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Motivation

Organoids have become valuable models for understanding cellular and molecular
mechanisms in human development including brains. However, whether
developmental gene expression programs are preserved between human organoids
and brains, especially in specific cell types, remains unclear. Importantly, there is a
lack of effective computational approaches for comparative data analyses between
organoids and developing human brains. To address this, we developed a machine
learning framework for comparative gene expression analysis of brains and
organoids, to identify conserved and specific developmental trajectories as well as

developmentally expressed genes and functions, especially at cellular resolution.

Summary

Our machine learning framework, Brain and Organoid Manifold Alignment (BOMA)
first performs a global alignment of developmental gene expression data between
brains and organoids. It then applies manifold learning to locally refine the
alignment, revealing conserved and specific developmental trajectories across brains
and organoids. Using BOMA, we found that human cortical organoids better align
with certain brain cortical regions than other non-cortical regions, implying

organoid-preserved developmental gene expression programs specific to brain



regions. Additionally, our alignment of non-human primate and human brains
reveals highly conserved gene expression around birth. Also, we integrated and
analyzed developmental scRNA-seq data of human brains and organoids, showing
conserved and specific cell trajectories and clusters. Further identification of
expressed genes of such clusters and enrichment analyses reveal brain- or organoid-
specific developmental functions and pathways. Finally, we experimentally
validated important specific expressed genes using immunofluorescence. BOMA is

open-source available as a web tool for community use.

Introduction

The development of human brains, especially during the early periods, remains
poorly understood!. Understanding how neural stem cells differentiate into the
myriad cell types that form the brain, especially at the molecular level, such as gene
expression and its regulatory mechanisms, will shed light on the human brain
development and potentially further help understand the etiology of
neurodevelopmental diseases. Several large collaborative consortia have been
carried out to generate large-scale next generation sequencing data in human brains,
aiming to provide functional genomic resources for understanding molecular

mechanisms of human brain and brain development. For example, BrainSpan*



collected ~600 tissue samples from 48 postmortem human brains, ranging from
prenatal to adult age groups and measured the transcriptomic and epigenomic data
across developmental stages and brain regions. PsychENCODE'- generated multi-
omics data for approximately 2,000 postmortem brains, aiming to understand
functional genomics and gene regulation in human adult brains and neuropsychiatric
disorders. These consortia provided valuable public resources to decipher the
developmental functional genomics and gene regulation in the human brain.
However, the postmortem brain samples serve only as snapshots of the brain at
different stages, whereas brain development is a dynamic process that requires

crosstalk among various genes, cell types, brain regions and environment®.

Because it is quite challenging to measure in-vivo molecular activities such as gene
expression in human brains, animals such as rodents and non-human primates (NHP)
have been used as models for studying molecular mechanisms during brain
development. For example, Zhu et al.” have thoroughly compared the bulk RNA-seq
data of brain development between humans and rhesus macaques at multiple brain
regions and time points. Particularly, they performed Non-negative Matrix
Factorization to linearly factorize the gene expression matrix into five biologically
meaningful ‘transcriptomic signatures’, which were then compared between human
and NHP. Such comparisons demonstrated the usefulness of NHP models for

studying brain development. However, their results also highlighted the divergence



of molecular mechanisms across species. This is also supported by previous studies
that noticed that using animals as models is insufficient because brain maturation is

specific to its developmental context*

and human brains have specific
developmental programs that allow, for example, a dramatic size expansion when

compared to other primates’.

To solve these challenges, emerging 3D brain culture technologies, such as
organoids, have been developed. These cultures utilize embryonic (ESCs) or induced
Pluripotent Stem Cells (iPSC) and differentiate them into 3D human brain models'?.
An intriguing discovery is that iPSCs follow intrinsic programs and extrinsic cues to
form 3-dimensional forebrain organoids (3DOs) that can be maintained for at least
40 weeks and even over two years, with a transcriptomic signature corresponding to
“birth” at ~28 weeks of culture''!2, Organoids as brain models, although in their
early developing stages, have already found numerous medical applications. For
example, Park et al. used 1,300 organoids to model the human brain and conducted
drug screening for Alzheimer’s disease!’. However, to what extent the in-vitro
cultured organoids preserve the in-vivo complex dynamic process remains a
question', with contradictory conclusions that have been made by the community.
For example, Gordon et al.!' cultured organoids for up to 694 days and used
Transition Mapping (TMAP), a rank-rank hypergeometric test based method, to map

the organoids bulk RNA-seq datasets with BrainSpan RNA-seq datasets and



demonstrated organoids culture could reproduce several developmental milestones
of in-vivo brain development even at mid- to late-fetal stages. Velasco et al.!”
performed single-cell RNA-seq (scRNA-seq) on 166,242 cells isolated from 21
organoids and showed that organoids can virtually indistinguishably reproduce the
cell diversity of the human cerebral cortex. On the other hand, Pollen et al.’
compared human primary tissues versus human organoids, using canonical
correlation analysis (CCA)'® and co-clustering of the mixture cells from both origins.
They found organoids maintained the composition of cell types but varied in the cell
percentages and concluded that using organoids as brain models is promising, but
the organoids protocols need future improvements to better preserve the brain cell
type fractions and cell functions®!’. Bhaduri et al.'"® compared single-cell gene
expression data of samples across different developmental periods and multiple
cortical areas with organoids and found cellular stress pathways have been activated
in organoids, which impairs cell-type specification during organoid development.
All these studies highlight the promise of using organoids as models for brain
developmental research; however, until now, the fidelity of organoid models is still
under debate. One of the attributed reasons is the lack of dedicated computational
approaches for integrative and comparative analysis of gene expression across
developmental stages between brains and organoids, especially for single-cell

datasets.



