
Genetic-based Joint Dynamic Pruning and Learning
Algorithm to Boost DNN Performance

Azadeh Famili
Holcombe Department of

Electrical and Computer Engineering
Clemson University

Clemson, USA
Email: agholam@clemson.edu

Yingjie Lao
Holcombe Department of

Electrical and Computer Engineering
Clemson University

Clemson, USA
Email: ylao@clemson.edu

Abstract—The learning process of a biological system is a
continuous phenomenon with limited external interventions. As
learning progress, the numbers of neurons and synapses are
modified based on the circumstances, which will impact the
learning rate (i.e., learning faster as learning progresses). How-
ever, different from the characteristics of biological systems,
the current research on deep learning is focused on a fixed
training process with a predefined architecture to obtain optimal
accuracy. On the other hand, while model pruning techniques
have been studied to eliminate redundant neurons or synapses,
most of them are applied after training but before deployment to
accelerate the inference. In this paper, we integrate pruning into
training and propose a genetic-based joint pruning and learning
algorithm that monitors the training process and prunes the
redundant parameters while training. As a result, our method
can accelerate both training and inference. The proposed genetic-
based method is well-suited for both training from scratch
and online learning tasks by considering both the importance
and stability of the parameters in the pruning process. The
effectiveness of the proposed algorithm is evaluated on different
neural network architectures and datasets, which demonstrates
significant improvements for the training under both batch
learning and incremental learning scenarios.

I. INTRODUCTION

The original inspiration behind the neural network architec-
ture is the biological learning systems, which are inherently
dynamic [1]. However, the common practice of building and
training a deep neural network (DNN) differs from its bio-
logical counterpart. DNN can be defined as a feed-forward
artificial neural network with more than one hidden layer.
After defining a task, experts search for a DNN architecture
that is usually over-parameterized and then initialize the model
parameters to start the training process with annotated data.

To bridge the gap between the performance requirement of
complex DNN tasks and the resources available on the target
computing platforms, various model compression techniques
have been proposed. The objective of these algorithms, includ-
ing binarization, ternarization, quantization, and pruning [2]–
[5], is to reduce the computational complexity of a well-trained
model before deployment while maintaining similar accuracy.
In fact, the success of these methods in itself is a proof that
these networks are usually significantly over-parameterized.
Most of these techniques are performed after the training pro-
cess, and they do not take future knowledge into consideration

Pruned network

Initialized network

Proposed m
ethod

Input Output

Filters

Input Output

Filters

Input Output

Filters

Updating network

Input Output

Filters

Trained network

Fig. 1. Conventional pruning methods apply to a well-trained model to obtain
a pruned model. In contrast, the proposed method integrates pruning into
training.

and hence are not directly applicable to online learning or
incremental learning scenarios [6]. However, many real-world
scenarios, such as adaptive facial recognition systems [7],
security oriented tasks such as malware classification [8]–[10],
and spam detection [11]–[13] generally require periodically
updating their decision models to adapt to varying application
contexts.

In this paper, we propose a novel method to accelerate
training by removing redundant and less important param-
eters with genetic algorithms to achieve a similar pattern
as biological learning, i.e., learn faster as learning pro-
gresses. This concept is also supported by recent findings
that sub-networks can achieve the same accuracy as initially
over-parameterized for training and then pruned networks,
with larger training epochs [14], [15]. Unlike the traditional
compression algorithms that target a well-trained model with
user-defined parameters (e.g., threshold, number of pruning
iterations, compression rate) to remove the redundancies [16],
our proposed algorithm integrates with the backpropagation
and self-regulates the pruning operations. The concept is
illustrated in Figure 1. The proposed method can be deployed
immediately after initialization or in case of online learning.

To better align with biological learning, the proposed
method adopts a genetic-based algorithm, which conducts a

2022 26th International Conference on Pattern Recognition (ICPR)
August 21-25, 2022, Montréal, Québec, Canada

978-1-6654-9062-7/22/$31.00 ©2022 IEEE 2100

20
22

 2
6t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 P
at

te
rn

 R
ec

og
ni

tio
n 

(I
C

PR
) |

 9
78

-1
-6

65
4-

90
62

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

PR
56

36
1.

