Remark 1.6. We also point out that our result and proof hold in a more general setting:
spaces of homogeneous type, to cover many examples of Calderon—-Zygmund operators
beyond the Euclidean setting.

We now study the weighted VMO space VMO(RY), € A,, which is of independent
interest with the unweighted case known around 40 years ago. We show that VM O(RY) has
totally different properties between d = 1 and d > 1.

Theorem 1.7. VMO(R) is the closure ofClé R) under the BMO(R) norm. However,
this is not necessarily true when d > 2.

This paper is organized as follows. In Section 2 we provide the definitions for Mucken-
houpt weights, weighted BMO and VMO spaces. In Section 3 we prove Theorem 1.1 via
showing Theorems 1.2 and 1.4. In Section 4 we prove Theorem 1.7. In the last section,
we discuss the two weight compactness in the product setting with respect to little VMO
spaces.

Throughout this paper, we use the standard notation “A . B” to denote A < CB for
some positive constant C that depends only on the dimension d.

2. Preliminaries

Definition 2.1. Let w(x) be a nonnegative locally integrable function on R¢. For 1 <
p< 1, wesay w is an A,-weight, written w € A, (RY), if
z ! li=(p-1)Pp-1
[W]a, :=sup - w B- = <1:
B B B W

Along the way, we will need different properties of A, weights, which we will mention
as they are needed.
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Next we use A,, 1< p < 1, to denote the Muckenhoupt weighted class on RY (see
the precise definition of A, in Section 2), and the Muckenhoupt—Wheeden weighted BMO
on RY is defined as follows.

Definition 2.2. Suppose w € A; . A function b € L1 _(RY) belongs to BMO,, (R?) if

loc

kbkgmo, (rd) := SUP jb(x) - bgjdx< 1;
B

1
w(B) 3
where bg := j—éj s b(x)dx and the supremum is taken over all balls B < Rd.
The weighted VMO space on RY is defined as follows.

Definition 2.3. Suppose w € A;. A function b € BMO,,(RY) belongs to VMO, (R)
if
i 7
(i) lim sup ——  jb(x)- bgjdx = 0;
al0B: rg=a W(B) BZ

1
(ii) lim sup ——  jb(x)- bgjdx= 0;
allpg: rg=a W(B) B 7

(iii) lim sup 1 jb(x) - bgjdx = 0;
a!l g—RdnB(xo;a) W(B) B

where xq is any fixed point in RY.
3. Proof of Main result: Theorem 1.1

It is clear that Theorem 1.1 follows from Theorem 1.2 and Theorem 1.4. In what
follows, we provide the proofs of these two theorems.

Proof of Theorem 1.2. This is seen as follows. Suppose b € VMO(RY) with kbkgmo (re) =
1. We show that for any fixed 0 < < 1, we have [b;T] = A + B, where the norm of A
is at most , and B is a compact operator. p

Fix > 0 small enough. Denote the kernel of T by K(x;y). Set K = f:o K¢, where
each K; is a Calderon—Zygmund kernel, and

K(x;y); 0< |x- y[<;

KO(X;V) =
0; Ix- y|> 2;
K(x;y); [x- y|> 1=
Kbyl =y, x- vl < 1=(2)

Ka(x;y), 0 =)  [x|> 1= or |y|> 1=
Ks(x;y) is supported on |x|; |y| < 2=:

Write T; for the operator associated to the kernel K;. We claim that
k[b; Tilkieieq) - ; i=01;2;
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where decreases to zero as does. Consider the case of j = 1. The contribution to the

norm estimate above from BM O norm only arises from the weighted oscillation over
the cubes of side length greater than 1=2. Indeed, write out the operator as

VA VA
(b(x) - b(y))Ki(x;y)f(y) dy = (b(x) - b(y))Ko(x; y)f(y) dy:
[x-y[=1=2

The oscillation of the symbol on intervals of length smaller than are irrelevant to the
norm properties of the operator. Following any proof of the upper bound for the
commutators in the Bloom setting will show that this operator has norm that decreases
to zero in .

For Ky, the only contribution from b is the oscillation over cubes of side length at least
1=, and for K,, only oscillations for cubes which are either large, or at least a distance 1=
from the origin. In each case, the norm is small. We now choose = () small enough, then
we have x[b; Tjlxieyie(y - forj= 0;1;2.

It remains for us to argue that [b; T3] is a compact operator. This is not quite trivial,
due to the commutator structure, and the delicate nature of the weighted BM O space.
For cubes P; Q of the same side length, let Kp.q(X; y) be a smooth kernel supported on
P x Q, and with |Kp.,q(x; y)|. |P|2. It follows from elementary facts about BM O that the
commutator ; .

