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C O M PAC T N E S S  OF COMMUTATOR OF R I E S Z  T R A N S FORM S
IN T H E  TWO WEIGHT S E T T I N G

MICHAEL LACEY AND JI LI

A b s t r a c t .  We characterize the compactness of commutators in the Bloom setting.
Namely, for a suitably non-degenerate Calderón–Zygmund operator T , and a pair of
weights ; !  Î A p ,  the commutator [T; b] is compact from L p ( )  !  L p ( ! )  if and only if b Î
VMO, where  =  ( = ! ) 1 = p .  This extends the work of the first author, Holmes and Wick.
The weighted VMO spaces are different from the classical VMO space. In dimension d
=  1, compactly supported and smooth functions are dense in VMO, but this need not
hold in dimensions d ³  2. Moreover, the commutator in the product setting with
respect to little VMO space is also investigated.

1. Int roduct ion

Let  be a weight on Rd, i.e. a function that is positive almost everywhere and is
locally integrable. For 1 <  p <  1 ,  define Lp () to be the space of functions f  satisfying

kfkLp ()  : = d  jf(x)jp (x)dx 
1=p 

<  1 .
In [1], Bloom considered the behavior of the commutator [b; H] : Lp () !  L p ( ! ) ,

where H  is the Hilbert transform on R. When  =  !  =  1, it is well-known that the
boundedness of [b; H] is characterized by b Î B M O ( R )  [2, 12], and the compactness
of [b; H] is characterized by b Î VMO(R)  [14]. Bloom worked out the setting for
; !  Î Ap (R)  and  ,  ! .  He showed that for 1 <  p <  1 ,  two weights ! ;  Î Ap  and  =
(=!)1 = p ,  [b; H] is bounded from Lp () to L p ( ! )  if and only if the symbol b is in the
weighted BMO space B M O ( R )  (for the definitions of Ap  weight and BMO(R) ,  see
section 2). Recently, Holmes, Wick and the first author [4] established this character-
ization of two-weight boundedness for the commutator of Riesz transforms [b; Rj] in Rd, d
³  2, j  =  1; : : : ; d, using a new method via representation formula from Hytönen and
decomposition via paraproducts. It was further studied by Lerner–Ombrosi–Rivera-Ríos
[11] via sparse domination, and by Hytönen [7] via a new weak factorization technique
(comparing to [15]).
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However, characterization of the two-weight compactness of [b; Rj], j  =  1; : : : ; d,
([b; H] in dimension 1) is missing up to now. We fill in this gap as follows.

Theorem 1.1. Suppose 1 <  p <  1 ,  two weights ;  Î Ap  and  =  (=)1=p. Suppose that b
Î BMO(Rd ) ,  Rj is the j-th Riesz transform on Rd , j  =  1; 2; : : : ; d. Then we obtain that
b Î VMO(Rd ) if and only if the commutator [b; Rj] : Lp () !  Lp () is compact.

Some approaches to this Theorem will not succeed. For instance, Uchiyama [15] used
the fact that VMO(Rd ) is the closure of C 1 ( R d )  (smooth functions with compact sup-
port) under the BMO(R d )  norm. However, this is not necessarily true in the two weight
setting when d ³  2, see §4. Another recent argument of Hytönen [8] shows that com-
pactness can be extrapolated, recovering compactness of commutators in the one weight
setting. It would be interesting to extend that argument to the two weight setting.

The sufficiency of Theorem 1.1 holds more generally. We note that this sufficiency
argument holds not just for Riesz transforms but also for general Calderón–Zygmund
operators T with the associated kernel K(x; y). We formulate it as follows. Recall that
a Calderón-Zygmund operator T (bounded on L2 (Rd )) associated to a -standard kernel
K(x; y)  is an integral operator defined initially on f  Î C0  (Rd ):

T (f)(x) : = K(x; y)f(y)dy; x < suppf;
R d

where K(x; y)  satisfies the size and smoothness estimates

jK(x; y)j £  
jx -  yjd ;

jK(x +  h; y) -  K(x; y)j  +  jK(x; y +  h) -  K(x; y)j £  C
jx -  y j n +

for all jx -  yj >  2jhj >  0 and a fixed  Î (0; 1].
Theorem 1.2. Suppose T is a Calderón–Zygmund operator as above, 1 <  p <  1 ,  two
weights ;  Î Ap  and  =  (=)1=p, and b Î VMO(Rd ).  Then the commutator [b; T ] is compact
from Lp () to Lp ().

