

Long-term soil fungal community recovery after fire is impacted by climate change

SPENCER McGEE¹, ALYSSA TIDWELL¹, ERIN RIGGS¹, HANNAH VELTKAMP¹, AND GEOFFREY ZAHN^{1,*}

¹Biology Department, Utah Valley University, Orem, UT 84058

ABSTRACT.—Though much is known about fungal importance to forest health, there is very little information about factors that impact recovery times of soil fungal communities after a fire. Soil samples were taken from burn sites in one ecotype of temperate coniferous forest in Utah over a 20-year chronosequence. Sites were selected from available historic burns and were similar in plant community structure, elevation, slope, and aspect. Fungal DNA from these samples was compared to soil from paired unburned sites nearby to measure community similarity and estimate soil fungal recovery rates. Differences between paired burned and unburned sites remained fairly stable over a decadal time scale overall, but fungal community structure was found to recover more quickly in areas with a higher average annual temperature. A significant positive correlation in community recovery was seen in areas with a difference of as little as 0.2°C per year. The only other environmental variable that significantly interacted with time since burn was annual mean precipitation. As global temperatures increase, alpine fires are increasing as well, but these results suggest that fungal community recovery time will be shortened under new climate scenarios.

RESUMEN.—A pesar de que se conoce mucho acerca de la importancia de los hongos para la salud de los bosques, existe escasa información sobre los factores que influyen en el tiempo de recuperación de la comunidad fúngica del suelo después de un incendio. Se tomaron muestras de suelo de lugares quemados dentro de un ecotipo de bosque templado de coníferas en Utah a lo largo de una cronosecuencia de 20 años. Los lugares se seleccionaron de entre las quemas históricas disponibles y que fueron similares en cuanto a su aspecto, estructura de la comunidad vegetal, elevación y pendiente. El ADN fúngico de estas muestras se comparó con el del suelo de lugares cercanos no quemados con el objetivo de medir la similitud de la comunidad y estimar las tasas de recuperación de los hongos en el suelo. En general, las diferencias entre los sitios comparados quemados y no quemados se mantuvieron estables a lo largo de una escala temporal decenal. No obstante, se encontró que la estructura de la comunidad fúngica se recuperó más rápidamente en áreas con temperatura media anual más alta. Se observó una correlación positiva significativa en la recuperación de la comunidad en áreas con una diferencia de tan sólo dos grados Celsius por año. La otra variable ambiental que interactuó significativamente con el tiempo transcurrido desde la quema fue la precipitación media anual. A medida que aumentan las temperaturas globales, también aumentan los incendios alpinos. Sin embargo, los resultados de este estudio sugieren que el tiempo de recuperación de la comunidad fúngica se acortará bajo los nuevos escenarios climáticos.

The effect of fires on belowground microbial communities has received increased attention in the past decade due to the *Fire on the Hill* project, we define “recovery” as resistance of microbes to overall ecosystem disturbance and resemblance to a nearby unburned plot. It is important to note that no fungal community can be “fully recovered” given that communities are constantly changing. Unburned fungal community trajectories (Knelman et al. 2015, Weidner et al. 2015, Sikes et al. 2016). Ecosystem recovered communities begin to more closely resemble from fire disturbance is thus dependent on adjoining unburned sites, we treat microbes that facilitate plant successional changes as “recovery” in the sense that fire effects either directly via obligate symbioses (Dicker et al. 2017) or indirectly via processes such as edaphic properties and plant resource liberation and soil stabilization influences.

*Corresponding author: gzahn@uvu.edu

GZ orcid.org/0000-0002-8691-692X

Currently, the reported effects of fire varied between 1 and 20 years prior to our belowground microbial communities have been studied. Each burned site was paired with an unburned site to serve as controls, that full recovery to prefire conditions took a total of 22 sites. Sites were placed on a decadal timescale (Treseder et al. 2004, Holden et al. 2013, Köster et al. 2014) to maximize similarity across a range of environmental variables. At each site, we reported differences between studies in collected burned and unburned soil from the varied recovery times for bacteria and fungi horizon of 3 locations, measured (Bárcenas-Moreno and Bååth 2009, Bárcenas et al. 2011) and divergent effects of vegetation samples for identification fire on microbial diversity and abundance and in herbarium curation. We used meta-differing biomes (Allison et al. 2010, Dover and Hart 2017, Hansen et al. 2019). Most studies used sequencing to characterize fungal community structure from each soil sample.