20
22

.9
95

63
10

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 



search on the network to provide a reliably pruned network.
Besides the “importance” of parameters that have been used in
guiding pruning in conventional algorithms, we consider the
“stability” of parameters as another critical characteristic in
determining parameters to prune. Intuitively, we are looking
for stable and unimportant parameters/filters to prune, which
we expect to have minimal impact on the model performance.
The definitions are given below:

• Importance (I) is proportional to the magnitude of
the weight of a parameter. Most methods try to avoid
removing parameters with significant weights.

• Stability (S) of a parameter refers to the changes of its
gradient. If the gradient of a parameter becomes smaller
over time, it becomes more stable.

Our proposed algorithm is capable of learning the sparsity of
the network and modifying the network structures as training
progresses. Besides, the genetic-based approach enables wide
applicability of training scenarios by also employing training
data to decide the pruning criteria. Note that the existing
model compression techniques can still be applied to further
accelerate the inference after training.

Contributions. The main contributions of this paper are
summarized as follows:

• We propose a genetic-based joint dynamic pruning frame-
work to accelerate learning by considering both the
importance and stability of parameters.

• The proposed framework allows the model to be trained
in the same number of epochs as a conventional training
method while achieving minimal loss of accuracy.

• We show that the proposed framework is applicable to
both batch learning and online learning scenarios.

II. METHODOLOGY

A. Preliminaries

We define the parameters of any convolutional layer l as
{W l ∈ Rnl

O×nl
I×k×k, 1 ≤ l ≤ L}, where nl

I , nl
O, and k × k

represent the number of input channels, number of output
channels and kernel size of l-th convolutional layer. In this way
W l

j ∈ Rnl
I×k×k refers to the j-th filter of l-th convolutional

layer. As training continues, the network tries to minimize
the loss L. The weight gradients gl are calculated during the
backpropagation. Note that gl has the same shape as W l.
This paper defines the considered structural pruning problem
as finding unimportant subset of filters. Previous works such
as SFP [17] define the importance (I) as ℓp norm of the
parameters:

Ilj = (

nl
O∑

j=1

|W l
j |p)

1
p (1)

According to the value of Ilj for each filter j, prior methods
typically prune all the filters with Ilj below a threshold or
define a hard constraint and remove a specific number of
unimportant filters.

B. Genetic-based Pruning Algorithm

To address the challenges that we discussed in the pre-
vious section, we integrate gradients into our algorithm and
define the stability S as the ℓ1 norm of the gradients, Slj =

(
∑nl

O
j=1 |glj |).

Filters with low S scores imply that these filters are stable
enough to be pruned. We also use ℓ1 norm of W l

j (i.e., p = 1 in
Equation 1). By considering both Ilj and Slj values, we propose
a genetic algorithm for updating the mask M , i.e., from Mt at
the t-th iteration to Mt+1. The mask has the same dimension
as the weight W and its entries can only be either 0 or 1,
which represent pruned and preserved parameters, respectively.
The final pruned model can be obtained by W ◦M , where ◦
represents the element-wise product. The steps of the genetic
algorithm are presented in Algorithm 1. The notations used
are summarized in Table I. Algorithm 1 requires weights W
and the sum of three consecutive gradients G to form the first
generation, mask M which has the similar shape as W and G
to keep track of pruned parameters, and two hyperparameters
C and T . Here, the main population presents both weights and
gradients. In the following sections, we will present the details
about the first generation, fitness computation, conventional
genetic operations, and the algorithm’s overall flow.

