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Introduction

Model reduction is ubiquitous in computational sci-
ence and engineering. It plays a key role in mak-
ing computationally tractable outer-loop applications
that require simulating systems for many scenar-
ios with different parameters and inputs. Typi-
cal outer-loop applications are control, uncertainty
quantification, inverse problems, and optimal design
[RHP07, BGW15]. With reduced models, one nu-
merically solves the differential equations, which de-
scribe the physical system of interest, in problem-
dependent, low-dimensional reduced spaces, in con-
trast to traditional, full models that are formulated
in generic, high-dimensional full spaces with, e.g.,
finite-element /-volume methods. Reduced spaces are
constructed in a one-time high-cost training (offline)
phase from data and then are leveraged in an on-
line phase to provide approximate solutions often in
a fraction of the computation time required for full
models, which can greatly speed up the repeated sim-
ulations of systems at different scenarios in outer-loop
applications.

Model reduction has many attributes of what to-
day is referred to as physics-informed machine learn-
ing and scientific machine learning because model
reduction simulates physical systems by combining
learning from data to construct reduced spaces with
traditional numerical methods to solve equations
from first principles and physical laws in the learned
reduced spaces.

Much progress has been made on deriving re-
duced models for diffusion-dominated problems gov-
erned by specific elliptic/parabolic equations that in-
duce smooth solution manifolds [RHP07, BGW15].
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Smooth means that the Kolmogorov n-width de-
cays rapidly so that solutions can be approximated
well in low-dimensional spaces [CD16]. However,
the important class of problems given by hyper-
bolic equations, conservation laws, and transport-
dominated phenomena—where a coherent structure
such as a wave or a phase transition travels through
the domain—typically induces rough solution man-
ifolds with slowly decaying Kolmogorov n-widths
[OR16,GU19|. Even though lower bounds of the de-
cay of the Kolmogorov n-width are available only for
solution manifolds of a limited number of equations,
empirical evidence of slowly decaying Kolmogorov n-
widths is observed in many applications in science
and engineering from pattern formation in biology to
storm-surge forecasting in weather modeling to so-
lidification in additive manufacturing to combustion
processes in fluid mechanics.

Over the last several years, nonlinear model re-
duction has started to emerge that seeks nonlin-
ear reduced approximations on manifolds rather
than linear approximations in reduced spaces
as in classical, linear model reduction. The
goal of nonlinear model reduction is breaking
the Kolmogorov barrier which means achieving a
fast error decay even if solution manifolds are
not smooth and the Kolmogorov n-width de-
cays slowly as in transport-dominated problems
[OR13,PW15,TPQ15,GU19,Peh20, ELMV20,LC20].
There are nonlinear methods that adapt the re-
duced space explicitly, such as dynamic decompo-
sitions [SL09] and the adaptive empirical interpola-
tion method [PW15, Peh20] that will be described
in more detail below. Other nonlinear model re-
duction methods apply transformations to recover
(linear) low-rank structures. Examples of such ap-
proaches are the method of freezing [OR13] and



shifted POD [RSSM18] as well as methods motivated
by machine learning such as the approach introduced
in [ELMV20] based on Wasserstein spaces and the
method proposed in [LC20] that builds on deep au-
toencoders.

This note describes the Kolmogorov barrier of lin-
ear model reduction and then outlines how non-
linear methods can overcome the barrier. A nu-
merical example of simulating combustion instabil-
ities in a single-injector element of a rocket en-
gine demonstrates adaptive empirical interpolation
[PW15, Peh20] as one example of a nonlinear model
reduction method.