have focused on time since fire as the main effect in their particular ecosystems, and the contrasting details about microbial recovery could be specific to the climatic and properties of the biomes in which they observed. Site Selection The Utah Department of Natural Resources sourced Utah fire data for the previous 20 years. Three hundred GPS points 100 m inside of the burn boundaries were

Site Selection

Here, we conducted an observational study of a mixture of Nielsen, Sterling, and along a 20-year fire chronosequence, consisting of paired burned and unburned sites along these and other site characteristics an annual mean temperature gradient (see Supplementary Material 1 [Table SM1]), Wasatch and Uinta montane ecoregion. We built a pairwise distance matrix for every nated by pinyon pine (*Pinus edulis*) and possible combination of variables and selected juniper (*Juniperus osteosperma*) forests, a subset of the 300 sites that had minimal Utah, USA. This ecosystem is expected to continue warming at a faster rate than most other biomes, with a 20-year projected temperature (see Supplementary Material 1 mate that includes an annual mean temperature [Table SM1]). Effort was made to reduce site structure of 2 °C above baseline according to availability, especially in plant community IPCC AR5 regional synthesis report (Bastrop et al. 2014). The study design allowed for a chronosequence sampling density. All raw site test the hypothesis that a warmer climate and full code for selecting study sites can could alter belowground microbial recovery found in Supplementary Material 1. rates after fires within a single biome.

Field Collection

METHODS

Overview

A range of historic fire events was used to determine the size of the sample needed to detect differences in soil properties between sites. Three soil samples were collected from each site at a select 11 forested regions of Utah that had a history of 5 to 10 cm, 0.5 m from the site center.

Photography, site marking, and sample collection protocols were designed before fieldwork began. Three soil samples were col-

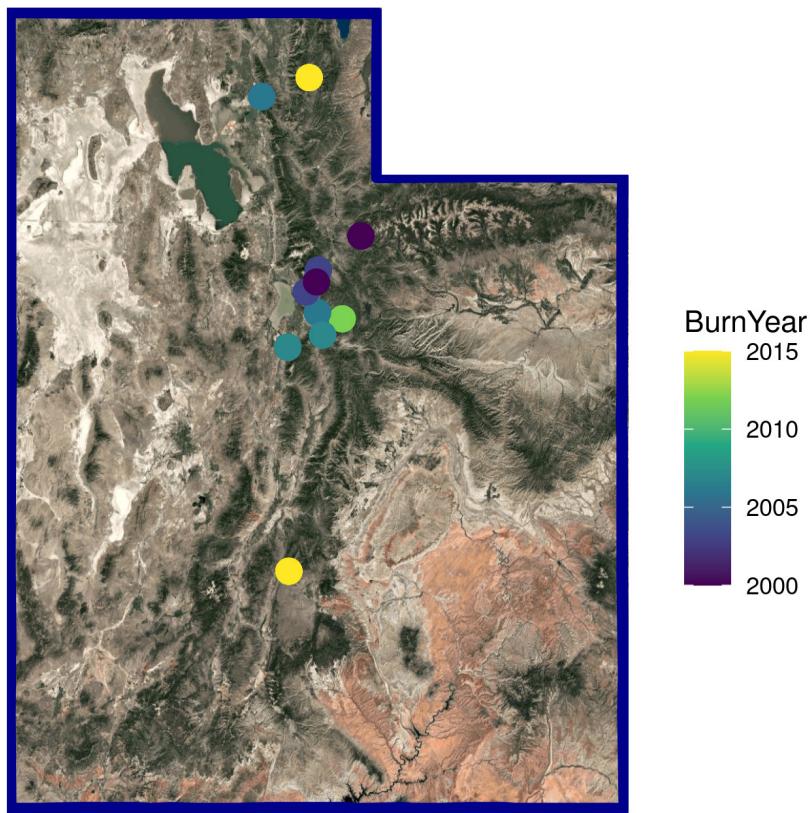


Fig. 1. Map of Utah showing fire sites considered in this study. Point color reflects the year that each site was bu

in the north, east, and west cardinal directions. Soils were frozen at -80°C within 6 h of collection. Local plant cover was recorded, and photographs were taken. Representative samples were collected for later identification. International Field Collection Forrbarcoded libraries were cleaned, normalized, and filed for each plant collection, and sequenced with the Illumina MiSeq platform. Specimens are housed in the Utah Valley University Herbarium (UVSC).