Algorithm 1: Genetic-based joint dynamic pruning
and learning
Input: Gradients G, Weight W , Mask Mt,

Hyperparameters C, T
Output: Mt+1

1: Z = G ◦W ◦Mt

2: r = nO/2
3: A =

∑r
i=1 Zi, B =

∑nO

i=r+1 Zi

4: PA[0 : r] = Encode(0, 1)
PB [0 : r] = Encode(0, 1)

5: H = A+B
6: for c = 1...C | Until goal achieved do
7: PA, PB ← Crossover(PA, PB)
8: if B(0.5× c

C ) == 1 then
9: PA, PB ←Mutation(PA, PB)

10: end if
11: FA ← Fit(A,PA)

FB ← Fit(B,PB)
12: if (FA + FB) ≤ T ×H then
13: Mt+1 ←Masking(PA, PB ,Mt)
14: break
15: end if
16: end for

To ensure that pruned filters are stable before pruning,
we go one step further to sample the gradient g for several
consecutive iterations and consider the sum of these gradient
values Gl

j as an indicator of stability. In our algorithm, we
sample the gradients for three consecutive times, based on
empirical evidence.

2101

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 



𝒌 × 𝒌

𝒏𝑰

𝒏𝑶

𝑨
𝑬𝒏𝒄𝒐𝒅𝒆

𝑪𝒓𝒐𝒔𝒔𝒐𝒗𝒆𝒓

𝑴𝒖𝒕𝒂𝒕𝒆

𝑩

𝑷𝑨

𝑷𝑩

𝑭𝒊𝒕𝒏𝒆𝒔𝒔

𝑬𝒗𝒂𝒍𝒖𝒂𝒕𝒆

𝑮𝒆𝒏𝒆𝒕𝒊𝒄 𝒂𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎

0.5

0.7
0.9
1.4
0.1

0.5

1.2
0.5
0.7
0.9

0

0
1
0
1

0

0
0
1
1

0

0
0
1
1

0

0
1
0
1

0

0
0
0
1

0

0
1
0
1

0.5

0.7
0.9
1.4
0.1

0.5

1.2
0.5
0.7
0.9

0

0
0
0
0.1

0

0
0.5
0
0.9

1

1
1
1

0
1

1
1
1

0

1
1

1
1
1

0

1
1

1
1
1

0

11
0 0 00
1 1 11

1 1 11
0 0 00

𝑭𝑨

𝑭𝑩

Fig. 2. Flow of the proposed genetic-based pruning algorithm. The first generation reflects the gradients flow and weights of each layer. Crossover and
mutation are performed on the encoded PA and PB . To evaluate the fitness of the new generation, PA and PB are multiplied by A and B, respectively. The
sum of these values is compared to the original score. If the evaluation is successful, a mask is produced, which will be used in backpropagation.

TABLE I
NOTATIONS AND HYPERPARAMETERS USED IN OUR ALGORITHM

Notation Meaning
A and B The first generations of genetic algorithm

H Fitness score of the first generation
PA and PB Encoded first generations

C Maximum number of generations
T Target

C. First Generation

Figure 2 shows the flow of the he proposed genetic-based
pruning algorithm, where A and B represent the first gener-
ation of the genetic algorithm. Although we do not explicitly
use I,S , the first generation of the genetic algorithm reflects
both of them. If Z is a matrix with the same dimension as W ,
using Zl

j = W l
j ◦ Gl

j ◦M l
j retains the information about the

importance and stability at the same time. A small entry in Z
represents a small G entry (i.e., stable) and a small W entry
(i.e., unimportant), which hence is a candidate for pruning.
As shown in Figure 2, after a row-wise addition on Z is
performed, we divide the results into two vectors and store
them in A and B.

For the Encode() operation, we randomly make two vectors
of ones and zeros with the same size as A, and B, which are
denoted as population PA and PB in the genetic algorithm.
The primary operations are performed on PA and PB , which
are binary vectors.