In particular, the comparative analysis of developmental data between brains and
organoids can be viewed by machine learning as an alignment problem across

multiple datasets. For instance, manifold alignment'*°

, a popular machine learning
technique, projects samples from multiple datasets onto a common latent space via
mapping manifolds across datasets, e.g., multi-omics datasets*'. The neighboring
samples on the latent space suggest that they can be aligned and thus share similar
features (or distant samples for unaligned). In general, manifold alignment
algorithms?? can be supervised or unsupervised depending on whether the sample
correspondence is provided (supervised) or not (unsupervised). A supervised
approach needs predefined correspondence between the samples across two
datasets®. For example, ManiNetCluster** embeds samples into a latent manifold
space and aligns them by minimizing the overall distances between corresponding
samples. An unsupervised approach does not require correspondence, instead learn
the correspondence across multiple datasets?. For example, MATCHER?! performs
linear trajectory alignment based on latent Gaussian process; MMD-MAZ¢
maximizes mean discrepancy on a kernel space. UnionCom?’ uses matrix
optimization to match the distance matrices of each dataset. SCOT?® incorporates
Gromov Wasserstein-based optimal transport to align single-cell datasets. However,

the unsupervised approaches, in general, automatically assume a shared underlying

structure among the aligned datasets®, which might not always be true. Besides,



none of these manifold alignment methods considered prior time information across
samples in development that can likely help increase performance and
interpretability®® of the alignment. The developmental data for brains or organoids
typically provide prior time information on developmental stages, e.g.,
Postconceptional weeks (PCWs) of developing brains, and cultured days of
organoids. Such prior time information, though at low resolution, may help predict
initial correspondences globally across samples from different datasets, in contrast
to the fully unsupervised fashion. Building on such initial correspondence, further
manifold alignment can then refine the alignment to reveal higher resolution and
local timing by the manifold shapes that have been widely used to uncover pseudo
timings®!. However, to the best of our knowledge, manifold alignment has yet been
applied for integrative and comparative analysis of brain and organoid data,

especially for development and single cells.

In this paper, we developed a manifold learning framework, Brain and Organoid
Manifold Alignment (BOMA), to align developmental gene expression data across
human brains and organoids, aiming to better understand conserved and specific
gene expression and functions. In particular, BOMA adopts a semi-supervised
manifold alignment manner. That is, using prior timing information from datasets,
we first perform a global alignment at a coarse-grained level to generate a

correspondence matrix among samples. Next, a non-linear manifold alignment is



performed to refine the alignment and identify the developmental trajectories
comprising cross-dataset samples with higher resolution, local pseudo times. The
aligned and unaligned samples aim to uncover conserved and specific developmental
trajectories across human brains and organoids. We first demonstrated an application
of BOMA by aligning bulk RNA-seq gene expression datasets and observed a
similar developing trend as in the original respective publications'!. By aligning
organoids with different human brain regions, we also found that organoids are more
similar to certain brain regions at specific time points. We also aligned the scRNA -
seq data of human versus chimpanzee organoids and observed a delayed
development of human organoids compared with chimpanzee organoids. Finally, we
compared recent time-series SCRNA-seq datasets between human brains and human
organoids in development. We found both common and uniquely expressed genes
between the brains and organoids at resolutions of cell types across developmental
stages. Moreover, we experimentally validated the expression of genes displaying
differences between brains and organoids in selected cell types. BOMA is also

available as an open-source web tool for community use.



Results

Brain-Organoid Manifold Alignment (BOMA) framework
for comparative analyses of gene expression data between

brains and organoids

As shown in Figure 1, BOMA inputs developmental gene expression matrices of the
brain and organoid samples (e.g., tissues, cells). First, it uses global alignment to
align the samples and initialize a sample-wise correspondence matrix at a coarse-
grain level (e.g., via manifold warping). Second, BOMA performs a manifold
alignment using the correspondence matrix as the initial alignment. This step finds
shared manifolds of the samples and maps them onto a common manifold space. The
manifold shapes of the samples on the space are expected to uncover various
developmental trajectories, which can be either conserved across brains and
organoids (aligned samples) or brain/organoid-specific (unaligned samples). Finally,
BOMA clusters the samples on those trajectories and finds underlying differentially
expressed genes (DEGs), enriched gene functions, and associated phenotypes for
each cluster, providing a deeper understanding of developmental functional
genomics in brains versus organoids. The full description of the BOMA model is

available in Methods and Materials.
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To demonstrate BOMA as a framework for comparative analysis of brains and
organoids development, we carried out several experiments in the following sections.
We first applied BOMA on bulk RNA-seq datasets, including human brains, Non-
Human Primates (NHP) brains and human organoids. We further demonstrated the
utility of BOMA in aligning scRNA-seq datasets, which includes single-cell data
integrated from multiple independent studies. We also benchmark several state-of-

the-art alignment tools using these datasets.

Spatiotemporal conservation and divergence of gene
expression between organoid and brain regions

Recent landmark studies compared gene expression between the human brain and
organoid development!!. However, our understanding of where and when gene
expression in various brain regions is conserved or different from organoids is still
unclear. To this end, we applied BOMA to align developmental gene expression data
of human brains and organoids at the bulk tissue level. The brain dataset includes

brain tissue samples in e-(Dataset 1, N=460, Dataset1;-Table S1) from 16 human

brain regions (Table S2). The organoid dataset includes organoids from a recently
published long-term cultured ‘human cortical spheroid (hCS)’ organoid bulk RNA-

seq dataset!! (N=62, Dataset 6).
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Our alignment shows these brain and organoid samples primarily follow a shared
trajectory on the common space, indicating potential conservation during their
development (Figure 2A). In particular, as shown in Figure 2B, the organoid samples
from 25 days to 250 days were aligned with the brain tissue samples at prenatal
stages'!. At 300 days, the organoid samples started to gain postnatal signatures,
indicated by their high alignment scores with postnatal brain samples (Figure 2B).
Also, organoids after 350 days were not well aligned with any brain samples, which
indicates that the late-stage organoids may differ from postnatal brain development.
This observation was consistent with a recent comparison of brains and organoids

development!!,

Furthermore, we also interrogated which human brain regions are most similar to
organoids in development. To answer this, we assessed the BOMA alignment of
brain samples from each individual region with the organoid samples (Figure S1A-
C). As expected, distinct alignment patterns were found for different brain regions,
with cortical areas aligning better with hCS organoids than non-cortical brain
regions during early developmental stages up to 200 days (Figure 2C-D). At 200
days, the alignment scores of cortical regions are significantly higher than non-
cortical regions (two-side t-test p=0.000696). To find which genes are potentially
driving the alignment, we correlated individual gene expression with organoid

pseudotime (z-axis in Figure 2A) and identified 54 genes significantly correlated