Bioinformatics

DNA Extraction and Library Preparation

Reads were demultiplexed and barcode sequences were removed by the sequencing extracted from each sample using DNase. Quality filtration and bioinformatics PowerSoil Kits (QIAGEN, Venlo, The Netherlands) were performed in R. Briefly, we extracted lands. Fungal DNA was amplified with the ITS1 region, filtered forward reads based ITS1F (CTGGTCATTAGAGGAAGTAA; on quality, utilized a clustering-free divisive Gardes and Bruns 1993) and ITS2 (GTTCTTCATCGATGC; White et al. 1990) amplicon denoising algorithm (DADA) to infer CGTTCTTCATCGATGC; White et al. 1990) amplicon sequence variants (ASVs) (Callahan primers modified with the addition of dual primers (Caporaso et al. 2011) to remove chimeras and potential mina adaptors (Caporaso et al. 2011) contaminants, and assigned taxonomy against the following protocol: 98 $^{\circ}\text{C}$ 2 min; 22 cycles of 98 $^{\circ}\text{C}$ 15 s, 52 $^{\circ}\text{C}$ 30 s, 72 $^{\circ}\text{C}$ 30 s; 72 $^{\circ}\text{C}$ 2 min). After 22 cycles, the PCR product was cleaned from all raw reads using ITSxpress

(Rivers et al. 2018). Quality control on ITSx-press output consisted of removing reads with ambiguous base calls and those with a max_{NC} of >2, and truncating each read when _{qatob} scores dropped below 20. Due to lower _{qatob} diversity, and to reduce false-positive detection, _{qatob} reverse reads were not used (Pauvert _{frame} 2019). Filtered forward reads were subjected to de novo chimera detection and removed _{regard} DADA2, and potential contaminants were _{not} inferred from extraction negatives and _{main} moved from all samples using the prevalent _{sites} method in the decontam package (Dai _{et al.} 2018). Cleaned and filtered ASVs were _{verno} assigned taxonomy with the RDP Classifier _{compe} algorithm against a custom database _{consi} of the UNITE database (v. 1.12.2017) [Fig S1] _{Fig S1} a custom set of outgroups including _{IGEup} sequences from metazoans and Viridiplantae _{plants} taken from NCBI. The outgroups added _{soil} _{soil}

RESULTS

UNITE can be found in Supplementary MateAlpha diversity was not significantly different. Any sequences matching nonfungi overall between aggregated burned and were removed. The remaining ASVs that were sites (Fig. 3), and there was no unambiguously assigned to fungi were used. A consistent pattern between burn status and all downstream analyses within the 'phylogenetic' diversity in between-site pairs. Beta R package (McMurdie and Holmes 2013). Diversity was significantly affected by burn sequences have been deposited in the NCBI Sequence Read Archive under the accession PRJNA550446. an interactive PERMANOVA model (Supple-

Statistical Analyses

All analyses were performed in R (Version 3.4.4). A PERMANOVA model of community composition as an interactive function of Burn Year, Fire Treatment, and Location was fit using the *adonis* function of the *vegan* package (Okansen et al. 2016). A Bray-Curtis dissimilarity measure was used to compare the beta diversity of the community composition. The model terms explained 16% of the variance in beta diversity, with the interaction term of time (burn year and annual mean temperature) explaining the most variance (3.4.4%). Together, these model terms explained 16% of the variance in beta diversity, with the interaction term of time (burn year and annual mean temperature) explaining the most variance (3.4.4%).