D. Fitness Computation

Computing the fitness of a population is a vital component
of the genetic algorithm. The fitness of the first generation
can be easily computed using the first generation A and B.
We store this value in H and use it in the evaluation step. H
is used to ensure that the pruning candidates’ score does not
diverge from the first generation score. After that, we compute
the fitness of the pruning candidates for each generation, using
Fit(), as in line 11 of Algorithm 1. The first argument of

Fit() is the first generation, and the second argument is the
new candidates.

FA = A ◦ PA (2)
FB = B ◦ PB (3)

(FA + FB) is used to evaluate the fitness of the pruning
candidates. It is a fast operation that involves pair-wise mul-
tiplication and addition.

E. Crossover

Crossover is a popular method in genetic algorithms to
explore the solution space. There are different ways of per-
forming crossover [18]. One possible way is to choose two
crossover points q1 and q2 in PA and then swap the chosen
subset PA[q1 : q2] with PB [q1 : q2]. However, this operation
requires several steps for each generation, which might slow
down the entire algorithm. Instead, we perform crossover, de-
noted by function Crossover() as in line 7 of Algorithm 1, by
choosing one crossover point of q. As illustrated in Figure 2,
a random index in PA is selected. Then, PA is swapped with
PB from the beginning to the crossover point.

F. Mutation

Typical mutation operations involve toggling a single bit
or shuffling several bits. However, in our work, the mutation
operation is designed to expedite the finding of pruning
candidates. In this step, Mutation(), two points a and b from
the population are randomly selected, such that a < b. Then
members of the candidates are set to zero PA[a : b] = 0,
PB [a : b] = 0. The mutation frequency depends on the
mutation step. The probability of the mutation step increases
as the number of generations continues to grow [19]. For each
generation, we draw a binary random number 0 or 1 from a
Bernoulli distribution, using B(h× c

C ). As c becomes closer
to C, the probability increases. In our experiments, we use
h = 0.5. If the result of the draw was one, the algorithm
performs Mutation(). Otherwise, it moves on to calculate
the fitness of the evaluation.

2102

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 



G. Evaluation

In this step, the algorithm decides if the current population
PA and PB can be used for pruning or if it needs to continue
searching for a new population. There are two challenges that
this step will address. The first challenge is to ensure that
by eliminating candidates in PA and PB , the training process
would not be disrupted. By disruption, we mean a sudden and
significant increase in loss. The second challenge is to avoid
over-pruning the network in training, which is particularly
important for retraining and online learning scenarios.

The first concern can be alleviated by choosing a reasonable
constraint. As we can see in Algorithm 1, line 12, the Target
T is used as the constraint. A new generation’s fitness score
noted as (FA, FB) should be less than T times the original
fitness score H . If we run the genetic algorithm without this
constraint, the algorithm will likely prune important filters and
significantly reduce the accuracy.

To address the second challenge, we introduce another
variable ratio, which represents the pruned parameters to
the total number of parameters. As the pruning continues,
the initial constraint needs to be adjusted, and we use α to
adjust it. In the beginning, we use the initial target T = 0.1.
This means if the (FA + FB) is greater than 0.1 × H , the
candidates’ fitness score is too high, and removing them would
hurt the accuracy. Otherwise, the pruning candidates are good
candidates, and we can continue to Masking(). After several
pruning rounds, when ratio passes a threshold, the target
is multiplied by α. The threshold reduction step is repeated
once more in case one of the layers achieves a high pruning
ratio. At the same time, as more filters are removed, the value
of remained filters becomes too important, and the candidate
population will not be pruned unless the candidates are very
stable, Gl

j are close to zero, and their weights W l
j are also

close to zero. Although we do not explicitly define a hard
constraint for the pruning ratio, theoretically, the algorithm
hasn’t stopped, but pruning is limited. We tested our algorithm
with two different α values, 0.1 and 0.01. At any point, if
the evaluation determines suitable candidates are found, the
algorithm moves to Masking(). In the Masking(), we have
the pruning candidates PA, PB , and the previous mask Mt.
Ones in PA, PB are the pruning candidates. To update the
mask, we toggle the PA and PB , concatenate them and extend
the result into a matrix with the same size as M . We can
perform an element-wise multiplication to get Mt+1.