Ce;af(x) = b(x) Kp,a(x; y)f(y) dy-  Kpal(x; y)b(y)f(y) dy

is bounded from LP() ! LP(), with norm that depends only on the relative positions of P
and Q. And, clearpl, Cp.q has compact range. The operator T; can be well approximated by a
finite sum Cp.q . Hence, [b;Ts] is compact. The proof of Theorem 1.2 is
complete. b

Proof of Theorem 1.4. Now assume that b € BMO(RY) such that [b; T] is compact from
LP() to LP(!). But, for the sake of contradiction, further assume that b <
VMO(RY).

The main idea of getting contradiction is as follows: on a Hilbert space H, with
canonical basis e}, j € N, an operator T with Te; = v, with non-zero v € H, is necessarily
unbounded. We will see that, for example when p = 2, a compact commutator from
L2() ! L%(!) with symbol b € BMO(RY) n VMO(RY) satisfies a variant of this
condition.

Suppose that b < VMO(RY), then at least one of the three conditions in Definition 2.3
does not hold. The argument is similar in all three cases, and we just present the case that
the first condition in Definition 2.3 does not hold. Then there exist ¢ > 0 and a sequence
of balls Bjg;.; = fBj(x;; r;)g;-; = R? such thatr;! Oasj! 1 and that

Z
) B-Jb(X) - bgjdx > o:

]

(3.1)
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Without loss of generality, we can further assume that
(32) 4rji+1 < rj;:

According to the non-degenerate condition (1.3): there exist constants 3 < A; < A,
and a ball Bj := B(yj; rj) such that Airj < jx;-yjj < A,rj, and for all (x;y) € (B; x Byj),
K(x; y) does not change sign and

. |
(3.3) WUNM&FZ
j
Let my(B;) be a median value of b on the ball B;. Namely, my(B;) is a real number
so that the two sets below have measure at least 1|Bj].
Fip < fy € B; : b(y) < my(B))g; Fi, = fy € B; : b(y) > my(B))g:
Next we define Ej.; = fx € B : b(x) > my(B))g; Ej2 = fx € B : b(x) < mp(Bj)g:
Then Bj = Ej;l ) Ej;2 and Ej;l M Ej;z = . And it is clear that
b(x)- b(y) 2 0; (x;y) € Ej;1 x Fj; b(x)- b(y) < 0; (x;y) € Ej;2x Fja:
And for (x;y) in (Ej;1 x Fj;1) U (Ej;2 x Fj;2), we have
jb(x) - b(y)j= jb(x)- mp(B))j+ jms(Bj) - bly)j= jb(x)- my(8));:
We now consider
(G [ )
Fj;l = Fj;ln B and Fj;z = Fj;zn B‘,' fOI"j = 1,' 2000
‘=j+1 ‘=j+1

Then, based on the decay condition of the measures of fB;g as in (3.2) we obtain that for
each j,

(3.4)  jFjai > jFij " gs Y ]X"&lﬁ”lﬁﬁl'*
. JFj;1) 2 JFja) Z EBJJ J ij J éj JBE-

‘=j+1 ‘=j+1

Similar estimate holds for F;;,.
Now for each j, we have that

YA
1 . .
(5)) BjJbz(x)— bg,jdx
< ? i
b(X)- mb(Bj)dx
= Do - mo(Bdx ¢ 2 B(x) - M8
WEJA J (B; Ejs2 J
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Thus, combining with (3.1) and the above inequalities, we obtain that as least one of the
following inequalities holds:
VA YA
2 2

b(x)- mu(B;J dx> - b(x)- mu(B)J dx>
(Bj) «, . 2’ (B) &, o 2
Without lost of generality, we now assume that the first one holds, i.e.,
VA
2 ~ 0
b(x) - mu(Bj)dx > _ —
(Bj) «,. o 2

Therefore, for each j, from (3.3) and (3.4) we obtain that
VA

0 1 b(x) - mp(B;}dx
4 < B, , b=
oo 7
11 Al b(x) - mp(B;Jdx
B, B mu(er
1 7 7
jK(x; y)jb(x) - b(y)dydx:
(B )Ej;1 Fj;1 €

Next, since for x € Ej;; and y € Fj1, K(x; y) does not change sign and b(x) - b(y) does
not change sign either, we obtain that

1 Z 7

(B)eps Fu e K(x;y) b(x)- b(y) dydxi;
1

_ TIC () dx
(B,-)p&w%w * o

1 e
= — T 8 (dx
0B))»" () "
where (x) = -1 ﬁ(), and in the last equality, we use p° to denote the conjugate index of
p.

Next, by using Holder’s inequality we further have

ilo; TI(F ) () » ()" (¥l

0(Bj)»""
7 l1
C e T (BT (0  (x)dx 2
0(B;)°° Rd

o

b; TIE)(x) B)dx

Rd
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where in the above inequalities we denote

fj = §1.
‘ 1
(B )jp -
This is a sequence of disjointly supported functions, by (3.4), with kfjk,() > 1.