community distance matrix was generated. Mean community distance between paired sites with the `vegdist` function of the 'vegan' package and unburned sites showed a small decrease over time since burn. The community distance between paired sites at the same location was regressed against time since burn. The scale of recovery for fungi after fires and decadal annual mean temperature. However, in this study, we also found that linear mixed-effect model using the 'lme4' package (Bates et al. 2015), with paired sites as predictors of the rate of recovery (Fig. 4; linear community distance as a response and annual mean temperature was an important fixed effect) and year since burn (random effect) as predictors. $P < 0.0005$, and mean temperature (random effect) and year since burn (fixed effect) accounted for an additional 5% community similarity. P values were obtained using the 'lmerTest' package (Kuznetsova et al. 2017). Different chronoseries (Supplementary Material 1 [Table SM3]).

The abundance of taxa between burn treatments and location-specific plant community was analyzed using a beta-binomial model. The model was added to linear mixed-effect models with the 'corncob' R package (Martin et al. 2020). No significant correlation between plant cover or plant community and paired fungal

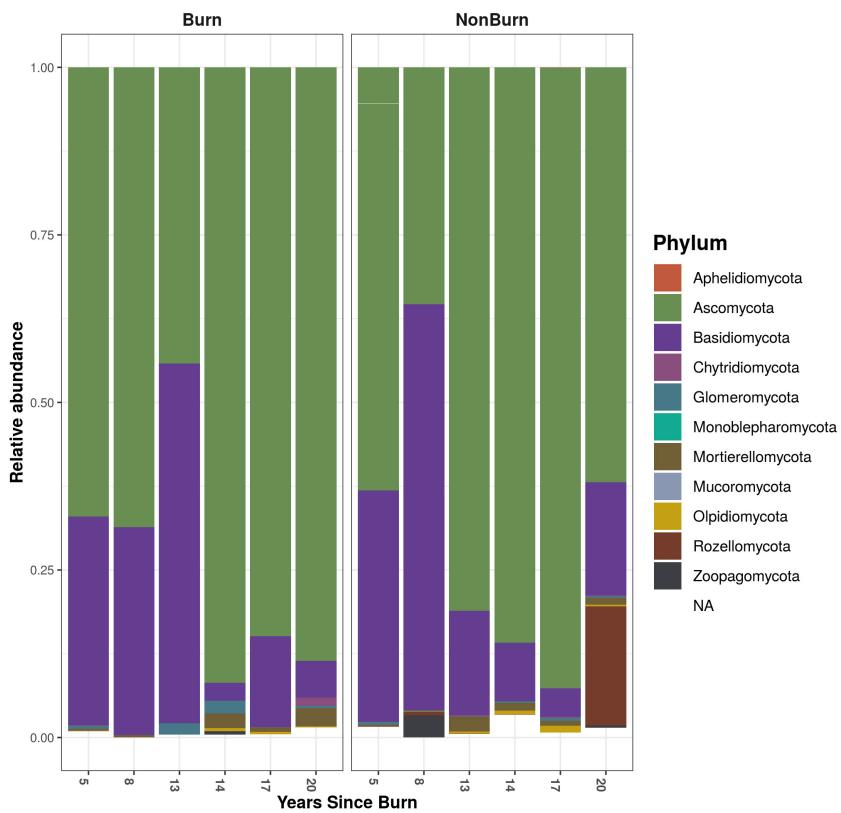


Fig. 2. Relative abundance of fungal phyla detected at each paired study location. Left panel shows the burned and right panel shows the unburned site for each pair. The x-axis reflects years since burn for the paired sites. When more than one location was represented by a given time point, the mean relative abundance was used.

