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ABSTRACT

As neural networks get deeper and more computationally in-
tensive, model quantization has emerged as a promising com-
pression tool offering lower computational costs with limited
performance degradation, enabling deployment on edge de-
vices. Meanwhile, recent studies have shown that neural net-
work models are vulnerable to various security and privacy
threats. Among these, membership inference attacks (MIAs)
are capable of breaching user privacy by identifying training
data from neural network models. This paper investigates the
impact of model quantization on the resistance of neural net-
works against MIA through empirical studies. We demon-
strate that quantized models are less likely to leak private in-
formation of training data than their full precision counter-
parts. Our experimental results show that the precision MIA
attack on quantized models is 7 to 9 points lower than their
counterparts when the recall is the same. To the best of our
knowledge, this paper is the first work to study the implica-
tion of model quantization on the resistance of neural network
models against MIA.

Index Terms— Membership Inference Attack, Model
Quantization, Privacy, Neural Network

1. INTRODUCTION

Recent breakthroughs and progress in machine learning have
resulted in notable improvements in neural network accuracy
for a wide range of tasks [1, 2]. To perform these tasks more
effectively, model parameter sizes have expanded drastically.
Hence, these networks require excessive computational re-
sources that are not readily available in edge devices, which
is one of the main obstacles in neural network deployment.
To this end, researchers have proposed quantization methods
to compress and speed up training and inference [3, 4, 5]
by executing the operations with reduced precision. These
techniques have demonstrated comparable performance to
full precision networks while being easily accommodated on
resource-constrained devices.

Besides edge computing, model quantization along with
compression enables broader machine learning applications,

including sectors that deal with private data. Notably-
sensitive use cases include applications in medical imag-
ing [6], autonomous driving [7], facial recognition [8], and
natural language processing [2]. However, as these technolo-
gies become increasingly intertwined with daily life, it is
imperative that they are continuously evaluated for vulnera-
bilities and privacy concerns.

Unfortunately, recent studies have demonstrated that ma-
chine learning models are quite vulnerable to well-crafted ad-
versarial attacks [9, 10]. For instance, adversarial example
attacks can easily use undetectable perturbations to deceive
the models and cause misclassifications. Researchers have
investigated these attacks and their impact on quantized mod-
els [11, 12]. It is reported in [13] that model quantization
can help improve the robustness of the model against certain
adversarial attacks or even be used as a defensive counter-
measure. The effect of model quantization on backdoor and
poisoning attacks has also been studied recently [14, 15].

Following the direction of these prior works, this pa-
per evaluates the impact of model quantization on a privacy
threat, membership inference attack (MIA), which attempts to
identify private user data from a given trained model. To the
best of our knowledge, the implication of model quantization
on the resistance of neural network models against MIA has
not been studied in the literature. We leverage state-of-the-art
MIAs used in [16, 17, 18] to compare the effectiveness of
the attacks between the quantized and full precision models.
Our empirical study shows that the MIA attack accuracy on
quantized models never reaches the peak as full precision
models do. The same applies to precision and recall. In the
case of quantized models, these values fall faster than the full
precision models, which means the attack is more likely to re-
sult in false positives. From our experimental results, we find
that model quantization provides inherent resistance to MIA,
along with the reduction in computational complexity. The
remainder of this paper is organized as follows. In Section
2, we summarize the background of model quantization and
MIA. Then, we describe the details of the methods and imple-
mentations in Section 3. Section 4 presents our experimental
results. Finally, we conclude our work in Section 5.
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2. BACKGROUND

2.1. Model Quantization

The recent achievements in the state-of-the-art performance
of neural networks are partially due to a sheer increase in
the number of parameters and operations. When dealing
with low-power, real-world applications, these costs become
enormous obstacles. Thus, model quantization techniques
have been developed to compress neural networks, resulting
in simpler operations and fewer memory requirements. The
existing quantization methods can be broadly categorized into
inference quantization methods and quantization-aware train-
ing [11]. Inference quantization typically applies the quanti-
zation techniques to a pre-trained model [19]. In contrast, the
methods in the second category implement quantization dur-
ing training [3, 4, 5]. For example, the work in [5] uses vector
methods such as product and residual quantization to com-
press models. Although this method produced satisfactory
results, it did not fully quantize the models, as this work only
focused on the compression of the fully-connected layers.
The work in [3] extends the model quantization technique
to the convolutional layers and demonstrates the effective-
ness on AlexNet. In this paper, we leverage the quantization
method proposed in [4], which has yielded excellent perfor-
mance in a wide range of network architectures.