Return to the assumption of compactness, and let be in the closure of f[b; T](fj)g;.
We have kk»() & 1. And, choose j; so that

K- [b; TI(f )k < 271 We
then take non-negative numerical sequence fa;g with
kfaigke,o < 1 but «fagks = 1:
Then, = P aif;, € LP(), and

X - Tl < X a b
L*0 i=1 LP()
X 1=p
< Kkaikeo K - [b; TI(f )k, . L
P P .
So ai € LP(). But aj_is infinite on a set of positive measure.
contradiction that completes the proof.

4. Properties for VMO(RY): proof of Theorem 1.7

This is a

In this section we prove Theorem 1.7. We split it into two subsections. In the first
subsection we show that smooth compactly supported functions are dense in VMO in
dimension one. In the second, we construct a counterexample: a nice function f, which

is not even in BMO(RY), d > 2.

4.1. VMO(R) is the closure of Cé(R) under the BMO(R) norm. We provide the
following characterization of VMO(R), which is parallel to the well-known result in the

unweighted setting, however, it is new in this weighted setting.

Theorem 4.1. For € A,(R), we have C, PMOR) _ VMO(R).
This elementary Lemma is needed.

Lemma 4.2. Let < A,(RY). Then,
(1) we have (R9) = 1;
(2) thereisa 0< d°= df,,. < dso that for any T > 1, we have
2

in & > 0:
Q:ac-TT)e ‘(Q)d+d” '
“(Q)=1

(4.3)
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Standard examples show that the second result is optimal. Let Q7 = [-T; T]¢. We will
systematically suppress the dependence of various constants on the A, constants of the
weights.

Proof. For both, we argue by contradiction.
Assume (R9) < 1. The A, product is always at least one. So, for all k € N we have -
1(Q,«) & 2%9, And, so by equidistribution of -1,

_1(Q2(k+1) n sz) & 22kd1

Now, v-! is an A, weight, so by Muckenhoupt’s theorem, the maximal function M(f) is
bounded from L2?(°!) to L%(°'), where M is the standard Hardy-Littlewood maximal
function on RY. Apply it to 1q,, so see that

KM(1q,)k?y1) & X 22k 1(Q 01 nQy) = 1
keN
This is a contradiction. So (R9) = 1.

Given € A ,,we have "' € A, sgthere is a p > 1 so that ! is in the Reverse Holder
class RH,. Choose d° so that d’p = d. Again, argue by contraction. Fix T so that the
infimum in (4.3) is zero. Then, we can find a sequence of cubes Q; — Qr sothat each Q;
contains a set E; with fEjg being pairwise disjoint, and 2|E;| > |Q;|. Finally, by
equidistribution of A, weights, (x) < ‘(Q;)® forx € E;. Then, it follows that

X Z X
P(Qr) 2 P(x)dx & 1 =1:]

Ej j
But, "P must be locally in L, so we have a contradiction, which yields (2) holds.
Lemma 4.4. For € A,(R) we have C,(R) < VMO(R).

Proof. From Definition 2.3, for every b € C%(R), it suffices to check the three conditions.
The first of these conditions is that the contribution from oscillations on large scales tends to
zero. This follows from compactness and (R) = 1.

The second concerns medium scales. Oscillations should be bounded, but that follows
from b being bounded. Third, oscillations at small scales should vanish. For b € Cé(R),
we can assume that kDbk; < 1. We have

b(x) - b(y) = Db(y) (x- y)+ O(|x- y|*):

That is, in the direction of Vb(y), the difference grows like jx - yj, but is otherwise of
small order.Z Tzhen, it follows that for a interval | with side length at most one,
1
mi lb(x) - b(y)| dydx. [I]*:
[
This integral has to be divided by (I) & ’(I)“do, where 0 < d%< 1. But then from
(4.3), the conclusion follows.
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Lemma 4.5. For v € A,(R) we have @MO(R) = Cﬁ}MO(R)_

Proof. For the proof, we need only show tha?;zBMO(R) cTBIBMO(R): Fix b € C2(R),

and a smooth non-negative compactly supported kernel , with integral equal to one. Set
i(x) = 20 (x2), for j € N. Then, ;[Jb converges to b in the BMO(R) norm, as
follows from the proof of Lemma 4.4. It is als in Cl(R). Hence, b € c1BMOm),
Proof of Theorem 4.1. By Lemma 4.5, it suffices to verify that CZM;O(R) = VMO(R). But,
the inclusion ‘c’ is the content of Lemma 4.4. So we should show that every function €
VMO(R) can be approximated by a function in C2(R).
But using the notation ; from the previous proof, we have ;[Ib converges to b in

BMO norm. And  [Ib e c2®°® o5 the proof is complete.