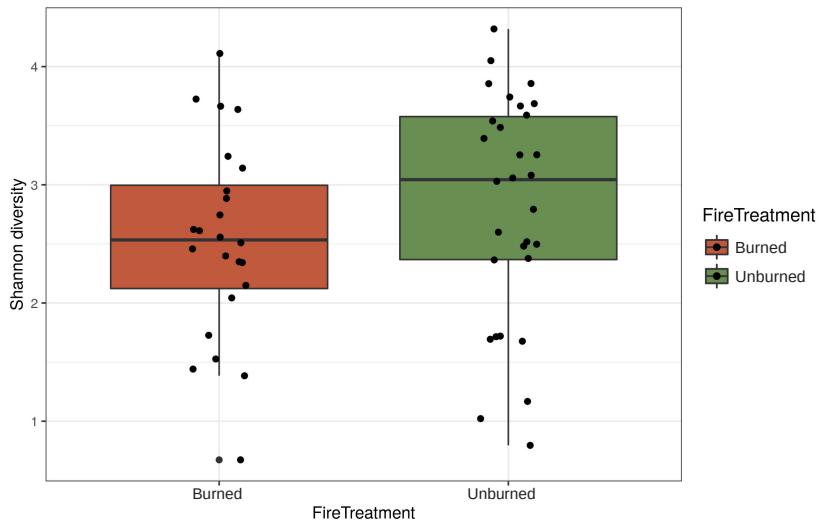


Fig. 3. Overall Shannon diversity values for all burned and unburned sites considered in this study.

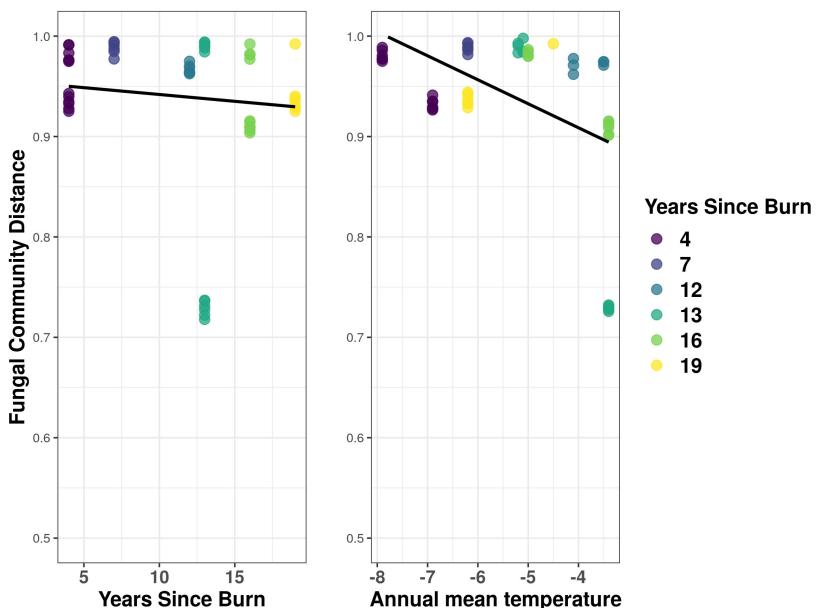


Fig. 4. Fungal community distance between the burned and unburned sites at each study location. Colors represent years since burn. Left panel shows community distance as a function of years since burn. Right panel shows the same data as a function of mean annual temperature. Regression lines were calculated as ordinary least squares linear

community distance was found. Additionally, ~~the~~ ^{the} biome show Ascomycota following Mantel test between plant and fungal community distances showed no significant correlation.

These results likely stem from the high similarity in plant communities at each location.

Differential abundance analyses yielded ~~though~~ ^{though} most studies on fungal recovery after fires have taken place in a single biome and focused on chronology as the main predictor of fungal community responses to fire can and variability in unburned sites, and vary based on fire frequency and biome type. ~~These~~ ^{These} are important observations because ~~they~~ ^{they} suggest hypotheses to help explain observed discrepancies in fungal recovery trajectories between studies.

The broad diversity patterns we observed ~~here~~, we tested whether large-scale climate factors could also help explain variance. For example, our forest soils were dominated ~~within~~ ^{within} a single biome. Comparing nearby pairs of burned and unburned sites along a forest chronosequence showed that climatic conditions since burn as other phyla such as Mucoromycota, Rozellomycota, and Olpidiomycota ~~can have a role in soil fungal community recovery trajectories. In particular, our~~ ^{can have a role in soil fungal community recovery trajectories. In particular, our} ~~detectably~~ ^{detectably} more abundant roughly 14 years after fire. However, where other work in boreal forests found that Basidiomycota ~~recovery~~ ^{recovery} is a possible example of how local environmental variation can help explain distinct differences in fungal recovery times after fires.