12



with the pseudotime as summarized in Figure S1D. We also identified cortical
(N=51) and non-cortical marker genes (N=75) by finding significantly upregulated
genes across the two regions. Interestingly, many more genes upregulated during
organoid development were also significantly highly expressed in cortical areas
compared to non-cortical regions (N=9 vs N=1). Besides, we didn’t observe any
significant overlap between the pseudotime-correlated genes with the marker genes
of each individual cortical area (Figure S1D). However, our alignment shows within
the neocortex, several cortical areas like OFC, IPC, AIC, STC may be better aligned
with cortical organoids than other cortical areas up to 100 days (two-side t-test
p=0.00108; Figure 2D, Figure S1E). It is important to note that because several brain
regions did not have samples from Stage 2, we removed Stage 2 from all the regions
for the BOMA alignment. As a result, organoids at 25 days cannot align well with
any brain samples. Therefore, these results suggest that cortical organoids
specifically preserve brain-regional development at certain stages (i.e.,
spatiotemporal conservation), instead of mimicking the whole brain development.
Interestingly, they also suggest that organoids are transcriptomically closer to certain
neocortical areas, particularly perisylvian and orbital frontal areas, than they are to

other neocortical areas.

13



Developmental gene expression discrepancies between human
and chimpanzee organoids

We also applied BOMA to align human and Non-Human Primates (NHP) brains,
revealing their conserved developmental gene expression across species.
Specifically, we aligned rhesus macaque brain (N=366)" with human brain samples
(N=460) from BrainSpan using BOMA. We found those samples were aligned most
closely around the time of birth (Figure S2A), indicating that brain gene expression

across two species becomes more similar at the bulk tissue level perinatally’.

To deepen our understanding of the conservation and specificity of developmental
gene expression at cellular resolution across human and NHP organoids, we applied
BOMA to developmental scRNA-seq data and aligned single cells of human
organoids (Number of cells: N=47,130, Dataset 7°%) versus chimpanzee organoids
(N=26,228, six time points, Dataset 7). BOMA alignment was performed on the
pseudo-cells identified by a similar approach as the study generated the datasets®?,
aiming to combat single-cell expression noises. Each pseudo-cell represents a group
of cells with similar gene expression patterns. In total, 938 human and 483
chimpanzee organoid pseudo-cells were generated for BOMA. Our analysis shows
that these pseudo-cells from the two species organoids were aligned in general to a

common trajectory, which indicates cross-species developmental similarity(Figure

14



3A). However, some discrepancies could also be observed. First, compared with
human cells, chimpanzee cells were shifted towards a later time over the
maturational trajectory (towards the left in Figure 3A), suggesting that chimpanzee
organoids were developing faster than human organoids (Figure 3B). The observed
protracted maturation of human organoids is in line with the previous study?®?, and

33,34

was also observed in other cross-species comparison studies on organoids’>~* as well

as on 2D cultures3>3°

. Second, we noticed that two sets of chimpanzee cells
(Chimpanzee 1 and Chimpanzee 2, Figure 3A, right panel) could not be well
aligned with any human cells. To understand the functional relevance of these two
sets of cells (Data 1), we first identified each cell set by their coordinates. We then
extracted upregulated genes using Presto®’® to compare cells from each set with all
other. Finally, functional enrichment analysis was performed using these genes
(Figure 3C). Genes upregulated in Chimpanzee 2 were mostly enriched with brain
developmental functions (FDR < 10e-5). For example, the most significantly
enriched term, ‘Neuron projection morphogenesis’ is related to the maturation of
neurons and circuit assembly>®. These observations again indicate faster maturation
of chimpanzee organoids. On the other hand, upregulated genes in Chimpanzee 1 at
early time points (0 and 4 days) were enriched in cell division processes (e.g., cell

cycle, chromatin remodeling, etc.). These genes suggest Chimpanzee 1 is likely an

intermediate cell type between pluripotent stem cell and neural progenitor, as these
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cells express genes associated with pluripotency (e.g. POUSFI, DSG2), early
embryonic development and patterning (e.g. NKX1-2, DSP, NR6A1, MGST1), neural
tube development (e.g. CTHRCI, PKDCC, PRTG), and brain development/neural
progenitors (e.g. TDGFI, TGFB2, PODXL, LIN28A, FOXHI, FSTLI). They also
express neuron-specific genes and neuron-enriched genes (e.g. RIT2, DNMT3B,
MAPIB). In support of this, Kanton et al.’s*? original analysis of this data also

indicated the presence of neuroectoderm cells.

Therefore, our BOMA alignment revealed a developmental gene expression
similarity between human and chimpanzee organoids. Our analysis also uncovered
the cross-species discrepancy in neural development and cellular functions. These
results demonstrate the capability of BOMA to compare emerging organoid single-
cell data and provide insights into underlying cellular and molecular mechanisms

driving neurodevelopment.

Cell-type level conservation in development between human
brains and organoids derived from embryonic stem cells

To broaden BOMA applications to single-cell datasets of human brains versus
organoids, we first benchmarked BOMA on two particular single-cell datasets. The
comparison of human brains and organoids, especially at the cell-type level, will

greatly advance our understanding of how well in-vitro cultured organoids model
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the in-vivo human brain. We first aligned single-cell data from cortical regions of
postmortem human brains (N=4,261, Dataset 3)* with those of organoids
differentiated from a well-established human embryonic stem cell (ESC) line (H9,
N=11,048, Dataset 7)*2. This human brain dataset covers prenatal samples across 6-
32 PCWs, while the organoid dataset includes organoids from 0 day up to 4 months
in vitro. Before performing the alignment, human brain pseudo-cells (N=490) and

organoid pseudo-cells (N=497) were generated from both datasets.