Outer-loop applications

Consider a parametrized partial differential equation

(PDE)
q(w;t, p) +N(gs ) =0 (1)

with operator N and appropriate initial and bound-
ary conditions. The function ¢ : Q@ x 7 x D — R
depends on the spatial coordinate x € Q C R?, time
t € T =1[0,T] and a parameter p € D. The pa-
rameter u describes properties such as conductivity
in heat-transfer problems and viscosity and Reynolds
number in fluid-mechanics problems. Traditional
numerical methods such as finite-difference, finite-
element, and finite-volume methods numerically solve
(1) by approximating the solution® ¢ of (1) in finite-
dimensional vector spaces U. Let the space U be N
dimensional. Further, let ¢1,...,on be a basis of U,
which means that the solution function ¢ is approxi-
mated as

av(etn) =Y Bilt mpi(a).

with N coefficients B4 (t, u),...,Bn(t,pn) € R. Nu-
merically solving the PDE (1) for a given param-
eter 4 € D means solving for the N coefficients
Bi(t,u),...,Bn(t, 1) via a system of equations such

(2)

ITypically, one considers, e.g., the weak form of the PDE
in specific, appropriate spaces; however, to ease exposition and
to avoid heavy notation, we refer to ¢ simply as the solution
of the PDE in the following.

r(gn (5 te, i) an (i te—1, 1), i) = 0,

M= {q(;t,p)|t € T,u € D}

q(5t, )

Figure 1: Classical (linear) model reduction seeks
to approximate solutions of parametrized PDEs in
low-dimensional spaces, which corresponds to a linear
approximation of the potentially nonlinear structure
of the solution manifold M. In this figure, the spi-
ral depicts a nonlinear solution manifold M, which
would be approximated by a straight line with clas-
sical model reduction methods.

fori =1,...,N and k = 1,..., K, where r is an
appropriate residual function that includes the time
discretization with K time steps 0 =tp <t1 < --- <
tx = T. Thus, the computational costs of numeri-
cally solving the PDE (1), i.e., computing the coeffi-
cient vector B(t, p) = [B1(t, p),- .., Bn(t, )T € RY,
scale with the dimension N of the space U and the
number of time steps K. If N and K are large,
then computing a solution even for a single parameter
u € D can already be computationally demanding.
Thus, it can quickly become infeasible to compute
solutions for a large number M > 1 of parameters
W1, pps as needed in outer-loop applications such
as optimization, control, inverse problems, and un-
certainty quantification.

Model reduction via projection

Model reduction via projection seeks reduced spaces
U, of low dimension n < N so that reduced solutions
in U,, can be rapidly computed for a larger number
of parameters [RHP07,BGW15]. The computational
procedures of model reduction are typically split into



a training (offline) phase, in which a reduced space U,
is constructed, and an online phase, in which the PDE
is numerically solved in the reduced space for param-
eters p1,...,un € D as part of an outer-loop appli-
cation. The training phase is a one-time, high-cost
pre-processing step that is compensated if reduced
PDE solutions are computed for a large number M
of parameters in the online phase as, for example, in
outer-loop applications.

Reduced spaces are problem dependent in the sense
that they are constructed to approximate well the
elements of the specific solution manifold

M ={q(;t,p) |t € T,p €D}

corresponding to the PDE of interest. A solution
manifold M is visualized in Figure 1, where the man-
ifold M is depicted as a spiral.

A classical method to numerically construct a re-
duced space is based on the principal component
analysis: first, snapshots are computed, which are
numerical PDE solutions at a few training parame-
ters fi, ..., WMy, € D obtained with standard nu-
merical methods that solve in /. Then, the first n
corresponding principal components of the snapshots
are computed to span the reduced space U,. The
principal components depend on a metric that has to
be chosen adequately, which leads to weighted princi-
pal components; see, e.g., [BGW15]. In model reduc-
tion, computing basis vectors via principal compo-
nent analysis is often referred to as proper orthogonal
decomposition (POD) [BGW15].

Numerically, a basis of a POD reduced space can
be computed, for example, with the singular value
decomposition: For tq,...,tx and p1,. .., faf.,, let

an(ti, 1) = [Br(tis ), - B (tiypy)]" € RN, (3)

be a snapshot and let

)] € RN XK Merain

(4)
be the snapshot matrix. Computing the singular
value decomposition of @ and taking the n left-
singular vectors corresponding to the largest singular
values as columns of the basis matrix U,, leads to
the reduced space U, spanned by the columns of U,,.