DISCUSSION

Temperature directly affects microbial which could be an effect of climate change activity but can also influence microbial (Supplementary Material 1 [Fig. SM2]). We community composition, competition, and were unable, however, to acquire site-specific secondary metabolite production (Bárcenas- environmental variables from 20 years prior Moreno and Bååth 2009, Yogabaanu et al. 2017), due to lower resolution of observation (Harvey 2016). Warming temperatures also affect plants from that time period.

succession trajectories (Prach et al. 2007), Additionally, climate warming is inextricably linked to other variables that have been plant succession is an important covariate of linked to other variables that have been understanding fungal succession (Rudgers et al. 2007, Davey et al. 2015, Zhang et al. 2018) as reduced soil moisture and increased Taken together, the linkages between plant and fungal succession dynamics and temperature are difficult to uncouple. By limiting trajectories. These legacy factors were not study to a single biome and to sites with considered in the present study since none of similar plant communities, we were able to selected sites had burned in the previous isolate, to some degree, the effect of temperature and all sites were from very similar on fungal recovery from fire. Other factors. Legacy sites may be important to contractors besides plant community have been considered in work of this nature.

directly linked to fungal community dynamics, however. For instance, it has been shown that soil pH and nutrient content are strong drivers of fungal community structure (Gholz et al. 2017). Since fire can have a strong impact on soil properties such as pH, nitrogen, and soil organic carbon (SOC) content of soil fungal communities is (Boerner et al. 2009), it is possible that edaphic characters varied between burned and unburned paired sites, though these are simulated in isolation, neglecting any ables were not measured in this study. Additionally, one of the site pairs in this study burned 13 years prior to observation, increase in intensity and frequency, the loss of highly similar fungal communities (Fig. 3) and ecosystem services. Removing this site did not affect the range of mean annual temperature in the model but did reduce the effect size. It is clear that local stochastic processes in community assembly can reduce our ability to detect broader patterns.

In this montane biome, with mean annual temperatures below freezing, liquid water can be a limiting resource for plant and fungal growth (Monson et al. 2002, 2006). An increase in mean annual temperature at these sites likely means more days when fungi can be metabolically active. Our results support this assumption, in that warmer temperatures led to quicker recovery times.

Due to ongoing recent climate change, any chronosequence studies must inevitably deal with the potential covariance of time since burn and mean annual temperature. There was some correlation between these 2 variables in the present study, with older sites tending toward lower mean annual temperatures, ABATZOGLOU J.T., AND A.P. WILLIAMS. 2016. Impact of anthropogenic climate change on wildfire across western US forests. *Proceedings of the National Academy of Sciences of the United States of America* 113:11770-11775.

ASZCONE, S.D., K.L. McGuire, AND K.K. TRESEDER. 2010. Resistance of microbial and soil properties to warming treatment seven years after boreal fire. *Soil Biology and Biochemistry* 42:1872-1878.

BÁRCENAS-MORENO, G., AND E. BÅÅTH. 2009. Bacterial and fungal growth in soil heated at different temperatures

SUPPLEMENTARY MATERIAL

Supplementary Material 1. Various data plots and statistical analyses (6 figures, 2 tables).

LITERATURE CITED

to simulate a range of fire intensities. *Soil Biology and Biochemistry* 41:2517–2526.

BÁRCENAS-MORENO, G., F. GARCÍA-ORENES, J. MATAIX-SOLERA, J. MATAIX-BENEYTO, AND E. BATH. 2011. Soil microbial recolonisation after a fire in a Mediterranean forest. *Biology and Fertility of Soils* 47:261–272.

BARROS, V.R., C.B. FELD, D.J. DOKKE, M.D. MASTRAN- DREA, K.J. MACH, T.E. BLIR, M. CHATTERJEE, K.L. EBI, Y. OTSUKI, ESTRADA, R.C. GENOVA, ET AL., EDI- TORS. 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom. 688 pp.