Our earlier analysis of bulk RNA-seq datasets (Figure 2B) shows organoids up to 4
months could be aligned across prenatal developmental periods, indicating the
developmental time ranges of these two separate studies are comparable. Thus, we
aligned these two scRNA-seq datasets and identified five cell clusters in the common
space (Methods). Each cluster represents a group of cells that likely have similar
functions (Figure 4A). Interestingly, each individual cluster contains cells from both
brains and organoids, suggesting the in-vitro organoids likely is composed of the
major cell types in the human brain. To understand functions underlying those
clusters, we calculated the cell-types enriched in each cluster. For a given cluster,
the enrichments were performed for the cluster cells from brains and organoids
separately. And we observed the enriched cell types in each cluster were generally
matched(Figure 4B). For instance, Cluster 1 was mainly enriched for early

developing cells, such as radial glia (RG), and oligodendrocyte progenitor cell
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(OPC); Cluster 2 was associated with intermediate progenitor cells (IPC), and
newborn excitatory neuron (nEN); Cluster 3 was mainly mapped to excitatory
neuron (EN); Cluster 4 was mainly mapped to inhibitory neuron (IN); Cluster 5 was
mainly mapped to endothelial cells. The details of cell-type annotations can be found
in Table S3. It is worth pointing out that we only performed coarse clustering to
show the high-level correspondence of cell-types between aligned brains and
organoids. Further sub-clustering reveal more refined cell type enrichments of each

sub-clusters (Figure S2B).

Moreover, it is also important to look at matching developmental timing between
brains and organoids. Determining the corresponding developmental periods during
which cells are generated and specified in organoids will greatly benefit the design
of culturing experiments. To address this, we identified the associated
developmental stages of each cluster by calculating the significance of cells
overlapping between each stage versus each cluster (Methods). In general, we
observed each cluster was associated with different developmental stages (Figure
4C). Together with the fact that clusters are composed by different cell types, this
indicated the dynamic maturation of cell types across development. Interestingly, we
observed that brains and organoids development follow a similar pattern, which
again supports the developmental conservation between two datasets. However,

discrepancies were observed for Cluster 5, which is significantly associated with
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microglia, endothelial and mural cells in the brains, but with radial glia (RG) in the
organoids (Figure 4B), reflecting the fact that these cell types have distinct origins
from neurons and glia in the brain. Also, Cluster 5 is associated with later
developmental stages in brains (>24 PCWs) but with earlier cultured time-points in
organoids (<1 month, Figure 4C). This suggests that brain cells in this cluster are
more mature than organoid cells. This observation was supported by BOMA -aligned
cells on the common space in Figure 4A, where brain cells stretched longer in this

cluster than organoid cells.

Besides, we tested robustness of BOMA using this dataset (Figure 4). To do this, we
challenged BOMA by intentionally adding mismatched regional-cells/cell-types
(Red Blood Cells, RBC) (Figure S2C) or removing certain cell types (Figure S2D).
Our results show BOMA performs reasonably well under those challenges in terms
of preserving shared developmental trajectory and identifying cell type specific

branches.

Large-scale alignment of integrated datasets in human brains
and organoids derived from induced pluripotent stem cells

Brain organoids differentiated from iPSC have been used extensively to model
human brain development and developmental disorders'®*#2. Here, we tested

BOMA performance for aligning large-scale datasets of human brains versus both
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1PSC and ESC derived organoids. In particular, we integrated scRNA-seq datasets
from multiple studies to align single cells of human brains and human brain
organoids (Methods). The integrated datasets have 57 human brain samples and 28
1PSC or ESC derived organoids. The brain data contains 175,334 cells across 5.85-
37 PCWs, while the organoids data contains 187,179 cells across 21-105 cultured
days. Similar to previous analyses, we first clustered cells into pseudo-cells (1,018
in brains, 872 in organoids) to remove stochastic noise, and afterward evaluated the
batch effects across datasets. tSNE plots show that minimum batch effects persist
after reducing cells to pseudo-cells (Figure S3A-B, top panels). We then input
pseudo-cells into BOMA for alignment. We found that BOMA aligns the two large-
scale integrated datasets reasonably well, showing aligned cell trajectories with
similar cell-type distributions between brain and organoid cells in the common space
(Figure 5A, Figure S3A-B, bottom panels). For instance, OPCs were embedded in
the middle, excitatory neurons, inhibitory neurons, and radial glia were aligned in a
separate branch, while IPCs spread across both excitatory neurons and radial glial
cells branches. Expectedly, even less batch effects were observed after BOMA

alignment (Figure S3A-B).

Progenitor cells, such as IPCs, can divide and differentiate into postmitotic
excitatory neurons in the developing cerebral cortex. This suggests that [PCs should

align with neurons on the same maturational trajectory. To test whether this is true,
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we compared the developmental distribution of cultured IPCs with aligned
excitatory neurons and radial glia (RG) within organoid samples. Interestingly, we
did observe a time shift between IPCs with excitatory neurons (EN, e.g., [PC of 3
weeks can align with EN of 10 weeks, IPC of 8 or 10 weeks can align with EN of
15 weeks, etc.), but not between IPCs and RGs (Figure 5B). The differences in
alignment of IPCs with RGs versus ENs make sense given the timing of the events
of neuronal cortical development. RGs divide asymmetrically to produce either two
RGs or one RG daughter cell and one IPC. IPCs then undergo symmetric divisions

to produce postmitotic neurons that migrate to their proper cortical layers.

Moreover, we benchmarked other state-of-the-art methods and compared them with
BOMA. Although Seurat'® (Figure S3C) and Liger* (Figure S3D) can perform
alignment at single-cell level, both failed to identify the developmental trajectories.
Several other manifold based alignment method (UnionCom?’, SCOT?¥, MMD-
MA?%) can map the pseudo-cells into a manifold space, but the cell types were not
embedded closely (Figure S3E-G). MetaNeighbor*, a correlation-based method for
characterizing cell-type replicability across scRNA-seq datasets, had computational
memory issues when applied on all cells within this dataset, and was unable to
identify cell-type replicability on a 10% sub-sampled dataset (Figure 3H). In

summary, BOMA outperforms other platforms in terms of both finding aligned cell
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trajectories and discovering cell-type developmental conservation across large-scale

human brain and organoid datasets.

Brain-organoid aligned trajectory analysis reveals conserved

and distinct developmentally expressed genes in specific cell

types

Aligned cell trajectories by BOMA between human brains and organoids show
developmental processes across various cell types. To further understand the gene
expression programs driving cell-type maturation, we identified maturation
trajectories based on the coordinates of cells corresponding to each cell type in the
common space, such as excitatory neurons (Figure 5C) and IPCs (Figure S4A). Then,
we identified the genes that are differentially expressed (DEGs) across the cell-type
trajectory between brains and organoids. The enrichment analysis of those DEGs
revealed conserved and specific developmental functions of the cell type across

brains and organoids (Methods).