2.2. Membership Inference Attack

MIA was first introduced by [16], which demonstrated the
privacy leakage problem of neural networks. In this work, the
authors trained several models called shadow models to im-
itate the target model’s behavior. Then, the adversary could
identify whether a given data sample belongs to the target’s
model training dataset by using the trained shadow models.
In the literature, most of the prior works on MIA assume the
adversary has access to part or all of the confidence vector
of the model. Contrary to the first study, where the shadow
models were trained on the same or similar distribution as the
target model’s dataset, [17] extended the attack strategy using
different datasets and a similar task. MIA methods without
the need for training shadow models have also been devel-
oped [17, 20]. Recently, label-only MIA attacks have also
been proposed [21], which can perform the attack without ac-
cessing the confidence vector.

3. METHODS

3.1. Quantization

To generate quantized models, we utilize the method devel-
oped in [4], DoReFa-Net. While DoReFa-Net was tested only
on AlexNet in the original paper, it also yielded excellent per-
formance on other and more recent networks. Its method for
weight quantization can be expressed as follows:

Forward: ro = sign(ri) · S(|ri|), (1)

Backward:
∂f

∂ri
=

∂f

∂ro
(2)

where ri is a real number input, ro is a k-bit quantized num-
ber, f represents the objective function, and S is a scaling
factor. Such transformations are performed through all filters.
Additionally, if k > 1, DoReFa-Net employs the following
transformation:

Qk(ri) = 2 ·Qk(
tanh(ri)

2 ·max(| tanh(ri)|)
+

1

2
)− 1 (3)

This equation first limits the values of the weights to [−1, 1]
and then quantizes them to the desired k bits within the range
[0, 1]. Finally, an affine transformation returns the range to
the initial [−1, 1]. To quantize the activations, DoReFa-Net
employs the quantization function, which can be expressed as
aq = Qk(ai), where ai and aq represent an initial activation
and the quantized activation, respectively.

3.2. MIA

The underlying idea behind MIA is that each data point a
model was trained on has a distinguishable effect on the
model itself: the model should be more confident in classify-
ing training data in general. If we have a pre-trained model
h, and f as a decision rule, given data d, the membership
prediction can be presented as f(d;h) ∈ {0, 1}. We assume
that as an adversary, we have access to the trained model
h. We can use a query interface on sample data d and then
collect the confidence vector h(x). To perform the attack,
we query the model. The attack uses an unsupervised binary
classification as seen in [17]. Using the maximum value of
the extracted vector allows the adversary to compare this
value to a certain threshold. If the maximum value for data
d is above the threshold, then we consider d a member of the
training set f(d;h) = {1}. The intuition behind the attack is
that the maximum value confidence vector of a member data
point is much higher than that of a non-member data point.

3.3. Gap Attack

We follow the same setup as in [21] to consider the intuitive
assumption made by [22] as a baseline attack, which predicts
any misclassified data sample as a non-member of the private
training set. This attack is also referred to as a gap attack,
since the attack is correlated with the gap between train accu-
racy and test accuracy. The attack can be expressed as:

1

2
+

(trainacc − testacc)

2
(4)

The gap attack can be used as a baseline prediction rather
than an actual MIA attack. Since we use quantized models
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where the training accuracy does not reach 100% training ac-
curacy, there will be misclassified training images that con-
tradict the gap attack intuition.

Member

Membership 

inference

data

Quantized network

Non-member

Sampled from 

training dataset

Full precision network

Confidence 

vector
Quantization

Fig. 1. Overview of the experimental setup.

4. EVALUATIONS

In this section, we perform extensive empirical experiments
to answer the following research questions:

1. How does a quantized model respond to MIA in com-
parison with a full precision model?

2. How does changing a model’s activation and bit-width
values impact its resilience?

3. Can quantization provide resistance to MIA?

4.1. Threat Model

We consider the same threat model as in prior works [16]. We
assume the adversary knows the task and can access partial
data samples from a similar distribution to the target model.
The adversary can access the softmax layer outputs.

4.2. Experimental Setup

We implement the widely-used ResNet-18 as our full preci-
sion baseline. We use the quantization methods described
in Section 3.1 to train several quantized versions of ResNet-
18. The models are trained and validated with the CIFAR-10
and Fashion MNIST datasets. Since we are not using shadow
models, there is no need to split the dataset in the same way
as for training. Instead, we split each dataset in half and used
one part to train our target model, with the other half left out
for testing. In this case, we still see some accuracy degrada-
tion. Thus, we use data augmentation to improve the accuracy
of our models. The experiments follow a three-step proce-
dure as depicted in Fig. 1. We perform quanizaion to obtain
a quantized network. We pass data through full precision and
quantized network. Then, we extract the confidence vectors

from the networks. Finally, we can assess whether the data
sample is a member or non-member based on the confidence
vector.