The main idea of proving this argument is to split [b; T ] into two parts, A  and B, where
the norm of A  is at most , and B  is a compact operator.

Next we provide the argument for the necessity of Theorem 1.1. We note that this
necessity argument holds for general operators with the non-degenerate condition on the
kernel (formulated in [7]). We state it as follows.

We say that the operator T satisfies the non-degenerate condition if: there exist
positive constants c0 and C0  such that for every x Î Rd and r >  0, there exists
y  Î B(x; C0 r)nB(x; r) for which the kernel K(x; y)  satisfies

(1.3) jK(x; y)j ³  
c0rd :
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Theorem 1.4. Suppose 1 <  p <  1 ,  two weights ;  Î Ap  and  =  (=)1=p, b Î BMO(Rd ) .
Suppose that T satisfies the non-degenerate condition and that [b; T ] is compact from
Lp () to Lp (). Then b Î VMO(Rd ).

The main idea of proving this argument is to seek a contradiction, which, in its simplest
form, is that there is no bounded operator T : ‘p (N) !  ‘p (N) with Tej =  Tek ,  0 for
all j; k Î N. Here, ej is the standard basis for ‘p(N). Thus, the main step is to construct
norm one, disjointly supported functions fgjg Ì Lp () such that [b; T ]gj »   ,  0.

Remark 1.5. We point out that if T is a Calderón–Zygmund operator on L2 (Rd ) and T
satisfies the non-degenerate condition, then we obtain that there exist absolute constants
3 £  A 1  £  A 2  such that for any ball B  =  B(x0 ; r), there is another ball B  : =  B(y0 ; r) such
that A1 r  £  jx -  yj £  A2 r, and for all (x; y) Î (B ´  B), K(x; y)  does not change sign
and (1.3) holds. In fact, this argument is enough for us to deduce the above theorem.

Remark 1.6. We also point out that our result and proof hold in a more general setting:
spaces of homogeneous type, to cover many examples of Calderón–Zygmund operators
beyond the Euclidean setting.

We now study the weighted VMO space VMO(Rd ),  Î A2 , which is of independent
interest with the unweighted case known around 40 years ago. We show that VMO(Rd ) has
totally different properties between d =  1 and d >  1.

Theorem 1.7. VMO(R)  is the closure of C 1 ( R )  under the B M O ( R )  norm. However,
this is not necessarily true when d ³  2.

This paper is organized as follows. In Section 2 we provide the definitions for Mucken-
houpt weights, weighted BMO and VMO spaces. In Section 3 we prove Theorem 1.1 via
showing Theorems 1.2 and 1.4. In Section 4 we prove Theorem 1.7. In the last section,
we discuss the two weight compactness in the product setting with respect to little VMO
spaces.

Throughout this paper, we use the standard notation “A .  B” to denote A  £  C B  for
some positive constant C  that depends only on the dimension d.

2. Pre l iminar ies

Definition 2.1. Let w(x) be a nonnegative locally integrable function on Rd. For 1 <
p <  1 ,  we say w is an Ap-weight, written w Î Ap (Rd ), if

Z !  �Z ! 1 = ( p - 1 )
�p - 1

[w]Ap : =  sup -  w �- � <  1 :
B B

Along the way, we will need different properties of Ap  weights, which we will mention
as they are needed.
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Next we use Ap , 1 <  p <  1 ,  to denote the Muckenhoupt weighted class on Rd (see
the precise definition of Ap  in Section 2), and the Muckenhoupt–Wheeden weighted BMO
on Rd is defined as follows.

Definition 2.2. Suppose w Î A 1 .  A function b Î L1 
c (Rd ) belongs to BMOw (Rd )  if

kbkBMO w (Rd )  : =  sup 
w(B) B  

jb(x) -  bBj dx <  1 ;

where bB : =  jBj      B  b(x)dx and the supremum is taken over all balls B  Ì Rd.