H. Joint Dynamic Pruning and Learning

The main operations of the genetic algorithm are binary
inside the for-loop, including crossover and mutation. These
operations are integrated into backpropagation, as they would
not slow down the training process. Because the algorithm
finds suitable candidates, there is no need to keep running it
over and over. We run the algorithm every D batches in our
experiments, which can also accelerate the entire training.

Algorithm 2 presents the overall flow of our proposed joint
dynamic pruning and learning algorithm. After parameter W
initialization, we also initialize our mask M . For each epoch,

parameters W get updated through stochastic gradient descent.
G gets updated using gt, Mt. Based on the value of D, either
genetic-based pruning is performed, or it moves on to finish
the backpropagation.

Algorithm 2: Joint dynamic pruning and learning
Input: Training samples X , Training labels Y ,

Epochs E, Hyperparameter D
Output: Pruned model W ◦M

1: Initialize the model parameters W
2: Initialize the mask M0 ← all ones(M)
3: for e = 1...E do
4: for each batch ⊂ X ... do
5: Update W with stochastic gradient descent
6: for every D batches ... do
7: gt ← ∇xL(x, y,W )
8: G← G+ (gt ◦Mt)− (gt−3 ◦Mt−3)
9: Mt+1 ← Genetic(G,W,Mt) // Algorithm 1

10: end for
11: end for
12: end for

III. EVALUATION AND RESULTS

A. Experimental Settings

1) Dataset: In this section, we first verify our acceleration
method’s effectiveness on two benchmark datasets CIFAR [20]
and ImageNet [21].

2) Neural Network Architectures: We evaluate our algo-
rithm by using multiple neural network architectures such as
ResNet-32, 56, and 110 on CIFAR-10, ResNet-18, 34, and 50
on ImageNet.

We compare our results to two recent representative
works that can perform pruning in the training phase from
scratch [17], [22]. For a fair comparison, we follow the same
steps as in [17], [22] to train these ResNet architectures on
CIFAR-10 and ImageNet. Offline pruning methods can be

TABLE II
PERFORMANCE COMPARISON OF RESNET ARCHITECTURES ON CIFAR-10

Depth Baseline
Acc.

Method Pruned
Acc. (%)

Acc.↓
(%)

Flop ↓
(%)

32 92.63

SFP [17] 92.08 0.55 41.5
FPGM [22] 92.31 0.32 41.5
Ours(α = 0.01) 93.71 -1.08 32.9
Ours(α = 0.1) 91.96 0.67 43.2

56 93.59

SFP [17] 92.26 1.33 52.6
FPGM [22] 92.89 0.70 52.6
Ours(α = 0.01) 92.37 1.22 35.9
Ours(α = 0.1) 93.19 0.40 40.1

110 93.68

SFP [17] 93.38 0.30 40.8
FPGM [22] 93.73 -0.05 52.3
Ours(α = 0.01) 93.85 -0.17 47.0
Ours(α = 0.1) 93.58 0.10 47.1

2103

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
PERFORMANCE COMPARISON OF RESNET ARCHITECTURES ON IMAGENET

Depth Baseline
Top-1 (%)

Baseline
Top-5 (%)

Method Pruned
Top-1 (%)

Pruned
Top-5 (%)

Top-1
↓ (%)

Top-5
↓ (%)

Flop ↓
(%)

18 70.28 89.63

SFP [17] 67.10 87.78 3.18 1.85 41.8
FPGM [22] 67.78 88.01 2.50 1.62 41.8
Ours (α = 0.01) 67.82 88.18 2.46 1.45 20.3

34 73.92 91.62

SFP [17] 71.83 90.33 2.09 1.29 41.1
FPGM [22] 71.79 90.70 2.13 0.92 41.1
Ours (α = 0.01) 72.25 90.56 1.67 1.06 21.2

50 76.15 92.87

SFP [17] 74.61 92.06 1.54 0.81 41.8
FPGM [22] 75.03 92.40 1.12 0.47 42.2
Ours (α = 0.01) 75.26 92.37 0.89 0.50 25.8

performed after training on top of the model generated by our
proposed method, which results in a better inference speedup.