Q = [qN(t].) /“Ll)7 MR qN(tKHthrain

The error of projecting a snapshot, i.e., a column of
Q, onto the space U,, is bounded by the sum of the
squared singular values with index greater than n

K Mirain 2 r
S fawttim) - UaUTan )| = 3 o2,
i=1 j=1 i=n-+1

where r > n is the rank of the snapshot matrix Q
and o1 > 09 > --- > g, > 0 are the singular values.
Thus, the decay of the singular values of the snapshot
matrix @ indicates how well the snapshots can be
approximated in U,,.

There is a large number of other methods for con-
structing reduced spaces, such as greedy methods
and interpolatory methods; we refer to the surveys
[RHP07,BGW15] for more details. All these meth-
ods have in common that reduced spaces U,, are con-
structed in the training phase and the approximate
PDE solutions are then sought in the reduced space
for different parameters and initial conditions in the
online phase.

Two motivating numerical experiments

Let us apply projection-based model reduction, as
described above, to a diffusion problem such as the
heat equation with a forcing term

x e,

()

with spatial domain Q = (0,1) C R. We impose ho-
mogeneous Dirichlet boundary conditions on the left
and right boundary. The initial condition is 0. The
parameter p € D = [0.1,10] C R is the heat conduc-
tivity coefficient and we set it to 4 = 1 in this experi-
ment. The equation (5) is discretized with N = 1024
linear finite elements in space and implicit Euler in
time with time-step size 1073. The numerical solu-
tion up to time 7' = 0.4 is show in Figure 2a.

We collect snapshots (3) over time for parameter
=1 and assemble the snapshot matrix (4). Recall
that the singular values of the snapshot matrix indi-
cate how well the snapshots can be approximated in
the reduced space constructed with the POD proce-
dure. Let o7 > - -+ > 0, be the first n = 150 singular
values of the corresponding snapshot matrix. Fig-
ure 2b shows the normalized singular values, where

Orq(w;t, p) — pdzg(w;t, p) =1,



heat equation (diffusion)

Figure 2: For the heat equa-
tion, which describes diffusion-
dominated problems, the decay
of the singular values indicates
that a reduced space of dimen-
sion n = 15 is sufficient to ap-

proximate the snapshots up to
machine precision in this exam-
ple. In contrast, the singular
values decay orders of magni-
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normalized means that the first normalized singular
value is one. The decay of the singular values shows
that the first 15 left-singular vectors span a reduced
space in which the snapshots can be approximated up
to machine precision, which results in a dimensional-
ity reduction of a factor of almost 70, namely from
dimension N = 1024 of the finite-element approxi-
mation to n = 15 dimensions of the reduced model.
The decay of the singular values does not tell us any-
thing about the approximation quality of the space
U, for solutions of the PDE at other parameters than
the ones used for creating the snapshots. However,
the decay of the singular values often serves as a use-
ful empirical heuristic for how much reduction can
be achieved; a more formal description follows in the
next section.

Let us now consider a transport-dominated prob-
lem given by the linear advection equation

Orq(x;t, ) + poeq(a;t,pu) = 0, (6)

with © = (0,1) and periodic boundary conditions.
The parameter p is the transport speed and fixed to
p = 1 in this experiment. The initial condition is
a Gaussian probability density function with mean
0.1 and standard deviation 1.5 x 1072. The linear
advection equation propagates the initial condition to

e,
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index dominated problems.

the right as shown in Figure 2c. We collect snapshots
for this problem and compute the normalized singular
values, which are shown in Figure 2d. The decay of
the singular values is orders of magnitude slower than
for the diffusion problem.

In this numerical experiment, the transport-
dominated problem requires a higher dimensional re-
duced space than the diffusion-dominated problem
to achieve a comparable error of approximating the
snapshots in the reduced space. Thus, the exper-
iment indicates that projection-based model reduc-
tion that computes linear approximations of solu-
tions in a reduced space U,, obtained with POD, as
described above, is less efficient for transport- than
for diffusion-dominated problems. In fact, as we will
see in the next section, this observation holds more
generally and shows that different model reduction
methods are needed for diffusion-dominated than for
transport-dominated problems.

