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ABSTRACT

Adversarial examples have emerged as a severe con-
cern for the security of neural networks. However, the ép—
distances, typically used as a similarity constraint, often fail
to capture human perceived similarity. Under challenging
scenarios, such as attacking a defended model, this discrep-
ancy leads to the severe degradation of image fidelity. In
this paper, we find adversarial examples that better match the
natural distribution of the input domain by integrating signal
processing techniques into the attack framework, dynami-
cally altering the allowed perturbation with a Rule Adjustable
Distance (RAD,). The framework allows us to easily in-
corporate structural similarity, Otsu’s method, or variance
filtering to increase the fidelity of adversarial images while
still adhering to an £,,-bound.

Index Terms— Adversarial Examples, Visual Fidelity,
Image Processing, Deep Learning, Robustness

1. INTRODUCTION

The study of machine learning, especially deep learning, has
been making remarkable strides in recent years. Unfortu-
nately, adversarial machine learning has also arisen in tan-
dem with the field, tempering the allure of learning applica-
tions. Many attacks have been exploited, which include data
poisoning attacks [1], backdoor injection [2], and training set
privacy violations [3]. Of particular interest are adversarial
examples, whose feasibility and effectiveness in compromis-
ing machine learning models have been demonstrated in many
practical systems [4, 5]. These are inputs to a well-trained
model that have been modified while remaining aesthetically
similar to a natural input. However, when both are passed to
the model, the original produces the expected response, but
the adversarial example induces a malicious one.

A critical metric for judging the strength of an adversar-
ial example entails its similarity to the original input. How-
ever, the suitability of using ¢,-norms for adversarial images
has recently been drawn into question, as the measure is in-
consistent with the common understanding of psychophysical
similarity (i.e., the measure of human visual perception) [6].
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Fig. 1. Image composition and fidelity are orthogonal compo-
nents of visual similarity. But, £,-based metrics well preserve
input composition, not fidelity, as demonstrated in the images
produced by previous methodologies. In contrast, our frame-
work attempts to preserve both of these aspects.

Proposed

In Fig. 1(a), we illustrate that adversarial similarity consists
of two orthogonal aspects: the preservation of input fidelity
(adherence to the characteristics of natural inputs) and input
composition (coherence with the defining elements of a refer-
ence image). The /,,-distances have some ability to preserve
composition, as images localized around the original image
tend to contain similar pixel patterns. As shown in Fig. 1(b),
purely £,-based methods often synthesize an image that con-
tains obvious visual distortions that do not exist naturally.

Previous works have generated methods of preserving
visual similarity (e.g., Spacial-Chroma Shift [7], Wasserstein
Attacks [8], and Perceptual Color [9]). However, such tech-
niques cannot guarantee a bound on the distance required to
achieve the adversarial image, which helps preserve input
composition. Also, these methods are specific to the image
domain and do not generalize to other fields. Motivated dis-
cussions on the limitations of /,-distances for adversarial
example generation [6, 10], this paper proposes to develop an
integrated methodology to increase the fidelity of adversarial
inputs while maintaining an ¢,,-distance guarantee.

2. SIMILARITY IN ADVERSARIAL IMAGES

2.1. Error Based Image Quality Measures

The problem of assessing image quality is considered to be
synonymous with isolating and measuring an error signal
in the image [11]. For example, root mean squared error
(RMSE) [12] evaluates the images using the /o distance.
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However, extensive evaluations indicate that RMSE is a weak
measure of psychophysical similarity [13], inspiring the de-
velopment of other similarity measures. Some, including the
peak signal-to-noise ratio (PSNR), are extensions of RMSE
and inherit similar drawbacks [14]. Recent developments like
structural similarity index metric (SSIM) [11] have arisen
to better represent human perceived quality. Recently deep
learning has been applied to assessing image quality [15, 16].

2.2. Adversarial Example Generation

The generation of adversarial examples can be described us-
ing the unified optimization problem articulated in [4] as:

min L(F(x'),0¢)

st. S(x',x) <e, M

where L(-, -) is a loss function connecting the model’s behav-
ior given a modified input, x’, and a desired target output, 0.
S(-,-) is a metric that measures x’ the similarity of x’ to the
original input, x. If it is possible to optimize x’ such that ¢
remains small, an adversarial example is produced.