The cell-type trajectories revealed the pseudotimes of individual cells during
development (i.e., cell positions over the trajectory), hypothetically providing higher
timing resolution than the prior timing information. By cutting the trajectory into

segments and correlating them with the developing stages, we found that the
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segments of such pseudo-times significantly correlate with real developmental
stages (Figure 5D for EN with adjusted p=0.0275 in brains, p=0.0002 in organoids,
and Figure S4A for IPC trajectory), which suggests that this trajectory (pseudo-time)

captures the real developmental maturation of cell types.

We then identified the DEGs for each segment along each cell-type’s trajectory
(Methods). We identified 549 organoid and 310 brain upregulated genes that were
differentially expressed within at least one segment of the excitatory neuron’s
trajectory (Data 2). Functional enrichment of these DEGs showed that organoids
upregulated genes were mapped to chemical stress response, which is supported by
a previous study'®(Figure 5E). On the other hand, the brain upregulated genes were

mapped to brain development processes, as expected.

To validate the differential expression of some of these DE genes, we performed
immunofluorescence in the developing human neocortex and human organoids at
different stages of differentiation (Figure S4B). We found that the expression
changes of important genes across stages (percentage of expressed cells) are greatly
consistent with our results. SATB2, encoding a transcription factor defining cortical
neuron projection identity,* and POU3F2, encoding a transcription factor important
for primate RG expansion and differentiation®, displayed only low levels of
expression throughout development period of the organoids by BOMA, and were

identified as significantly upregulated in excitatory cells of the human neocortex as
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compared to human organoids at late stages (~19PCW) (Figure 6A-B, BH adjusted
Wilcoxon rank sum test p=1le-2). Consistent with these results, immunofluorescent
staining followed by quantitative analyses of human organoids across 8-, 10.5-, and
14-weeks of differentiation, corresponding to segments 7, 8, and 9, respectively,
showed only a small proportion of SATB2+ (<1.5%, Figure 6C, Figure S18B) or
POU3F2+ (~3%, Figure 6F, Figure S18C) cells, whereas immunofluorescent
staining of human tissue confirmed the enrichment of SATB2" and POU3F2" cells
in the cortical plate at I9PCWs as compared to organoids at 14 weeks (Figure 6D-E
with t-test p=0.0038 and 6G-H with t-test p=0.001). SATB2 and POU3F2 are

45,46

expressed in excitatory upper layer cortical neurons in both the human brain and

4749 which are formed after the appearance of deep layer neurons

cortical organoids
that express markers such as TBRI and BCL1 1B (also known as CTIP2). At the ages
examined, our organoids have predominantly TBRI1+ or BCL11B+ cells in the
region surrounding the progenitor-rich (SOX2+) zone, indicating that at these stages,
deep layer, but not superficial layer, neurons have been formed (Figure S4B, top
panel). We expect that analysis of older organoid datasets (greater than 15 weeks in
vitro) using BOMA would show increased numbers of these two cell populations, as

has been shown by other studies using immunostaining*’ or bulk RNA-seq

approaches!'!.
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On the other hand, PSMBJ5, encoding a 20S proteasome subunit, demonstrated
consistent but slightly decreasing expression across the maturation trajectories by
BOMA (Figure 6A), and was validated by immunostaining of human organoids
(Figure 61, Figure SI8E ~10% of cells). Although PSMBJ5 exhibited higher
expression than SATB2 or POU3F?2 at earlier stages in both organoids and brains, in
later stages it exhibited similar levels of expression to those genes only in the brain
(Figure 6A-B). Consistent with this trend, we saw similar proportions of cells that
were positive for SATB2, POU3F2, or PSMBS5 in 19PCWs human cortical plate by
immunostaining (Figure 6D-J). Significantly more PSMB5™ cells were found to be
enriched in human neocortex (t-test, p=0.0011), but mostly in deep layer and
subplate neurons (Figure 6K), suggesting that human organoids may have a lower
abundance of subplate neurons at this in vitro stage. Another possibility is that while
many cells in the organoid express PSMBJ5 at the mRNA level, they do not express
high levels of PSMBS5 protein or that the organoids used to generate these datasets

contained larger cortical plate regions, and thus higher proportions of PSMBS5™ cells.

Discussion

In this work, we present BOMA as a framework for comparative analysis of gene
expression between brains and organoids, with an attempt to understand the genomic
regulations during their development. Our evaluation of BOMA on both bulk tissue

and single-cell datasets demonstrated its scalability. Spatiotemporal and species-
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wise gene expression patterns have been observed by our alignment. Genes
differentially expressed across cell-types and developmental stages were also
identified by our scRNA-seq analysis. Although we only focused on comparing
RNA-seq datasets between brains and organoids, BOMA can be easily applied to
compare pairs of any samples (RNA-seq or other modalities). Hence, we provide a

web tool of BOMA for general community use.

Comparing to existing methodology for comparative analysis between scRNA-seq
data, BOMA semi-supervised approach performed better than the unsupervised
methods as suggested by our results. The global alignment step not only improves
the model interpretability, but also improves BOMA’s capabilities to find aligned
developmental trajectories. sSCRNA-seq data are in general noisy and stochastic, the
pseudo-bulk methods we benchmarked demonstrated these approaches can diminish
scRNA-seq noises as well as combat batch effects across datasets. Future
development of more accurate sCRNA-seq technologies will potentially improve the
alignment. Also, the scRNA-seq datasets were integrated from multiple published
studies, so the input of BOMA can be confounded by various experimental factors,
for instance, sample-wise batch effects, organoids culturing periods, sample sizes,
sample time, and sequencing depths, etc. As showed in the results, BOMA
significantly reduced these confounders and demonstrated superior performance for

integrative analysis of multiple studies. In addition, as a framework, BOMA can
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easily incorporate other existing alignment methods (e.g., Manifold Warping, CCA,
etc.). BOMA’s supervised manner allows the correspondences between sample pairs
to be incorporated into the alignment as prior knowledge. For example, users can
define any correspondence information based on their own domain knowledge. Cell
correspondences generated by other alignment tools (e.g., Seurat, Liger, etc.) can
also be incorporated as prior knowledge of BOMA by defining the correspondence
matrices. The experiments of intentionally inserting mismatched brain regions and
cell types demonstrated the robustness of BOMA. However, including RBCs do
make alignment more challenging, with fewer common trajectories observed
between brains and organoids (Figure S2C versus Figure 4A). One possible future
solution is to run BOMA multiple times. For example, we can first run BOMA once
to detect aligned/unaligned cells. Then for aligned cells, we can run BOMA again to
discover shared developmental trajectory. However, for unaligned cells, we can
apply manifold learning and dimensionality reduction technics (e.g., diffusion map,
etc.) to discover dataset-specific trajectories on the reduced latent space. In terms of
alignment metrics, we considered both the local distances and direction of global
trajectories. It is important to consider both, since neither can capture the alignment
quality separately. However, our current way of designing the global similarity is

simply calculating the cosine similarity between vectors of aligned trajectories.
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More complex approaches (e.g. Procrustes analysis>, etc.) considering the shape of

the aligned trajectories might be useful to better capture the global similarity.