Limitations of model reduction based
on linear approximations

Let us now formalize the numerical observation of the
previous section. Key is to understand what the low-
est error is that can be achieved when approximating



elements of a PDE-solution manifold M in vector
spaces of dimension n; independent of how the re-
duced space is constructed. The best-approximation
error is given by the Kolmogorov n-width, see, e.g.,
[MPT02,CD16],

dp(M) = inf sup inf lla(t, 1) —qll s

(5t,n)EM AEUR
(7)

which is the lowest error that any mn-dimensional
space U, can achieve over all elements in M with
respect to the norm || - ||. Other types of Kol-
mogorov n-widths have been proposed that look
at the average error over all elements in M and
that are formulated directly via a metric; see, e.g.,
[MPT02,CD16, ELMV20]. If d,,(M) decays quickly
with n, then there exist low-dimensional spaces U,
that approximate well the elements of M. For ex-
ample, the authors of [MPTO02] have shown that the
Kolmogorov n-width of the solution manifold of a
specific elliptic PDE in an appropriate norm decays
exponentially fast in the dimension n; more gen-
eral results for elliptic problems have been derived
in [CD16]. In Figure 2a-b, we also observe numeri-
cally an exponential decay of the projection error of
the snapshots. However, it is important to note that
the singular values do not, in general, correspond to
the Kolmogorov n-width, because, e.g., the singular
values depend on the snapshots and only lead to a
bound on the projection error corresponding to the
POD space. In contrast, the Kolmogorov n-width
gives the best-approximation error over all possible
spaces and is not tied to a specific way of construct-
ing reduced spaces. It can be exceedingly difficult to
construct spaces that achieve the best-approximation
error given by the Kolmogorov n-width; however, se-
quences of spaces that obtain the same error rate can
be constructed with greedy methods in certain situ-
ations [RHPO7].

Let us now consider the linear advection equation
(6) with a Heaviside step initial condition

() = {;

It has been shown in [OR16] that the correspond-
ing solution manifold has a Kolmogorov n-width that

dim(u:l,, )=n 4

z<0,

otherwise .

cannot decay faster than 1/4/n,

d(M) > c% ,

where ¢ > 0 is a constant independent of n. Even
though the decay of the singular values is insuf-
ficient to draw conclusions about lower bounds
on the Kolmogorov n-width, see comment above,
in our numerical experiments, the projection er-
ror of the snapshots also decays slower for the
transport-dominated problem than for the diffusion-
dominated problem. In general, lower bounds on
the Kolmogorov n-width of solution manifolds of
transport-dominated problems suggest a slow decay.
For example, the authors of [GU19] show similarly
slow decays for problems governed by the wave
equation.

Kolmogorov barrier A slow decay of the
Kolmogorov n-width is sometimes referred to
as the Kolmogorov barrier because it limits
the decay of the error that can be achieved
with projection-based model reduction meth-
ods that seek linear approximations in spaces.

Nonlinear approximations and model
reduction

Nonlinear model reduction methods seek to over-
come the Kolmogorov barrier via nonlinear approx-
imations. Let us first consider a linear reduced ap-
proximation ¢ € U,,, which we can write as a linear
combination

Q@ BLw) = Blt,weiz)  (8)

that makes the dependence on the coefficients
B(t,u) = [Bi(t,pm),...,Bnlt, w)]T explicit. The co-
efficients S (t, ), ..., Bn(t, ) enter linearly in the
approximation §. Stated differently, the space U,
spanned by the set of basis functions {¢;} , is fixed
independent of which element of ¢(-;¢, u) € M is to

be approximated—changing the coefficients 3(¢, i)
based on the to-be-approximated element ¢(-;¢,u)



does not change the basis functions. This means that
the Kolmogorov n-width applies and it lower bounds
the best-approximation error that can be achieved
with any reduced space of dimension n.