A widely used method to solve this problem is through
some variations on the projected gradient descent (PG D) al-
gorithm, which can be easily adapted to many diverse scenar-
ios [17, 18]. The method is conducted by choosing a step size,
a, and iteratively perturbed the input as:

z, =X, +asp, )
where §,, is a unit vector in the direction of perturbation, i.e.,
the unit step, as expressed in Equation (3). This vector is gen-
erated with the gradient of a loss function, £, and a measure
of distance, D, often the euclidean distance.
Sm = —argmin||VxL(F(x,),0:) — s||. 3)
D(s)=1

But, there is no guarantee that the intermediate step, z,,,

fulfills the similarity constraint. So PG D projects this input
back into the set of feasible inputs by solving Equation (4).
X, 41 = argmin ||z, — x|, 4)
x€B,(x0,€)
where B(xg, €) is a constraint ball of radius with e to bound
the perturbation. Most works use £,-norms for similarity, thus
projecting each steps onto B,(xg,€) = {x" | ||x’ — xol|, <
€}, an £,-ball [5]. Such methods produce inputs that differ
greatly from the natural inputs. So, recent works have begun
expanding these concepts to alternative metrics [19, 20].
Adversarial Threat Model. The adversarial threat model
considered in this work is consistent with prior results on ad-
versarial examples [21, 22]. Diverging from these, this work
assumes a not just a well-defended, but also a well-observed
model. Defended models increase the required magnitude
of perturbation when generating adversarial examples beyond
what is necessary for undefended settings. This defensive re-
quirement amplifies the error signal and leading to obvious
input distortions that an observer can easily see.

3. THE RULE ADJUSTED DISTANCE (RAD,)

To better constrain adversarial perturbations, we develop a
method to dynamically redirect them based on the localized
information from the input space. Thus, we introduce the
Rule Adjusted Distance (RAD ), which is defined as follows:

N

Z(pn(xv Y)|Tn — ynl)>®. )

n=1

RAD,(x,y) =

Locally, RAD, mimics a weighted /.,-distance, but diverges
from it, when calculated over multiple steps, with guidance
from a dynamic rule set, p. The advantage of this approach
is that we are then able to integrate RAD, into the existing
adversarial example frameworks, such as the PG D, simply
by redefining the unit step as expressed in Equation (6).

Sy = —argmin||VL(F(x.,),0:) — s|| (6)
RAD,(x!,x., +s)=1
Because RAD , locally mimics the weighted /. -distance,
we can utilize the commonly used intuitive solution to the uni-
form /,.-bounded problem by clipping each component of
the step vector to the value 5,,,; = max(min(s;, ﬁ), ‘_71 ).
RAD, could be altered slightly to mimic another ¢,-distance;
however, a closed-form solution to Equation (6) may not be
forthcoming, so an approximate or algorithmic solution is
necessary to determine the unit step. With this perspective,
we can consider p(+, -) as a vector-valued function that quan-
tifies the fidelity change given a desired change in x’. We can
dynamically direct the progression of finding adversarial ex-
amples with domain-specific information using targeted sig-
nal processing techniques. We illustrate the process of defin-
ing p in the image domain, using three different techniques:
Otsu’s method, variance filtering, and regional-SSIM.

3.1. Pixel Clustering (A,)

Otsu’s Method is a thresholding technique that clusters pix-
els while minimizing the in-class variance between clustered
pixels [23]. A, uses this technique to define a meaningful
threshold between groups of pixels and then generate p to dis-
courage pixel migration across these thresholds.

For binary clustering, Otsu’s method finds a value, b, that
clusters x,, < b into the first cluster, k1, and x,, > b into the

second cluster, ko, while minimizing the constraint:
p(z, € kl)ail + 1 =p(z, € kg))a,%Q, 7

where ‘7131- is the variance of cluster k; and p(z,, € k;) repre-
sents the probability that x,, is in cluster k; for all z,, € X.
The technique can also be extended to perform multi-level
thresholding for finer processing, using K clusters. Then, we
can define p such that it penalizes gradients that attempt to
push pixel values past a threshold. This ensures that the ad-
versarial image retains the image’s relative pixel distribution.
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Algorithm 1 Ag: Adversarial Perturbations with SSIM
Require: xo, 0y, F(-), L(,-), W