The weighted VMO space on Rd is defined as follows.

Definition 2.3. Suppose w Î A 1 .  A function b Î BMOw (Rd )  belongs to VMOw (Rd )
if

(i) lim sup
1

jb(x) -  bBj dx =  0;
B: r B = a                       B

(ii) lim  sup
1

jb(x) -  bBj dx =  0;
B: r B = a                       B          Z

(iii) lim sup jb(x) -  bBj dx =  0;
BÌRd nB(x0 ;a)                      B

where x0 is any fixed point in Rd.

3. P r o o f  o f  Main result :  Theorem 1.1

It is clear that Theorem 1.1 follows from Theorem 1.2 and Theorem 1.4. In what
follows, we provide the proofs of these two theorems.

Proof of Theorem 1.2. This is seen as follows. Suppose b Î VMO(Rd ) with kbkBMO (R d )  =
1. We show that for any fixed 0 <   <  1, we have [b; T ] =  A  +  B, where the norm of A
is at most , and B  is a compact operator.

Fix  >  0 small enough. Denote the kernel of T by K(x; y). Set K  = 3 Kt , where
each K j  is a Calderón–Zygmund kernel, and

K(x; y); 0 <  |x -  y |  <  ;
0 0; |x -  y |  >  2;

K(x; y); |x -  y |  >  1=;
1 0; |x -  y |  <  1=(2)

K2 (x; y) ,  0 = ) |x |  >  1= or |y |  >  1=;

K3 (x; y) is supported on |x |; |y |  <  2=:

Write Tj for the operator associated to the kernel Kj . We claim that

k [b; Tj ]kL p ( ) ! L p ( ! )  .  ; j  =  0; 1; 2;
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where  decreases to zero as  does. Consider the case of j  =  1. The contribution to the
norm estimate above from B M O  norm only arises from the weighted oscillation over

the cubes of side length greater than 1=2. Indeed, write out the operator as
Z Z

(b(x) -  b(y))K1 (x; y)f(y) dy = (b(x) -  b(y))K0 (x; y)f(y) dy:
| x - y | ³ 1 = 2

The oscillation of the symbol on intervals of length smaller than  are irrelevant to the
norm properties of the operator. Following any proof of the upper bound for the
commutators in the Bloom setting will show that this operator has norm that decreases
to zero in .

For K1, the only contribution from b is the oscillation over cubes of side length at least
1=, and for K2, only oscillations for cubes which are either large, or at least a distance 1=
from the origin. In each case, the norm is small. We now choose  =  ()  small enough, then
we have k [b; Tj ]kL p ( ) ! L p ( ! )  .   for j  =  0; 1; 2.

It remains for us to argue that [b; T3] is a compact operator. This is not quite trivial,
due to the commutator structure, and the delicate nature of the weighted B M O  space.
For cubes P; Q of the same side length, let KP;Q (x; y) be a smooth kernel supported on
P ́ Q ,  and with |KP;Q (x; y) |  .  |P | - 2 .  It follows from elementary facts about B M O  that the
commutator

Z Z
CP; Q f(x) =  b(x) KP; Q (x; y)f(y) dy - KP; Q (x; y)b(y)f(y) dy

is bounded from Lp () !  Lp (), with norm that depends only on the relative positions of P
and Q. And, clearly, CP;Q has compact range. The operator T3 can be well approximated by a
finite sum CP  ;Q . Hence, [b; T3] is compact. The proof of Theorem 1.2 is
complete.

Proof of Theorem 1.4. Now assume that b Î BMO(R d )  such that [b; T ] is compact from
Lp () to L p ( ! ) . But, for the sake of contradiction, further assume that b <
VMO(Rd ).

The main idea of getting contradiction is as follows: on a Hilbert space H, with
canonical basis ej, j  Î N, an operator T with Tej =  v, with non-zero v Î H, is necessarily
unbounded. We will see that, for example when p =  2, a compact commutator from
L2 () !  L 2 ( ! )  with symbol b Î BMO(R d )  n VMO(Rd ) satisfies a variant of this
condition.