4.2. Nice functions are not necessarily in VMO(RY) when d > 1. We construct an
example of a smooth function g and weight € A, such that g is not even in BMO(RY) when
d> 1.

The point is that A, weights can vanish at a point, with the vanishing order allowed
to be as large as d on R9. There is no such requirement for smooth functions, of course. Let
d = 2. Take w(x) := jxj?" for € (0;1). Then w € A, and moreover, we get

VA VA

w(x)dx = . 1

— . xirdx o~ i
jBrj s, jBij s,

Take

- 14
X1 e tixi ;o jxj< 1;
0; ixj= 1:

g(x) :=

Then it is easy to see that g € C§ (R?), RB g(x)dx = 0 for any ball B, centered at the
origin, and J'B'}rj 8, jg(x)jdx =~ r for0< r < 1. (That is, g has a zero of order 1 at the
origin.)
The function g(x) is not in BMO,,(R?), since
Z
1

olx) - an idy o S didx =
w(B)) B,Jg(x) geJdx = U BrJg(X)J X~ o

and this goesto 1 asr ! 0*.

’

The example prompts the referee to raise the question of identifying a class of smooth

functions ® on RY for which @ " 2" = VMO,,. A satisfactory answer here would make

the discussion of the compactness of the operators in the two weight setting parallel to
that of the unweighted theory. In dimensions d > 2, the description of ® should linked to
the reverse Holder index of the weight w, and sensitive to the zeros of the weight. Doing
so seems to require some insights which we do not currently have.
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5. Product Setting: weighted little vmo space and compactness

We show that our main results and methods above can be applied to the product setting
to characterize the two weight compactness for commutators with respect to little vmo
spaces. Note that the characterization of the two weight boundedness of commutators
with respect to little bmo spaces was obtained in [5]. For the sake of simplicity, we only
consider the commutator of double Riesz transforms and a symbol b in little bmo, that is
[b;P(l)JP(Z)]K where P(l)j is the jth Riesz transform on R"t and P(i) is the kth Riesz
transform on R"2,

To begin with, we now recall the product A,(R"t x R"2) weights.

Definition 5.1. Let w(xy; X2) be a nonnegative locally integrable function on R"t x R"2,
For 1< p< 1, wesay w is a product A, weight, written as w € A, (R"t x R"2), if
VA ! Z ! Lp'l
1 °*
[W]a,(RhixRr2) 1= SUp - w B- = < 1:
R R R W
Here the supremum is taken over all rectangles R := I; x I, < R"t x R"2, where |; is a
cube in R"i fori = 1;2. The quantity [W]a,(rm1xrn2) is called the A, constant of w.

Next we recall the weighted little bmo and vmo spaces on R"t x R"z,

Definition 5.2. For 1< p< 1 and w € A,(R"* x R"2), the weighted little bmo space
bmoy (R"t x R"2) is the space of all locally integrable functions b on R"* x R"2 such that

1
KbemoW(RnlxR“Z) = SUp ——— jb(Xl,' Xz) - ijdxldxz < 1,
R W(R) g

where the supremum is taken over all rectangles R := I; x I, © R"t x R"2, where |; is a
cube in R"i fori = 1;2.

Definition 5.3. For 1< p< 1 and w € A;(R"t x R"2), the weighted little vmo space
bmoy (R" x R"2) is the space of all b in bmo,,(R" x R"2) such that

1
(i) lim  sup —— jb(xy;x2) - bgrjdxidx; = 0;
al!0 R: diam(R)=a W(R) RZ

1
(ii)) lim  sup —— jb(xg;xz2) - bgjdxidx; = 0;
all R diam(R)=a W(R) Rr
1
(i) lim sup —— jb(x1;x2) - brjdxidx; = 0;
ar RcRdnB((xél);Xéz))}a)W(R) R

where (x(ol); xgz)) is any fixed point in R"t x R"2. where the supremum is taken over all

rectangles R := I; x I, © R"t x R"2, where |; is a cube in R"i fori = 1;2.

Theorem 5.4. Suppose 1 < p < 1, two weights ; € Ay(R"t x R"2) and =
(=)¥7P. Suppose that b € bmo(R" xR"2), P(jl) is the jth Riesz transform on R"t and
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that b € vmo(R"t x R"2) if and only if the commutator [b;Pj(l)P(kz)] cLP() ! LP()is
compact.

We point out that when b € vmo(R" x R"2), the compactness argument follows
from the same idea and technique as in the proof of Theorem 1.2 with the splitting of the

Riesz transforms P(jl) and P'?) into four parts respectively. The reverse argument follows
directly from the approach in the proof of Theorem 1.4. For the details, we omit here.

Acknowledgment: The authors would like to thank the referees for their careful read-
ing, patient reviewing, valuable corrections and constructive comments, which improved
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