BATES, D., M. MÜHLER, B. BLKER, AND S. WILKER. 2015. Fitting linear mixed-effects models using lme4. *Journal of Statistical Software* 67:1–48.

BOERNER, R.E.J., J. HUANG, AND S.C. HART. 2009. Impacts of fire and fire surrogate treatments on forest properties: a meta-analytical approach. *Ecological Applications* 19:338–358.

BONNER, M.T.L., J. HIRBOHN, N. GREGORIO, A. RSA, M.S. AVELA, C. SOLANO, M.O.M. MORENO, A. ALMENDRAS-FERRAREN, J. WILLS, L.P. SIEOO, AND S. SCHMIDT. 2019. Soil organic carbon recovery in tropical tree plantations may depend on restoration of soil microbial composition and function. *Ecosystems* 16:34–46.

CALLAHAN, B.J., P.J. McMURDIE, M.J. ROSEN, A.W. HAN, A.J.A. JOHNSON, AND S.P. HOLMES. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. *Nature Methods* 13:581–583.

CAPORASO, J.G., C.L. ALBER, W.A. WITERS, D. BRG- LYONS, C.A. LOZUPONE, P.J. TURNBAUGH, N. FIERER, AND R. KNIGHT. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. *Proceedings of the National Academy of Sciences* 108(Supplement 1):4516–4522.

CLARIDGE, A.W., J.M. RAPPE, AND K. HANSEN. 2009. Do fungi have a role as soil stabilizers and remediat- ors after forest fire? *Forest Ecology and Management* 257:1063–1069.

DAVEY, M., R. BAALID, U. VK, T. CARLSEN, H. KAUSERUD, AND P.B. EDESEN. 2015. Primary succession of *B. torta vivipara*(L.) Delabre(Polygonaceae) and associated fungi mirrors plant succession in glacial chronosequences. *Environmental Microbiology* 17:2777–2790.

DAVIS, N.M., D.M. ROCTOR, S.P. HOLMES, D.A. REILMAN, AND B.J. CALLAHAN. 2018. Simple statistical identification and removal of contaminant sequences marker-gene and metagenomics data. *Microbiology* 6:226.

DICKIE, I.A., J.L. BUFFORD, R.C. COBB, M.-L. DESPREZ LOUSTAU, G. SELET, P.E. HULME, J. KIRONOMOS, A. MAKIOLA, M.A. NUÑEZ, A. PRINGLE, ET AL. 2017. The emerging science of linked plant-fungal interactions. *New Phytologist* 215:1314–1332.

DOVE, N.C. AND S.C. HART. 2017. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. *Fire Ecology* 13:37–65.

FLANNIGAN, M.D., B. SOCKS, M. TURETSKY, AND M. WOT- TON. 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. *Global Change Biology* 15:549–560.

RAMIREZ, A., M. BARRIENTOS, L. ALMONACID, C. ARRIAGADA-ESCAMILLA, AND C. SALAS-ELJATIB. 2018. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria forests. *Applied Soil Ecology* 131:99–106.

ARADES, M., AND T.D. BRUNS. 1993. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. *Molecular Ecology* 2:113–118.

GLASSMAN, S.I., I.J. WANG, AND T.D. BRUNS. 2017. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. *Molecular Ecology* 26:6960–6973.

HANSEN, P.M., T. AEMANOVA-NELSEN, W.J. LIATT, AND B.A. SKES. 2019. Recurrent fires do not affect the abundance of soil fungi in a frequently burned pine savanna. *Fungal Ecology* 42:100852.

HARVEY, B.J. 2016. Human-caused climate change is now a key driver of forest fire activity in the western United States. *Proceedings of the National Academy of Sciences of the United States of America* 113:11649–11650.

HOLDEN, S.R., A. GUTIERREZ, AND K.K. TRESEDER. 2013. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests.

KIRMAN, J.E., E.B. GAHAM, N.A. RAHAN, S.K. SCHMIDT, AND D.R. NEMERGUT. 2015. Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. *Soil Biology and Biochemistry* 90:161–168.

KÖSTER, K., F. BERNINGER, A. LINDÉN, E. KÖSTER, AND J. RUMPANEN. 2014. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. *Geoderma* 235–236:74–82.