Suppose that b < VMO(Rd ), then at least one of the three conditions in Definition 2.3
does not hold. The argument is similar in all three cases, and we just present the case that
the first condition in Definition 2.3 does not hold. Then there exist 0 >  0 and a sequence
of balls fBjgj=1 =  fBj (xj ; rj )gj=1 Ì Rd such that rj  !  0 as j  !  1  and that

(3.1)
(Bj )  B j  

jb(x) -  bBj jdx ³  0:
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Without loss of generality, we can further assume that

(3.2) 4r j i + 1  £  rj i :

According to the non-degenerate condition (1.3): there exist constants 3 £  A 1  £  A2

and a ball Bj  : =  B(yj ; r j )  such that A1 r j  £  jxj - y j j  £  A2 rj , and for all (x; y) Î (Bj  ´ B j ) ,
K(x; y)  does not change sign and

(3.3) jK(x; y)j & 
1 

:
j

Let mb(Bj ) be a median value of b on the ball Bj . Namely, mb(Bj ) is a real number
so that the two sets below have measure at least 2 |Bj |.

Fj;1 Ì fy Î Bj  : b(y) £  mb(Bj)g; Fj;2 Ì fy Î Bj  : b(y) ³  mb(Bj)g:

Next we define Ej;1 =  fx Î B : b(x) ³  mb(Bj)g; Ej;2 =  fx Î B : b(x) <  mb(Bj)g:
Then Bj  =  Ej;1 È Ej;2 and Ej;1 Ç Ej;2 =  Æ. And it is clear that

b(x) -  b(y) ³  0; (x; y) Î Ej;1 ´  Fj;1; b(x) -  b(y) <  0; (x; y) Î Ej;2 ´  Fj;2:

And for (x; y) in (Ej;1 ´  Fj;1) È (Ej;2 ´  Fj;2), we have

jb(x) -  b(y)j =  jb(x) -  mb(Bj)j +  jmb(Bj) -  b(y)j ³  jb(x) -  mb(Bj)j:

We now consider

Fj;1 : =  Fj;1n 
[  

B ‘
‘= j + 1

and Fj;2 : =  Fj;2n 
[  

B ‘ ; for j  =  1; 2; : : : :
‘= j + 1

Then, based on the decay condition of the measures of fBjg as in (3.2) we obtain that for
each j,

(3.4) jFj;1j ³  jFj;1j -  
 [  

B ‘
 
³  

1
jBjj -  

1      
˜ ‘

 
³  

1
jBjj -  

1
jBj j =  

1
jBjj:

‘= j + 1 ‘= j + 1

Similar estimate holds for Fj;2.
Now for each j, we have that

Z

(Bj )  B j  

jb(x) -  bBj jdx

(Bj )  
ZBj  

b(x) -  mb(Bj )dx
Z=  

(Bj )  E j ; 1  

b(x) -  mb(Bj )dx +  
(Bj )  E j ; 2  

b(x) -  mb(Bj)dx:
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Thus, combining with (3.1) and the above inequalities, we obtain that as least one of the
following inequalities holds:

(Bj )  E j ; 1  

b(x) -  mb(Bj ) 2 (Bj )  E j ; 2  

b(x) -  mb(Bj ) 2

Without lost of generality, we now assume that the first one holds, i.e.,

(Bj )  E j ; 1  

b(x) -  mb(Bj )dx ³  
2 

:

Therefore, for each j, from (3.3) and (3.4) we obtain that
Z

4 (Bj )  E j ; 1  

b(x) -  mb(Bj )dx

.  
(Bj )  

j
jBj

jj 

E j ; 1  

b(x) -  mb(Bj )dx

. jK(x; y)jb(x) -  b(y)dydx: j
E j ; 1        Fj ;1

Next, since for x  Î Ej;1 and y  Î Fj;1, K(x; y)  does not change sign and b(x) -  b(y) does
not change sign either, we obtain that

 Z Z
0 .  K(x; y)  b(x) -  b(y) dydx j

E j ; 1        Fj ;1

.
1

[b; T ]( )(x)  dx
(Bj ) p  0(Bj) p 0 E j ; 1

!