I x,, =Xo

2. V= I_%J

3: while F'(x/,) # o: do
—VL(F(x,,),01)

Y BT VLG, ) ol
5. forVr € [1,R],Vce [1,Cland VI € [1, L] do
6: wi=xpr=Vir+V,e—=V:ic+ V]
7: wr=(Xp +g)r—V:ir+Vie—V:ic+ V]
8: SM|r, j, c] = SSIM(w1, w2)
9:  end for
. _ _sSM
102 P = faxsmn
11: Solve Equation (6) for §,,.
122 7' =x, +08n,
13: Xp,41 = argmin ||z’ — x|
xEBp(x0,€)
14: end while

/
15: return x;,

3.2. Variance Filtering (A,,)

The second technique that we explore is based on variance
filtering [24], a method for analyzing the localized pixel vari-
ation in an image. As adversarial perturbations often mani-
fest as random noise, applying them to regions with low pixel
variance can degrade image quality. In short, A, attempts to
maintain pixel variance throughout the image.

To integrate variance filtering into the proposed frame-
work, we decompose the images into sliding windows, (2,
of width, W = 2V + 1. We first define a window as w =
{zijp| i =[r—V:ir+V]j=[c—V :c+V]}asthe
neighborhood of pixel values centered at a specific (r), col-
umn (c) and channel (k). € then is the collection of all such
windows for a given image. Thus, Vw € (), the average pixel
value and pixel variance are found as:

1 1
_ 2 — 2
x:jg wi, o :—25 (T—w)”. (8
w ~ w ~

The variance map, o2, defines the local channel-wise pixel

variance at each position in the image. Finally, we normal-

ize the output such that p; = —2—. The normalized vari-
x(o?)

ance map is then used in RAD,, to constrain perturbations in

low variance regions to preserve the local statistical proper-

ties, and thereby the visual fidelity, of the adversarial image.

3.3. Structural Similarity Index Metric (A;)

As discussed in the previous section, SSIM is developed
to measure better the human understanding of visual simi-
lar [11]. Integrating it into the framework also could discern
the natural perturbations when the psychophysical quality
of the adversarial image is essential. Like A,, A, directs
adversarial perturbations by identifying critical regions of the
image and minimize perturbations of those pixels. However,
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it does this through the SSIM [11] which captures the con-
cepts of contrast, luminosity, and structure, rather than pixel
variance. As these properties are significant to an image, A
tends to generate adversarial perturbations that better adhere
to our understanding of visual perception.

SSIM breaks down quality assessment based on: luminos-
ity (1), contrast (c), and structure (s), which are defined as:

2pxply +1 20x0y + 1
y)= 55— dxy)=—""57—,
p2 + p2 +n o2 +02+7
Oxy +77
= 9
s5(x,y) p— 9)

where 1., 0, represent the mean and variance of image z, re-
spectively, while o, represents the covariance between im-
ages x and y. All three of these metrics are combined in:

SSIM(x,y) = l(x,y)%c(x,y)’s(x,y)?.  (10)

The variables «, 3, and ~ are used to balance the three base
properties. We build off the sliding window method from A,
for implementing SSIM in our integrated framework. We pro-
duce two sliding windows, one for the adversarial image, €/,
and the other for the original image, €. Then, with the corre-
sponding windows of both, we generate an SSIM map.

SM = SSIM(w,w’)  V(w,w') € (2,92) (1)

We then define p by normalizing SM, i.e., p, = %
Algorithm 1 demonstrates our specific implementation of A;.
A, and A, are implemented by replacing lines 5-10 with their
respective image processing techniques.

4. EXPERIMENTAL EVALUATION
4.1. Experimental Setup

We build our experiments around the Cleverhans [25] imple-
mentation of the PG'D algorithm by injecting RAD,, to con-
strain the adversarial unit step. We frequently compare our re-
sults with those generated by PG D, as it is widely used and
highly analogous to our methodology. For Cifarl0, we use
ResNet-20 and WRN-40-4. And, ResNet-50 for ImageNet.
Further, we adopt the Cifar10 (Defendedc) [26] provided by
Madry Labs, trained to be resistant to adversarial examples.