In contrast, consider now a nonlinear approxima-
tion of the form

- no o~
(j(xv d(t7 ,LL), lg(ta ,LL)) = Zi:l Bl(ta M)(bl(z” d(ta N’)) )

(9)
where &(t, 1) enters nonlinearly in the basis functions
@1, ..., ¢n. Thus, there is a nonlinear dependence of
g on &(t, 1), which is in stark contrast to the linear
approximation (8) that depends on 3(t, 1) alone and
where the coefficients B(¢, u) enter linearly. Stated
differently, the nonlinear approximation (9) is a linear
combination with functions {¢;(;&(¢, 1))}, that
depend through &(t, 1) on the element q(-; ¢, u) € M
that is to be approximated, which is different from
the linear approximation (8) where the basis func-
tions are fixed independent of which element of M is
approximated.

Even though nonlinear approximations of the form
(9) have been studied from a theoretical perspec-
tive since a long time, we want to note that they
are closely related to deep neural networks, where
a(t, p) are typically referred to as features, which are
learned together with the coefficients B(t, ). An-
other class of nonlinear approximation methods se-
lects basis functions from a large dictionary based on
the to-be-approximated element. These dictionary-
based methods are typically formulated via sparse
regression and compressed sensing. In the context of
model reduction, dictionary-based methods are some-
times referred to as localized model reduction because
reduced spaces are locally varied depending on time,
parameters, and/or spatial coordinates [BGW15].

Nonlinear approximations (9) are more expressive
than linear approximations (8) in the sense that
nonlinear approximations can lead to lower errors
than the Kolmogorov n-width for the same num-
ber of degrees of freedom; thus, nonlinear approxi-
mations can break the Kolmogorov barrier. To see
this, consider the linear advection problem (6). In
the case of this simple example, the analytic solution
can be obtained with the method of characteristics
q(z;t, 1u) = qo(x — tp) , where go is the initial con-

dition. Building on the nonlinear approximation (9),
set n = 1 and the function ¢; to

d1(x;0) = qo(x — 0).

Then, the nonlinear reduced model

Gz éult, 1), Bt, p) = Bu(t, p)d1(w;éa(t, ) (10)

with fixed coefficient B(t, ) = [B1(t, )] = [1] and
feature &(t, pu) = [a1(t, u)] = [tp] exactly represents
the solution. Thus, for this example, the nonlinear
reduced model (10) breaks the Kolmogorov barrier of
linear approximations (8), for which the error cannot
decay faster than 1/4/n, where n is the number of
degrees of freedom.

Stability and online efficiency Increas-
ing the expressiveness by breaking the Kol-
mogorov barrier with nonlinear approxima-
tions is only a first step towards nonlin-
ear model reduction of transport-dominated
problems. Just as in numerical analysis in
general, increasing expressiveness alone is in-
sufficient. Rather, nonlinear reduced mod-
els and their underlying nonlinear approxima-
tions have to be stable to be useful for numer-
ical computations. Additionally, the goal of
model reduction is achieving speedups com-
pared to solving the original, full model, which
means that the computational complexity of
solving the reduced model online has to scale
independently of the dimension N of the full-
model approximation space. Thus, a truly
practical nonlinear model reduction approach
breaks the Kolmogorov barrier in a numeri-
cally stable and online efficient way.

Adaptive empirical interpolation: Non-
linear approximations via adaptive
spaces

Formulation (9) of nonlinear approximations is typ-
ically too general to work with numerically; see also



Figure 3: Top: Numerically pre-
dicting the growth of the ampli-

tude of pressure oscillations at the

monitoring point in the combus-
tor chamber helps deriving designs
that prevent combustion instabili-
ties. Bottom: Pressure field of a

2D version of the quasi-1D model
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the previous remark on stability and online effi-
ciency. For example, there are no restrictions on
the basis functions and their dependence on the fea-
tures (¢, ;). We now describe a concrete numerical
method for nonlinear model reduction: the adaptive
empirical interpolation method (ADEIM) introduced
n [PW15, Peh20], where the basis of the reduced
space is adapted with low-rank updates.