=  
0(Bj) p 0 E j ; 1  

[b; T ] 
(B

;

) p
(x)

 
dx;

where 0(x) =  - p - 1  (x), and in the last equality, we use p0 to denote the conjugate index of
p.

Next, by using Hölder’s inequality we further have

 .
1

j[b; T ](f )(x)j p  ( x ) - p  (x)dx
0(Bj) p 0 E j ; 1

! 1

.  
0(Bj) p 0 

0(Ej;1) p 0

R d  
[b; T ](fj )(x)

p
(x)dx 

p  

Z

                                              ! p

. [b; T ](fj )(x) (x)dx ;
R d
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where in the above inequalities we denote

f j  : =  
(B

;

) p  
:

This is a sequence of disjointly supported functions, by (3.4), with kfj kLp ()  '  1.
Return to the assumption of compactness, and let  be in the closure of f[b; T ](fj)gj.

We have kkLp () & 1. And, choose j i  so that

k -  [b; T ](fji )kLp () £  2 - i :  We

then take non-negative numerical sequence faig with

kfaigk‘p 0 <  1 but kfaigk‘1 =  1 :

Then, = i  a i f j i  Î Lp (), and
1

a i  -  [b; T ] £  a i   -  [b; T ](fj

i L  () i = 1 L p ( )

£  kaik‘p 0     

X
k  -  [b; T ](fji )kLp () 

1=p 
.  1:

So 
P  

a i  Î Lp (). But 
P  

a i  is infinite on a set of positive measure.
contradiction that completes the proof. This is a

4. Pro pert ies  f o r  VMO(Rd ): p r o o f  o f  Theorem 1.7

In this section we prove Theorem 1.7. We split it into two subsections. In the first
subsection we show that smooth compactly supported functions are dense in VMO  in
dimension one. In the second, we construct a counterexample: a nice function f, which
is not even in BMO(Rd ),  d ³  2.

4.1. VMO(R)  is the closure of C 1 ( R )  under the B M O ( R )  norm. We provide the
following characterization of VMO(R),  which is parallel to the well-known result in the
unweighted setting, however, it is new in this weighted setting.

Theorem 4.1. For  Î A2 (R),  we have C0  
B M O ( R )  =  VMO(R) .

This elementary Lemma is needed.

Lemma 4.2. Let  Î A2 (Rd ). Then,
(1) we have (Rd ) =  1 ;
(2) there is a 0 <  d0 =  d[]A2 

<  d so that for any T >  1, we have

(4.3)
(Q)

Q  : QÌ [-T;T ]d  ‘(Q)d+d 0

‘ ( Q ) £ 1
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Standard examples show that the second result is optimal. Let QT  =  [-T; T ]d. We will
systematically suppress the dependence of various constants on the A 2  constants of the
weights.

Proof. For both, we argue by contradiction.
Assume (Rd ) <  1 .  The A 2  product is always at least one. So, for all k  Î N we have -

1 (Q 2 k )  & 22kd. And, so by equidistribution of - 1 ,
- 1 (Q 2 ( k + 1 )  n Q2 k )  & 22kd:

Now, v - 1  is an A2  weight, so by Muckenhoupt’s theorem, the maximal function M ( f )  is
bounded from L 2 ( - 1 )  to L2 ( - 1 ) ,  where M  is the standard Hardy–Littlewood maximal
function on Rd. Apply it to 1Q1 , so see that

kM(1Q 1 )k2
2 ( - 1 )  & 2 - 2 k d - 1 (Q 2 k + 1  n Q2 k )  =  1 :

kÎN

This is a contradiction. So (Rd ) =  1 .
Given  Î A  , we have - 1  Î A  , so there is a p >  1 so that - 1  is in the Reverse Holder

class RHp. Choose d0 so that d0p =  d. Again, argue by contraction. Fix T so that the
infimum in (4.3) is zero. Then, we can find a sequence of cubes Q j  Ì QT  so that each Q j
contains a set E j  with fEjg being pairwise disjoint, and 2 |Ej | >  |Qj |.  Finally, by
equidistribution of A 2  weights, (x) £  ‘(Qj )d      for x  Î Ej . Then, it follows that

- p (Q T )  ³  
X

- p (x )  dx & 
X

1  =  1 :  j
E j                                                         j

But, - p  must be locally in L1, so we have a contradiction, which yields (2) holds.