4.2. Directed and Natural Perturbations

We present representative samples of adversarial examples on
the ImageNet [27] dataset displayed in Fig. 2. Note that it
is significantly easier to produce low-perturbation adversarial
examples in this undefended setting, so these examples are
bounded by ||x — x||c < 0.03. We amplify the adversarial
noise by 10x to more easily observe the visual distortions.
We then normalize the strength of our attacks against these
results by adjusting « in Equation 3 until, on average, we

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:28:42 UTC from |IEEE Xplore. Restrictions apply.



PGD | A,

Original

A,

Fig. 2. Adversarial examples for the ImageNet classifier, ResNet-50. It can be seen that the proposed attacks are significantly
better at blending the adversarial perturbation with the original image. Further, each attack’s adversarial perturbations are
distinctive, indicating that each captures unique visual information from its image processing techniques.

Table 1. Whitebox (Diagonals) and Blackbox (Off-Diagonals) Success Rates for Cifar10 Classifiers.

ResNet-20 WRN-40-4 Defendedc
Source Model PGD A, A, As PGD A, A, As PGD A, A, As
ResNet-20 76.9 87.7 923 939 69.7 T71.3 78.2 83.8 149 16.0 199 1838
WRN-40-4 82.0 84.9 869 879 59.7 635 745 T7.1 23.4 278 26.9 29.7
Defendedc 53.7 573 61.6 61.5 624 66.9 71.1 68.3 63.4 681 760 T79.6

achieve the same attack success rate in the same number of
iterations. We conduct these attacks on the ResNet-50 clas-
sifier and remark that the level of amplification used on the
adversarial noise visually reflects the distortions that could be
expected in a well-defended setting. For reference, we gen-
erated adversarial images using PGD. We observed during
these experiments that the proposed methodology exhibits a
higher success rate in both whitebox and blackbox settings at
equivalent levels of image quality.

4.3. The Adversarial Accuracy and Transferability

We also evaluate the efficacy of the work under both black-
box and whitebox settings. This experiment synthesizes ad-
versarial examples on a source model and calculates the per-
centage of adversarial examples that successfully fool a target
model. The bold-faced diagonal entries represent the typical
whitebox attack (adversarial examples are produced and in-
tended to fool a single model). The off-diagonal entries repre-
sent the blackbox settings (adversarial examples are produced
on a source model but intended to fool a target model). We
produce the PGD examples with a bound specific to the sce-
nario, and normalize our attacks by targeting the same SSIM
score. Table 1 present these results on the CifarlO classi-
fiers. These results demonstrate that our methodology gen-
erates high-quality adversarial images with a higher success
rate than traditional methodologies.

4.4. Quantitative Comparison

We further validate the fidelity of the adversarial examples
produced for Cifar10 and ImageNet using image quality met-
rics. We also record an Opinion Score (OS), a human-centric
metric, to complement these measures. Following the ap-

Table 2. The Visual Quality of Adversarial Examples.

Cifar10 (Defendedc)
PGD Ao Ay As
Avg. SSIM 0.885 0.936 0.980 0.948
Avg. PSNR 32.3 35.6 37.2 36.3
Avg. RMSE | 0.024 0.017 0.014 0.015
Avg. OS 3.87 2.99 2.90 2.92
ImageNet (ResNet-50)
PGD Ao Ay As
Avg. SSIM 0.958 0.969 0975 0.961
Avg. PSNR 22.86 24.25 25.26  23.20
Avg. RMSE | 0.072 0.061 0.055 0.069
Avg. OS 2.24 1.94 1.58 1.67

proach recently presented in [28], we measure OS based on
the double stimulus impairment scale. OS quantifies the vi-
sual quality of an image based on the aggregated opinions of
86 human participants. This opinion score gives a subjective
perspective on the quality of an adversarial example with a
rating from 1 to 5, with 1 being the best score possible. From
the values recorded in Table 2, it is apparent that the proposed
attacks can maintain a higher level of image fidelity.

5. CONCLUSIONS

This paper develops a methodology for preserving input com-
position and fidelity of adversarial examples. Our experi-
ments demonstrate that we can integrate image processing
techniques that direct perturbations to better preserve human
perceived similarity.
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