Our manifold alignment analysis showed gene expression similarities between
organoids and brains, demonstrating the viability of using organoids to understand

t'>. However, differences were also observed in the

human brain developmen
comparative analysis, which suggests future protocol optimizations are needed®. Our
data indicate that, compared to developing brain tissue, organoids contain relatively
fewer superficial layer neurons (S4TB2"POU3F2") and fewer PSMBS5™ cells, which
in human tissue appear to enrich among deep layer and subplate neurons.
Optimization of earlier organoid protocols has shown that reducing oxidative stress
within organoids by cutting or slicing can improve long-term maintenance of neural
progenitor populations, leading to expansion of cortical-plate/subplate-like regions,
more distinct lamination, and increased abundance of superficial layer neurons®'~>3,
Using BOMA to analyze future scRNA-seq datasets from organoids generated using
these recently optimized protocols would provide better indication of how similar
organoids are to the developing human brain. Additionally, future analyses could
compare datasets from organoids generated using different protocols to determine

whether certain approaches better recapitulate specific features of brain development,

such as formation of long-range projections or more abundant numbers of outer
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radial glia. This information would allow researchers to choose the organoid system

best suited to their research questions.

Previous studies have demonstrated the wide application of organoids as
experimental models for drug-screening of diseases'***°°. Other studies have also
shown using patient-derived organoid (PDO) platforms to improve preclinical drug
discovery in personalized medicine®. Recent clinical trials are moving towards cell

therapy of diseases using lab cultured organoids®’>’

. All these reports suggested
unprecedented opportunities for organoids in both lab research and clinical treatment.
Thus, we believe BOMA, which allows a deeper understanding of the gene

regulatory mechanisms underlying the cultured organoids, will benefit future clinical

studies.

Limitations of Study

Our evaluation of BOMA was only based on limited samples from limited cultured
periods, with limited numbers of pseudo-cells. Future studies using longer cultured
organoids and more samples are recommended for better comparative analysis

between brains and organoids.
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Main figure titles and legends

Figure 1. Brain and Organoid Manifold Alignment (BOMA), a computational framework
for comparative analyses of developmental gene expression data between brains and
organoids. (A) BOMA inputs multiple developmental gene expression datasets (genes by samples)
from brains and organoids. The samples are ordered by prior timing information in development.
(B) Step 1 - Global alignment to infer the correspondences of samples across the datasets at a
coarse-grain level. (C) Step 2 — Local alignment to refine the alignment and map samples onto a
common manifold space. (D) Clustering and functional analysis of aligned samples on the
common space, €.g., brain-organoid conserved (square) or specific (circle and triangle) clusters

and developmental trajectories (black curves). Downstream analyses of those clusters can discover
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differentially expressed genes, enriched gene functions, and associated phenotypes. GO: Gene

Ontology.

Figure 2. Spatiotemporal conservation and divergence of gene expression between organoid
and brain regions. (A) Aligned human brain* and organoid'! samples on the common space from
BOMA. Human brain samples are from BrainSpan and are colored orange by developmental
stages. The stages were described by Kang et al.%°, which characterize the periods of embryo to
develop into adulthood brains. t: time. Organoid samples are colored blue by cultured days. PCW:
Post Conception Weeks; M: Month; Y: Year. (B) Correlation plot shows the similarity (quantified
as ‘Local Alignment Score’, Methods) of aligned samples. Each dot is the averaged similarity
across all pairs of samples at the specific developmental time points. Both the color and the size
of the dots represent the local alignment score. (C) Pairwise local alignment scores between
organoids with brain samples from OFC and MD. (D) Averaged BOMA alignment scores between
organoids versus the 16 brain regions. To calculate the averaged alignment score, for each organoid
sample, its distance to the nearest sample from a certain brain region was used to calculate the
local alignment score. The local alignment score was then weighted by the global alignment score
of each brain region (See Methods). The weighted alignment score of organoids from the same
timepoint were averaged to show in the heatmap. Brain regions abbreviations are listed in Table

S2.

Figure 3. Developmental gene expression alignment between human and chimpanzee
organoids. (A) The samples of human and chimpanzee organoid cells*? (visualized by pseudo-
cells) in the common space after BOMA alignment. Human and chimpanzee organoid cells were
plotted separately for comparison. The dot colors represent the experimental time points. The

dashed line on the left panel shows the direction of the developing trajectory. Two chimpanzee
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organoid-specific clusters (Chimpanzee 1 and Chimpanzee 2) are highlighted on the right panel.
(B) Averaged pseudotime between human and chimpanzee organoids. Pseudotime is defined as
the x-axis coordinates in (A). Each dot represents the averaged pseudotime of samples at a certain
timepoint (0-120 days). (C) Functional enrichments of the chimpanzee-organoid specific clusters

marker genes.

Figure 4. Alignment of developmental gene expression between human brains and human
ESC organoids. (A) The human brain*® and organoid™® cells (visualized by pseudo-cells) on the
common space after BOMA alignment. Left: human brains. Right: human organoids. Aligned cells
were grouped into 5 clusters). (B) The associated cell-types of each cluster from the enrichment
analysis (hypergeometric test, Methods). ComplexHeatmap®' was used to plot the significance of
associated cell-types for each cluster. U: early timepoint cells of unknown cell types*’. (C) The
associated developmental stages (time points) of cell clusters (hypergeometric test, Methods). The
stages were described by Kang et al.® to characterize the periods of human embryo to develop into
adulthood brains. t: time. PCW: Post Conception Weeks. Dots represent associations with

Benjamini-Hochberg (BH) adjusted p-values <0.05.