Consider a time-discrete spatially discretized sys-
tems of nonlinear equations

a¥ = £,

that arises from (2) via, e.g., an implicit Euler dis-

k=0,...,K—1,

cretization. The state vector qg\l,“) at time step k is
of dimension N and the dynamics are given by the
function f: RN x D — RY. Recall that U,, € RV*"
is a basis matrix with columns that span the re-
duced space U,,. Consider first linear model reduc-
tion with empirical interpolation [BMNP04, CS10] to
obtain the approximation

fl@n =

where P = [e;,,...,€;,] € {0,1}Y*" is a selection
matrix with N-dimensional canonical unit vectors
€i,,...,e;, that have 1 at components i1,...,%, €
{1,..., N}, respectively. This means P f(U,q; j1)
requires evaluating only the n component functions of

(PTUn)ilpr(Un[];,u)

0.4 0.5 combustor considered in this ex-
periment. Pressure waves traveling
through the combustion chamber
make this problem transport dom-
inated, which motivates the reduc-
tion with nonlinear methods such
as adaptive empirical interpolation
[PW15, Peh20].

f corresponding to the components i1, . . ., i, selected
by P. The selection matrix is obtained from U,, typ-
ically with greedy approaches [BMNP04,CS10]. The
corresponding linear, static reduced model is

a" = f(a"; K-1.

), k=0,..., (11)
In adaptive empirical interpolation [PW15, Peh20],
the basis matrix depends on the time step k and is

adapted via low-rank updates as

k+1 k T

Ut =u® + 87,
where ap € RV** and B, € R"*# and z is the rank
of the update, which is in contrast to static (linear)
empirical interpolation (11) where the space is in-
dependent of the time step. The update ak,ﬁkr is
obtained via an optimization problem

min ST ((

QERNXZ7B€R"XZ

)+ Otk/@k )C — Fk) H

where S, € {0,1}V*™ is a sampling matrix that se-
lects m components, similarly to the selection matrix
in static empirical interpolation. The coefficient ma-
trix is C, = (PFUM)'PIF), and F;, € RN*v
is the right-hand side matrix of window size w. The
update akﬁg can be obtained via a singular value de-
composition of an n X w matrix. The selection matrix
Py, also depends on the time step k and is adapted



by either re-running the greedy selection procedures
[BMNPO04, CS10] or via low-rank updates [PW15].
The right-hand side matrix F, = [q(kfwfl), A ?](k)]
is assembled by evaluating the full-model right-hand
side function f at the m components selected by Sy
and approximating all other components as

S1g™ =S, fUF @™ )
S:g™ =8, U (PTUIN T PLFUP Y 1),

where S}, is the complementary sampling points ma-
trix that selects the components not selected by
Sk. The sampling points S are adapted via greedy
strategies, for which several strategies have been pro-
posed, including a computationally efficient strategy
in [Peh20].

In summary, the process of the adaptive empirical

interpolation method is to adapt the space Ur(lk) at

time step k to the space Z/l,(LkH) at time step k +
1. The adaptation is achieved by applying a low-
rank update to the basis matrix Unk) to obtain the
basis matrix U;k"H) of the adapted space Z/IT(L}CH). The
update is computed from sparse evaluations of the
full-model right-hand side function f at a few selected
components; we refer to [Peh20] for technical details.

Adaptive empirical interpolation: Non-
linear model reduction for predicting
limit cycle oscillations in a combustor

We apply the adaptive empirical interpolation as a
nonlinear model reduction approach to a quasi-1D
model of a single-element rocket combustor, which
is described in [XD17]. The goal is to predict the
growth of the amplitude of pressure oscillations at
a monitoring point, which provides critical insights
for designing engines that avoid combustion insta-
bilities that are caused by unbounded growth of the
amplitude of the pressure oscillations. The pressure
oscillations lead to waves traveling through the com-
bustion chamber that make this problem transport
dominated and thus linear model reduction methods
fail for this problem; cf. [XD17, Peh20].