KÖSTER, K., F. BERNINGER, A. LINDÉN, E. KÖSTER, AND J. RUMPANEN. 2017. ImerTest package: tests in linear mixed effects models. *Journal of Statistical Software* 82:1–26.

MONSON, B.D., D. WITTEN, AND A.D. WILLIS. 2020. Modeling microbial abundances and dysbiosis with beta-binomial regression. *Annals of Applied Statistics* 14:94–115.

MONSON, R.K., D.L. LIPSON, S.P. BRUNS, A.A. TURNIPSEED, A.C. DELANY, M.W. WILLIAMS, AND S.K. SCHMIDT. 2006. Winter forest soil respiration controlled by climate and microbial community composition. *Nature* 439:711–714.

MONSON, R.K., A.A. TURNIPSEED, J.P. SARKS, P.C. HARLEY, L.E. SCOTT-DENTON, K. SPARKS, AND T.E. HUXMAN. 2002. Carbon sequestration in a high-elevation, subalpine forest. *Global Change Biology* 8:459–478.

MONSON, R.K., J. F.G. BONNET, M. FRIENDLY, R. KNDT, P. LEGENDRE, D. McGLINN, P.R. MINCHIN, R.B. O'HARA, G.L. SIMPSON, P. GLYMOS, ET AL. 2016. vegan: Community ecology package 2.4-0 [software]. <https://CRAN.R-project.org/package=vegan>.

PAUVERT, C., M. LÉVE, V. LALV, V. DEL-HERMANN, L. VACHER. 2019. Bioinformatics matters: the accuracy of plant and soil fungal community data is

highly dependent on the metabarcoding pipeline. **SEIDLER, K.K., M.C. MACK, AND A. CROSS.** 2004. Relationships among fires, fungi, and soil dynamics in Fungal Ecology 41:23–33.

PRACH, K., P. PŠEK, AND V. JAROŠÍK. 2007. Climate and Alaskan boreal forests. Ecological Applications pH as determinants of vegetation succession in Central European man-made habitats. Journal of Vegetation Science 18:701–710.

RIVERS, A.R., K.C. MER, T.G. GRDNER, S. LU, AND S.D. ARMSTRONG. 2018. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7:1418.

RUDGERS, J.A., J. HLAH, S.P. RO, AND K. CAY. 2007. Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25.

SEIDL, R., D. HÖM, M. KUTZ, D. MARTIN-BENITO, M. YOGABAANU, U., J.-F.F. MER, P. CONVEY, M. RZMAN-PELTONIEMI, G. VACCHIANO, J. WILD, D. ASCOLI, M. PETR, J. HÖNKANIEMI, ET AL. 2017. Forest disturbances under climate change. Nature Climate Change 7:395–402.

SIKES, B.A., C.V. MCKEES, AND T. FUKAMI. 2016. Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology 97:484–493.

SUN, H., M. SONTALAHTI, J. RÄMPÄNEN, K. KÖSTER, F. BERNINGER, T. RAFFAELLO, A. JUMPPONEN, F.O. ASIEGBU, AND J. HEINONALO. 2015. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Applied and Environmental Microbiology 81:7869–7880.

WEISBERGER, S., R. KLER, E. LATZ, G. KWALCHUK, M. BONKOWSKI, S. SHEU, AND A. JOUSSET. 2015. Bacterial diversity amplifies nutrient-baseplant-soil feedbacks. Functional Ecology 29:1341–1349.

WILCOX, T.J., T. RIBNS, S. EE, AND J.W. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315–322 in M.A. Innis, D.H. Gelfand, J.J. Sninsky, and T.J. White, editors, PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, NY.

WIDID, AND S.A. AIAS. 2017. Antimicrobial properties and the influence of temperature on secondary metabolite production in cold environment fungi. Polar Science 14:60–67.

ZHANG, K., X. QENG, X. SU, Y. LU, AND Q. ZHANG. 2018. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant and Soil 431:19–36.

Received 28 April 2021

Revised 11 February 2022

Accepted 7 March 2022

Published online 4 August 2022