The proposed algorithm does not enforce a hard threshold
or specific hyperparameter for the pruning ratio. The only
hyperparameter that can impact the pruning ratio implicitly
is α since the evaluation target is adjusted by α.

B. Performance on Batch Learning

We present the performance comparison of pruning on batch
learning in Table II and Table III for CIFAR-10 and ImageNet,
respectively. We use flops, namely floating-point operations,
to evaluate the effectiveness of pruning, which has also been
widely used as a metric to evaluate the complexity of DNN
models [23], [24].

It can be seen from the experimental results that with the
reduction of filters, the accuracy of the models is not impacted.
This is expected since our algorithm dynamically adapts to
the training process and can maintain the same accuracy
without extra steps compared to prior works that target pre-
trained models. Compared to [17], [22], our algorithm yields
the lowest accuracy drop in general on both CIFAR-10 and
ImageNet. Overall, our proposed method achieves comparable
performance to the state-of-the-art on batch learning. For
example, SFP without hard pruning reduces flops by 41.5%
with 0.55% accuracy degradation on ResNet-32, while our
method achieves 43.2% flop reduction with 0.67% accuracy
drop by dynamically pruning the model during batch learning.
On ImageNet, we acknowledge that our method has lower
flop reduction. However, our method has a wider range of
applicability and achieves superior performance in online
learning (Section III-C). Compared to prior methods that are
optimized for either pre-trained models or batch learning, our
algorithm performs well in both batch learning and online
learning setting without any modification. We should also note
that α = 0.1 is less restrictive, which results in more flop
reduction. On the other hand, α = 0.01 yields better accuracy
than the baseline in some cases.

C. Performance on Online Learning

The main advantage of the proposed method can be ob-
served in online learning. As the new data arrive, the gradients
tend to change. Since we consider the gradients flow in our

dynamic pruning algorithm, the active filters would not be
pruned. The pruning slows down after the initial runs to ac-
commodate the new training data. To perform our experiment,
we use the CIFAR-10 dataset; unlike batch learning, new data
is provided during the training phase.

TABLE IV
PERFORMANCE COMPARISON OF RESNET ARCHITECTURES ON CIFAR-10

IN ONLINE LEARNING SETTING

Depth Baseline
Acc.(%)

Method Pruned
Acc.
(%)

Acc. ↓
(%)

Prune
Ratio
(%)

32 84.86
ℓ1 norm [3] 75.85 9.01 20.6
FPGM [22] 80.21 4.65 31.0
Ours (α = 0.01) 83.50 1.36 33.5

56 83.12
ℓ1 norm [3] 76.68 6.44 21.8
FPGM [22] 79.89 3.23 30.6
Ours (α = 0.01) 82.74 0.38 36.5

110 83.18
ℓ1 norm [3] 74.62 8.56 23.5
FPGM [22] 80.91 2.27 30.1
Ours (α = 0.01) 80.65 2.53 45.7

In our experiments, we compare our method to FPGM [22]
and an ℓ1 norm-based method [3]. Table IV shows the results
and comparison to FPGM [22] on CIFAR-10. SFP [17]
performs soft pruning, the pruning ratio during training is
very small in our experiments. Thus, we did not include the
performance of SFP in the tables, as it would not be a fair
comparison. There is a total of ten updates of data during
training. The initial learning rate is 0.1 and is multiplied by
0.1 in epochs 150 and 225. For the online learning updates, we
follow the method used in [25]. Although they used different
training epochs for different methods, we kept the training
epochs similar for all the methods. To have a fair comparison
with FPGM, we limit the FPGM pruning ratio to 30%, which
prevents the model from being over-pruned. In case of no
restriction on the pruning ratio, there is a significant decline
in the network’s accuracy. It can be seen from Table IV that
our algorithm simultaneously achieves superior performance
in both accuracy preservation and pruning ratio.