To generate the quantized models, we chose weight bit-
width (w) and activation bit-width (a) of 4-bits and 16-bits,
respectively. We train three models with these specifications
and report their accuracy. For Fashion MNIST, which is a
small grey-scale dataset, we use a learning rate of 0.001 for
10 epochs. For the CIFAR-10 dataset, we use a learning rate
of 0.01 and multiply the learning rate by 0.1 after 20 epochs.
We trained both the full precision and quantized ResNet-18
for 30 epochs. All hyperparameters are kept the same for both
training scenarios.

Note that since we only use half of the dataset for training
and quantized models, some models don’t reach 100% train-
ing accuracy. We perform the gap attack on these models.
For MIA, we select a range of threshold values and calculate
the corresponding Precision, Recall, and F1-Score. We re-
port the highest Precision when Recall is close to 1, and
the weighted average of Precision and Recall as F1-Score,
which can be given by:

F1 =
2 ·Recall · Precision

Recall + Precision
(5)

4.3. Results

We present the results of the gap attacks in Table 1. For Fash-
ion MNIST, all the models achieved high accuracy. The gap
attack accuracy is slightly better than guessing the member-
ship. However, as shown in Fig. 2, the membership infer-
ence attack based on confidence vectors is generally worse on
quantized networks. When the activation bit is kept at 4-bits
during the training phase, they seem resistant to the attack. By
changing the threshold value, the attack on the full precision
model peaks above 57%, while the heavily quantized models
peak at around 54%.

Table 1. Performance comparison of Gap attack on vision
based tasks, using full precision ResNet-18, and quantized
ResNet-18

Dataset Test
Acc.(%)

Method Attack
Acc.(%)

Fashion
MNIST

85.92 full precision 56.00
89.20 quantized (w=4,a=4) 54.00
89.08 quantized (w=16,a=4) 54.00
87.59 quantized (w=16,a=16) 56.03

CIFAR-10

75.68 full precision 62.15
85.24 quantized (w=4,a=4) 57.32
84.84 quantized (w=16,a=4) 57.52
84.93 quantized (w=16,a=16) 57.53

The quantized model with 16-bit weight and activation
performs better than the full precision model. This is possi-
bly due to the fact that classifying Fashion MNIST is an easy
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Table 2. Performance comparison of confidence vector (CV) based MIA on vision based tasks
Dataset Test

Acc.(%)
Method F1-Score (%) Precision Recall

Fashion
MNIST

85.92 CV full precision 66.15 54.00 94.00
89.20 CV quantized (w=4,a=4) 66.12 51.00 94.00
89.08 CV quantized (w=16,a=4) 66.09 52.00 94.00
87.59 CV quantized (w=16,a=16) 68.50 54.00 94.00

CIFAR-10

75.68 CV full precision 77.30 63.00 100.0
85.24 CV quantized (w=4,a=4) 70.12 54.00 100.0
84.84 CV quantized (w=16,a=4) 70.96 55.00 100.0
84.93 CV quantized (w=16,a=16) 71.79 56.00 100.0
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Fig. 2. Accuracy of MIA on quantized ResNet-18 and full
precision ResNet-18 on Fashion MNIST datatset.

task. We perform the same experiment on CIFAR-10 as well.
We report the results of the gap attack on CIFAR-10 in Fig. 3.
As the figure shows, both the full precision and quantized net-
work achieve near 100% training accuracy. The gap attack
accuracy indicates that these models are more susceptible to
MIA than the previous task. As we can see from Fig. 3, the
MIA based on the confidence vector reaches more than 60%
for both the full precision and quantized models. The attack
accuracy is at its lowest when the activation and weight are
restricted to 4-bit during the training phase. Even when the
activation and weight are restricted to 16-bit, the attack accu-
racy is significantly lower than the full precision model. By
changing the threshold value, the attack on the full precision
model peaks above 68%, while the heavily quantized models
peak at around 63%. Since the attack is a binary classification,
we also examine other metrics, including true positives and
true negatives. When the Recall is high, a high Precision
indicates a low number of false positives. Table 2 shows the
result for both fashion MNIST and CIFAR-10. We present the
highest F1-Score with the highest Recall and Precision.

Even though quantized networks and full precision net-
works have similar performance, our experimental results
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Fig. 3. Accuracy of MIA on quantized ResNet-18 and full
precision ResNet-18 on CIFAR-10 dataset.

show that quantized networks offer superior protection against
MIA. The trend in Fig. 2 where the heavily quantized network
provides more protection than the other quantized networks
could be a promising direction to enhance the privacy protec-
tion of a neural network model.

5. CONCLUSION

This paper studied the implications of model quantization on
the privacy leakage of neural network models. To the best
of our knowledge, this work is the first to study the relation-
ship between model quantization and its impact on the resis-
tance against MIA. We demonstrated that a quantized model
not only reduces the computational complexity from the full
precision neural network while maintaining a comparable ac-
curacy, but also provides inherent resistance to MIA.
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