Figure 3 shows the setup of the problem. The
oxidizer is induced and meets the fuel at the back-

step, where it reacts instantaneously. The combus-
tion products exit the chamber through the nozzle.
The combustion follows a one-step reaction model,

CH4 + 205 — COq + 2H20,

where the fuel is gaseous methane and the oxidizer is
a mixture of oxygen and water. The parameter p of
the problem controls the heat release. The governing
equations of the model combustor are described in de-
tail in [XD17]. The following numerical results sum-
marize the experiments conducted in [Peh20]. Fig-
ure 4(top) shows the pressure at a monitoring point
for heat release p = 3.0, where the combustor enters
a steady state. In contrast, for heat release parameter
1 = 3.8, the system enters a limit cycle oscillation as
shown in Figure 4(bottom). In both cases, the adap-
tive reduced model faithfully approximates the full
model while achieving a speedup of a factor 6-8 over
various heat-release parameters. Thus, the nonlinear
reduced model enables quickly sweeping over a large
range of parameters for informing early design deci-
sions to prevent an unbounded growth of the pressure
amplitude.

Conclusions and open questions

There is a clear need for nonlinear model reduc-
tion methods to derive efficient reduced models of
transport-dominated problems in science and engi-
neering. This note focused on increasing expressive-
ness compared to linear model reduction to break the
Kolmogorov barrier. However, increasing expressive-
ness alone is insufficient for truly practical nonlinear
model reduction methods. Rather, nonlinear model
reduction methods also have to be numerically sta-
ble, just as traditional methods in scientific comput-
ing, which has received little attention in nonlinear
model reduction. Additionally, the purpose of model
reduction is obtaining speedups: First, constructing
nonlinear reduced models in the training phase has to
be cheaper in terms of, e.g., data volume and training
time than solving the outer-loop task with the orig-
inal, full model in the first place. This can be chal-
lenging to achieve with data-hungry machine learn-
ing methods. Second, it is paramount that solving



1.6200e+06

E 1.6180e+06 l AH R oo,

adaptive reduced model

i

full model

-
by

: T CC
8
£ 1.61600-+06
1.6140e+06 . . . ‘ i . -
0 0.02 0.04 0.06 0.08 0.  Figure4: The non
time [3] linear reduced mosiel
based on adaptive
1.9e+-06 : . . .
full model empirical interpolation
1.80-406 | adaptive reduced model - faithfully predicts the
sttt illation in
T 17 I BT pressure  Osci
& 17et06 _,;‘;'-:-'.w::..:-,u this model combus-
o A YO Ty Lol by gy
5 1.60+06 F R Vo tor for low (top) and
21.5(%06 I ) -:""-:' high (bott.om) heat
release, which enables
1.4e+06 quickly sweeping over
1.3¢4-06 ‘ ‘ ‘ ‘ parameters to support
0 0.02 0.04 0.06 0.08 0.1 decision-making in

time [s]

nonlinear reduced models at new parameters in the
online phase is computationally cheaper than solving
the full model. The ultimate goal is achieving online
efficiency in nonlinear model reduction in the sense
that the cost complexity of solving the nonlinear re-
duced model at new parameters scales independently
of the dimension of the full approximation space. An
often overlooked aspect is that nonlinear model re-
duction methods have to be easy to use for achiev-
ing wide acceptance in the domain sciences and en-
gineering communities, which is getting increasingly
more attention via non-intrusive methods that learn
reduced models from data [IA14,PW16,HU18].

Nonlinear model reduction is at its early stages.
It will require considerable progress of mathematical
theory and computational methods—bringing to-
gether machine learning and scientific computing—to
advance nonlinear model reduction into a similarly
rigorous, reliable, flexible, and ubiquitous tool of
science and engineering as linear model reduction is
today.

early design stages.

This manuscript contains only a limited num-
ber of references because journal rules restrict
the maximum number of references to 20; ad-
ditional references to other nonlinear model
reduction methods are cited in the manuscript
[Peh20].
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