Lemma 4.4. For  Î A 2 (R)  we have C0 (R)  Ì VMO(R) .

Proof. From Definition 2.3, for every b Î C2 (R), it suffices to check the three conditions.
The first of these conditions is that the contribution from oscillations on large scales tends to
zero. This follows from compactness and (R)  =  1 .

The second concerns medium scales. Oscillations should be bounded, but that follows
from b being bounded. Third, oscillations at small scales should vanish. For b Î C2 (R),
we can assume that kDbk 1  £  1. We have

b(x) -  b(y) =  Db(y )   (x -  y )  +  O( |x -  y|2 ):

That is, in the direction of Ñb(y), the difference grows like jx -  yj, but is otherwise of
small order. Then, it follows that for a interval I  with side length at most one,

| I |  I      I
|b(x) -  b(y) |  dy dx .  |I|2 :

This integral has to be divided by ( I )  & ‘(I)1+d 0 , where 0 <  d0 <  1.
(4.3), the conclusion follows.

But then from
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Lemma 4.5. For v Î A 2 (R)  we have C0
B M O ( R )  

=  C0  
BMO(R) .

Proof. For the proof, we need only show that C2 B M O ( R )  
Ì C 1 B M O ( R ) :  Fix b Î C2 (R),

and a smooth non-negative compactly supported kernel     , with integral equal to one. Set
j (x) =  2j      (x2j ), for j  Î N. Then,      j  � b converges to b in the B M O ( R )  norm, as

follows from the proof of Lemma 4.4. It is also in C 1 ( R ) .  Hence, b Î C 1 B M O ( R ) .

Proof of Theorem 4.1. By Lemma 4.5, it suffices to verify that C2 B M O ( R )  
=  VMO(R).  But,

the inclusion ‘Ì’ is the content of Lemma 4.4. So we should show that every function  Î
VMO(R)  can be approximated by a function in C2 (R).

But using the notation     j  from the previous proof, we have     j  � b converges to b in
B M O  norm. And      � b Î C2 B M O ( R )  

so the proof is complete.

4.2. Nice functions are not necessarily in VMO(Rd ) when d >  1. We construct an
example of a smooth function g  and weight  Î A 2  such that g  is not even in BMO(R d )  when
d >  1.

The point is that A2  weights can vanish at a point, with the vanishing order allowed
to be as large as d on Rd. There is no such requirement for smooth functions, of course. Let
d =  2. Take w(x) : =  jxj2 -  for  Î (0; 1). Then w Î A 2  and moreover, we get

jBr j B r  

w(x)dx =  
jBr j B r  

jxj2-dx »  r 2 - :

Take

g(x) : =
x1  e

-
1 - j x j

  

; jxj <  1;
0; jxj ³  1:

Then it is easy to see that g  Î C0  (R2 ), 
R

B g(x)dx =  0 for any ball Br  centered at the
origin, and jB j      B  jg(x)jdx »  r for 0 <  r <  1. (That is, g  has a zero of order 1 at the
origin.)

The function g(x)  is not in BMOw (R2 ), since

w(Br ) B r  

jg(x) -  gBr jdx =  
w(Br ) B r  

jg(x)jdx »  
r 1 -  ;

and this goes to 1  as r !  0+ .
The example prompts the referee to raise the question of identifying a class of smooth

functions F on Rd for which F B M O w  =  VMOw . A satisfactory answer here would make
the discussion of the compactness of the operators in the two weight setting parallel to
that of the unweighted theory. In dimensions d ³  2, the description of F should linked to
the reverse Hölder index of the weight w, and sensitive to the zeros of the weight. Doing
so seems to require some insights which we do not currently have.



j k j k

R
�

Z Z
1
w

�

R

1
Z

a ! 0 w(R)

Z

a ! 1 w(R)

Z

a ! 1
0 0

w(R)

Z

0 0

j
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5. P r o d u c t  Set t ing:  weighted l i t t l e  vmo space and compactness

We show that our main results and methods above can be applied to the product setting
to characterize the two weight compactness for commutators with respect to little vmo
spaces. Note that the characterization of the two weight boundedness of commutators
with respect to little bmo spaces was obtained in [5]. For the sake of simplicity, we only
consider the commutator of double Riesz transforms and a symbol b in little bmo, that is
[b; R (1)R (2) ], where R ( 1 )  is the jth Riesz transform on Rn 1  and R ( 2 )  is the kth Riesz
transform on Rn 2 .