We also plot the accuracy trends for these ResNet archi-
tectures in Figure 3. When new data is available, the loss

2104

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 



0 200 400 600 800
Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

0

0.5

1

1.5

2

2.5

Lo
ss

ResNet-32

Ours
FPGM
Baseline
Ours
FPGM
Baseline

0 200 400 600 800
Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

0

0.5

1

1.5

2

2.5

Lo
ss

ResNet-56

Ours
FPGM
Baseline
Ours
FPGM
Baseline

0 200 400 600 800
Epoch

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5ResNet-110

Ours
FPGM
Baseline
Ours
FPGM
Baseline

Fig. 3. Comparison of accuracy and loss in online learning setting for different ResNet architectures. The updates of data are performed at epochs 0, 160,
290, 360, 430, 500, 560, 620, 680, 730 (same as in [25]) which are marked by vertical lines. At each update, the loss is increased; however our loss pattern
is similar to that of the baseline.

0 200 400 600 800
Epoch

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g 

R
at

io

ResNet-32
Layers  2  to 6
Layers  7  to 11
Layers 12 to 16
Layers 17 to 21
Layers 22 to 26
Layers 26 to 30

0 200 400 600 800
Epoch

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g 

R
at

io

ResNet-56
Layers  2  to 9
Layers 10 to 17
Layers 18 to 25
Layers 26 to 34
Layers 35 to 42
Layers 43 to 50

0 200 400 600 800
Epoch

0

0.2

0.4

0.6

0.8

1

Pr
un

in
g 

R
at

io

ResNet-110
Layers  2  to 18
Layers 19 to 35
Layers 36 to 52
Layers 53 to 69
Layers 70 to 86
Layers 87 to 103

Fig. 4. A comparison of prune ratio in online learning setting for different depths of ResNet architectures. The pruning progress isn’t restricted by updates
and continues even in late stages of training.

increases, and hence the accuracy drops but will gradually
return to similar accuracy as that before the update as train-
ing progresses. Compared to FPGM, our proposed method
achieves much closer accuracy to the baseline (i.e., without
pruning). It is also important to note that even integrated with
the proposed dynamic pruning, training converges similar to
the baseline. Between epochs 0 to 160 where the network is
being trained on the first portion of training data, the baseline
and our algorithm behave similarly. The loss starts to go
down after several epochs, and this trend continues. Hence,
the proposed method can effectively prune the model and
accelerate the computation during training without degrading
the performance. However, this is not the case with FPGM,
where the loss does not go down for a relatively large number
of epochs, which might be the reason that the network has
a lower accuracy eventually. According to these observations,
we argue that the magnitude alone, regardless of the definition
of importance (e.g., geometric median, ℓ1 norm, ℓ2 norm),
is not sufficient for deciding pruning candidates during the
training. Thus, integrating stability is essential for performing
pruning during training.

To provide more insights into the pruning activities, we plot
the pruning ratio for each convolutional layer during training,
as shown in Figure 4. We can make some interesting observa-
tions, as different layers may have distinctive characteristics

in the subsequent stages of online learning. In general, earlier
layers tend to achieve a higher pruning ratio than later layers.
However, these layers continue to prune gradually as learning
further progresses. After a certain number of epochs, pruning
activities in earlier layers are significantly reduced (e.g., epoch
200 as shown in the example of Figure 4).

IV. CONCLUSION

We proposed a joint learning and pruning framework based
on genetic algorithms to accelerate DNN. Our algorithm is
integrated with the backpropagation to prune filters in con-
volutional layers without disrupting the learning process. As
we noted above, the objective of the proposed method is to
apply pruning to both batch learning and online learning. Since
pruning on batch learning has been studied in a few prior
works already, we calibrate our algorithm more towards online
learning. We demonstrated the effectiveness and efficiency
of the proposed method in both batch learning and online
learning scenarios with a wide range of datasets and neural
network architectures. We show the proposed genetic-based
algorithm achieves much better performance in comparison to
prior works.