Figure 5. Large-scale alignment of integrated scRNA-seq datasets in human brains and

18,40,62

organoids from multiple studies. Five scRNA-seq datasets of human brains and

organoids'®*

were applied. (A) The human brain and organoid cells (visualized by pseudo-cells)
on the common space after BOMA alignment. Left: brains. Right: organoids. The dots are colored
by given cell-types from the datasets. (B) Experimental time correspondence between aligned
intermediate progenitor cells (IPC) versus excitatory neurons (ENs)/radial glia (RGs) within

organoids samples. (C) Inferred developmental trajectory for ENs based on their coordinates on

the common space. Top: brains. Bottom: organoids. (D) Trajectory segments vs. prior
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development stages (experimental timepoints). Human brain cells from segments earlier than
Stage 6 were grouped together due to the limited sample sizes. Mann-Kendall trend test for mean
values of each segment was used to test the trending significance. (E). The enriched functions and
pathways of genes significantly upregulated in organoid ENs, genes upregulated in brain ENs and

genes expressed in both brains and organoids.

Figure 6. Experimental validation of developmental expression of predicted brain- and
organoid- specific genes. (A-B): Developmental expression profiles of SATB2, POU3F2, and
PSMB5 mRNAs in human organoids (A) and human neocortex (B), determined by BOMA. Time
correspondence for each segment ID can be found in Figure SD. (C,F,I): Immunostaining of
cortical organoids (n=3) revealed percentages of cells expressing SATB2(C), POU3F2(F) and
PSMBS5(I) during the maturation at 8, 10.5 and 14 weeks. (D,G,J): Quantification of SATB2",
POU3F2", and PSMBS5" cells showed significant enrichment for human cortical plate (PCW 19,
correspond to segment 9) as compared to organoids (14 weeks, corresponding to segment 9).
Differences between organoid and cortical plate were tested using unpaired t-test with Welch’s

correction, p=0.0038 for SATB2" cells, p=0.001 for POU3F2" cells, and p=0.0011 for PSMB5"

cells. (E,H,K): Representative images of organoid and human brain sections. Scale bar: 50 um.
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STAR Methods

RESOURCE AVAILABILITY

Lead Contact

Requests for further information should be directed to the lead contact, Daifeng Wang

(daifeng.wang@wisc.edu).

Materials Availability

This study did not generate new materials.

Data and Code Availability

e This paper analyzes existing and publicly available data. All the datasets used and
generated in our study were deposited in Zenodo
(https://doi.org/10.5281/zenodo.7236202) and they are publicly available as of the date of
publication. Datasets include supplementary dataset 1-3 from this work.

e All original codes has-have been deposited in Zenodo

(https://doi.org/10.5281/zenodo.7556083) and -at-are also publicly available at GitHub

(https://github.com/daifengwanglab/BOMA )-and-is-publicly-available-as-ef the-date-of

publication. A web app of BOMA is available at http://daifengwanglab.org/boma-

webapp/.
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e Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human WC5907 iPSC line”® was maintained on mouse embryonic fibroblast feeder layers as
described’? and differentiated into organoids as carried using a published protocol’®. Briefly, iPSCs
were lifted using dispase (0.4mg ml ™) and transferred to low attachment flasks (Greiner Bio-One)
in hESC media plus two SMAD inhibitors SB-431542 and LDN-193189 from days 0-5. Organoids
were then switched to neural medium plus growth factors EGF (20ng ml™'; R&D Systems) and
FGF2 (20ng ml'; WiCell) from days 6-24. After 24 days, organoids were cultured in neural
medium supplemented with growth factors BDNF (20ng ml!; Peprotech) and GDNF (20ng ml!;
Peprotech) until day 43 with media changes every 2-3days. Organoids were collected at 8, 10.5,
and 14 weeks of differentiation and fixed with 4% PFA overnight. They were then washed with
PBS 3x for 15min, and transferred to a 30% sucrose solution for 48hrs. Organoids were embedded

in OCT and 30% sucrose (1:1) and stored in -80 freezer until analysis.

METHODS DETAILS

Brain-Organoid Manifold Alignment (BOMA)

Emerging organoids have been widely used as models to mimic complex brain development. We
developed BOMA pipeline to use manifolds to align gene expression data between brain and

organoid samples (e.g., tissues, cells) (Figure 1). Such brain-organoid expression data alignment
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from BOMA aims to uncover conserved (aligned) and specific (unaligned) developmental gene
expression patterns across brains and organoids. Our further downstream analyses of such
expression patterns allow a deeper understanding of developmental functional genomics at both

tissue and cell-type levels, especially in organoids.

Suppose that we want to compare two developmental gene expression datasets (e.g., brains vs.
organoids) matrices, X = [X1, X3, ..., X;] € R¥™ and Y = [y, ¥, ..., ¥, ] € R¥*™, where d is the
number of genes, m and n are the number of samples within each dataset, x; € R% is a d-

dimensional vector representing the expression levels of d genes in the i*" sample in X, and yj €

R% is also a d-dimensional vector representing the expression levels of d genes in the j* sample
in Y. The samples of {x;,i =1,2,...,m} and {yj,j =1,2,...,n} are ordered by prior timing
information if available. BOMA carries out the alignment by two major steps. In Step 1, BOMA
globally aligns brain and organoid samples, based on prior timing (or any sequential) information
of samples. Such prior timing information is typically at low resolution, e.g., only cultured days
available for many cells in organoids. This global alignment establishes the initial correspondence
across brain and organoid samples. In Step 2, from such initial correspondence, BOMA applies
manifold learning to locally refine the alignment and co-embed brain and organoid samples onto
a common manifold space. The manifold shapes of the samples on the space are expected to
uncover various developmental trajectories, which can be either conserved across brains and
organoids (aligned samples) or brain/organoid specific (unaligned samples). Furthermore, the
manifold shapes from the space are expected to form developmental trajectories, revealing
potential pseudo times among samples. Such pseudo times, at a refined high resolution, provide

unobserved timing from prior information.
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BOMA Step 1 - Global Alignment: This step aligns X and Y at a coarse-grained level and
initializes the correspondence matrix (W) for the next step. Primarily, we introduce two popular

methods for global alignment.