To begin with, we now recall the product Ap (Rn 1  ´  Rn 2 )  weights.

Definition 5.1. Let w(x1; x2) be a nonnegative locally integrable function on Rn 1  ´ R n 2 .
For 1 <  p <  1 ,  we say w is a product Ap  weight, written as w Î Ap (Rn 1  ´  Rn 2 ), if

!  � !  1   �p- 1
p - 1

[w]A p (R n 1 ´R n 2 )  : =  sup -  w - <  1 :
R                    R

Here the supremum is taken over all rectangles R : =  I1  ´  I2  Ì Rn 1  ´  Rn 2 , where I i  is a
cube in R n i  for i  =  1; 2. The quantity [w]A p ( R n 1 ´R n 2 )  is called the Ap  constant of w.

Next we recall the weighted little bmo and vmo spaces on Rn 1  ´  Rn 2 .

Definition 5.2. For 1 <  p <  1  and w Î Ap (Rn 1  ´ R n 2 ) ,  the weighted little bmo space
bmow(Rn1 ´ R n 2 )  is the space of all locally integrable functions b on Rn 1  ´ R n 2  such that

kbkbmow (Rn 1 ´Rn 2 )  =  sup 
w(R) R 

jb(x1; x2) -  bRjdx1dx2 <  1 ;

where the supremum is taken over all rectangles R : =  I1  ´  I2  Ì Rn 1  ´  Rn 2 , where I i  is a
cube in R n i  for i  =  1; 2.

Definition 5.3. For 1 <  p <  1  and w Î Ap (Rn 1  ´  Rn 2 ), the weighted little vmo space
bmow(Rn1 ´  Rn 2 )  is the space of all b in bmow(Rn1 ´  Rn 2 )  such that

(i) lim sup
1

jb(x1; x2) -  bRjdx1dx2 =  0;
R: diam(R)=a                      R

(ii) lim sup
1

jb(x1; x2) -  bRjdx1dx2 =  0;
R: diam(R)=a                      R

(ii) lim sup
1

jb(x1; x2) -  bRjdx1dx2 =  0;
RÌRd nB((x(1) ;x(2) );a)                      R

where (x(1) ; x(2) ) is any fixed point in Rn 1  ´  Rn 2 . where the supremum is taken over all
rectangles R : =  I1  ´  I2  Ì Rn 1  ´  Rn 2 , where I i  is a cube in R n i  for i  =  1; 2.

Theorem 5.4. Suppose 1 <  p <  1 ,  two weights ;  Î Ap (Rn 1  ´  Rn 2 )  and  =
(=)1=p. Suppose that b Î bmo(Rn1 ´ R n 2 ) ,  R ( 1 )  is the jth Riesz transform on Rn 1  and
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R ( 2 )  is the kth Riesz transform on Rn 2 , j  =  1; 2; : : : ; n1; k  =  1; 2; : : : ; n2. Then we obtain
that b Î vmo(Rn1 ´ R n 2 )  if and only if the commutator [b; R (1) R (2) ] : Lp () !  Lp () is
compact.

We point out that when b Î vmo(Rn1 ´  Rn 2 ), the compactness argument follows
from the same idea and technique as in the proof of Theorem 1.2 with the splitting of the
Riesz transforms R ( 1 )  and R ( 2 )  into four parts respectively. The reverse argument follows
directly from the approach in the proof of Theorem 1.4. For the details, we omit here.

Acknowledgment: The authors would like to thank the referees for their careful read-
ing, patient reviewing, valuable corrections and constructive comments, which improved
the exposition of the manuscript.
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