ACKNOWLEDGEMENTS

This work is partially supported by the National Science
Foundation award 2047384.

2105

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] J. Stiles and T. L. Jernigan, “The basics of brain development,” Neu-
ropsychology review, vol. 20, no. 4, pp. 327–348, 2010.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in neural information processing
systems, 2016, pp. 4107–4115.

[3] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters
for efficient ConvNets,” in Proceedings of 5th International Conference
on Learning Representations (ICLR), 2017.

[4] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural
networks,” in Proceedings of the British Machine Vision Conference
(BMVC), pp. 31.1–31.12.

[5] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
4820–4828.

[6] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, 2018.

[7] B.-F. Wu and C.-H. Lin, “Adaptive feature mapping for customizing
deep learning based facial expression recognition model,” IEEE access,
vol. 6, pp. 12 451–12 461, 2018.

[8] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah-
madi, “Microsoft malware classification challenge,” arXiv preprint
arXiv:1802.10135, 2018.

[9] J. Clements and Y. Lao, “Backdoor attacks on neural network op-
erations,” in Proceedings of IEEE Global Conference on Signal and
Information Processing (GlobalSIP), 2018, pp. 1154–1158.

[10] J. Clements and Y. Lao, “DeepHardMark: Towards watermarking neural
network hardware,” in The Thirty-Sixth AAAI Conference on Artificial
Intelligence (AAAI), 2022.

[11] G. Jain, M. Sharma, and B. Agarwal, “Spam detection in social media
using convolutional and long short term memory neural network,”
Annals of Mathematics and Artificial Intelligence, vol. 85, no. 1, pp.
21–44, 2019.

[12] B. Zhao and Y. Lao, “CLPA: Clean-label poisoning availability attacks
using generative adversarial nets,” in The Thirty-Sixth AAAI Conference
on Artificial Intelligence (AAAI), 2022.

[13] J. Zhang, X. Chen, M. Song, and T. Li, “Eager pruning: Algorithm
and architecture support for fast training of deep neural networks,”
in Proceedings of the 46th International Symposium on Computer
Architecture, 2019, pp. 292–303.

[14] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding
sparse, trainable neural networks,” in Proceedings of 7th International
Conference on Learning Representations, (ICLR), 2019.

[15] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value
of network pruning,” in Proceedings of 7th International Conference on
Learning Representations, (ICLR), 2019.

[16] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
2736–2744.

[17] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for
accelerating deep convolutional neural networks,” in Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI), 2018, pp. 2234–2240.

[18] B. Vaissier, J.-P. Pernot, L. Chougrani, and P. Véron, “Genetic-algorithm
based framework for lattice support structure optimization in additive
manufacturing,” Computer-Aided Design, vol. 110, pp. 11–23, 2019.

[19] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Transactions on evolutionary computa-
tion, vol. 3, no. 2, pp. 124–141, 1999.

[20] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, and F.-F. Li, “Im-
ageNet large scale visual recognition challenge,” International journal
of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[22] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via
geometric median for deep convolutional neural networks acceleration,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 4340–4349.

[23] J.-H. Luo and J. Wu, “Autopruner: An end-to-end trainable filter pruning
method for efficient deep model inference,” Pattern Recognition, vol.
107, p. 107461, 2020.

[24] W. Hua, Y. Zhou, C. De Sa, Z. Zhang, and G. E. Suh, “Boosting
the performance of cnn accelerators with dynamic fine-grained channel
gating,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, p. 139–150.

[25] X. Dai, H. Yin, and N. K. Jha, “Incremental learning using a grow-and-
prune paradigm with efficient neural networks,” IEEE Transactions on
Emerging Topics in Computing, 2020.

2106

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 27,2023 at 21:29:22 UTC from IEEE Xplore.  Restrictions apply. 