1) Dynamic Time Warping (DTW). DTW finds the optimal set(s) of aligned samples (*) between

X and Y by minimizing the sum of distances between all aligned sample pairs:

= argmingea(x,y) (Z(i,j)en d(x;, yj))a

where d(x;,y;) is the distance between the i and j™ samples of X and Y, A(x, y) is the set of all
possible alignments between the two datasets. Distance of the samples x and y used here is defined

by d(x,y) = where cor(x,y) is the Pearson Correlation.

1+cor(x,y)’

Specifically, we used R package, dtw® to perform the DTW alignment. In this work, we chose the
constraint as ‘open begin and end’, which means that two sequential datasets can be unaligned at
the beginning and end. The aligned samples from DTW can be used to initialize a corresponding

matrix among samples, W, where W;=1 if samples x;, y; are aligned, and = 0 otherwise.

2) Correlation based kNNgraph: This method first calculates the Pearson Correlation of each
sample pair and then constructs a k-nearest neighbor graph (kNNgraph) by linking each sample
with its k (a hyperparameter) most correlated neighbors in the other dataset. The adjacency matrix

of the constructed kNNgraph can thus be used as the correspondence matrix W'.

In real application, if timing information is available, the global alignment of BOMA can be carried
out by manifold warping or dynamic time warping as we demonstrated in aligning developmental
bulk tissue data. However, if priori timing information is unavailable, the global alignment step of

BOMA can learn the correspondences across samples that can be used for the following local
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alignment. To this end, the users can choose the correlation based kNNgraph. Besides the two
methods mentioned above, this step can also be accomplished by other methods, e.g., Liger®,

t16

which uses Nonlinear Matrix Factorization(NMF) for single-cell alignment; Seurat'®, which aligns

single cells by identifying anchor genes.

BOMA Step 2 - Local Alignment: this step performs a manifold alignment of X and Y using the
correspondence matrix (W) from Step 1 as the initial alignment. Specifically, manifold alignment
finds shared manifolds of samples from X and Y and maps them onto a common space. The
proximate samples on this space suggest well aligned, whereas distant samples for unaligned. To
this end, it aims to find the functions fy" and f;,* that minimize the following loss function to map

the samples onto the common space:

F = argming (=2 ) ) G = () [w

i=1 j=1

+20 D G = GDIBWE +2 ) S I 0 = frop 3w

i=1j=1 i=1 j=1

, where W%/ is the correspondence between x; and y;j from Step 1. It can be weighted, or it can
be binary (e.g. 0: aligned, 1: un-aligned) as in this work. Wy and W)y are two neighborhood
similarity matrices, which were generated by kNNgraph. A is a scalar, which constitutes the trade-
off between the alignment across datasets and preserving manifolds within datasets. By default,
we set A equals 0.5. Here, we use nonlinear manifold alignment (NMA) to solve the above
optimization problem. NMA is non-parametric and directly estimates the coordinates of samples
on the common space from optimal alignment via eigen-decomposition®*. Also, we implement

NMA in this step using our previous method and tool, ManiNetCluster>*,
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After mapping samples onto the common manifold space by BOMA, we can simply calculate the

Euclidean distances of samples on the space, i.e., d;; for Samples i and j. A local alignment score

between samples i and j can be then defined by S;; = . The high alignment scores suggest a

_r
(1+d;j)
well aligned pair of samples. However, the local alignment score can only evaluate the local
similarity between a pair of aligned samples. When the time information is available, we want to
ensure the two aligned trajectories evolve towards the same direction across time. To capture the
global similarity between two aligned datasets (e.g., brains and organoids), we consider the

direction of their aligned trajectories. This global similarity can be defined by the cosine of the

angle between the two aligned trajectories S; = where 4 and B are vectors that represent

_AB_
Al
the directions of two aligned trajectories after BOMA alignment. ||A|| and ||B|| are the L2 norm of
these two vectors. A higher value of S; means the two trajectories have more similar directions
with each other. In this work, when the time information is available (e.g., DTW), we define A
and B as vectors pointing from the earliest timepoint to the latest timepoint of the aligned samples.
However, when the time information is not available (e.g., correlation based kNNgraph for single-
cell datasets alignment), we simply set S; = 1. Finally, we use S; as a weight factor to adjust the

loal similarity score S;;, and define a BOMA alignment score (5S4, where S{;‘- =S¢ *S;j) to

K
capture both the local and global alignment similarity.
Gene expression datasets of brains and organoids

As summarized in Table S1, we collected recently published RNA-seq gene expression datasets
for brains and organoids, covering both bulk tissues and single cells across differential

developmental stages.
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Briefly, Dataset 1* contains bulk-tissue RNA-seq of 826 samples from 16 regions of human brains
(n=460) and 9 regions of RM brains(n=366) in Brainspan and PsychENCODE projects. Dataset
2% contains single-cell RNA-seq (scRNA-seq) of 40,000 cells from human brain germinal zone
and developing cortex regions between 17-18 Postconceptional Weeks (PCWs). Dataset 3%
contains sScRNA-seq data of 4,261 cells in human brains between 6-32 PCWs. Dataset 4%? contains
scRNA-seq data of 57,868 cells from four human brain primary samples at different developmental
stages between 16-24 PCWs. Dataset 5'® includes scRNA-seq of 136,254 cells from human brain
samples collected at 14,18,22 PCWs. Dataset 6! is from the cultured organoid samples and
includes bulk RNA-seq data of 62 samples from ten time points between 50 days to ~ two years.
Dataset 7°? contains scRNA-seq of 73,358 cells in organoids from human or chimpanzee between

0 days to four months. Dataset 8*?

contains scRNA-seq of 11,838 cells from organoids cultured
for 105 days. Dataset 9'® contains scRNA-seq of 189,346 organoid cells of culturing time spanning

3-10 weeks.

Identification of human brain developmental genes

We identified a set of genes related to human brain development at both tissue- and cell-type levels,
as input features for BOMA alignment (Figure S5A). First, we used the bulk RNA-seq data in
BrainSpan* to predict co-expression gene modules within each brain tissue (region) by WGCNA® .
We identified 1,191 co-expression gene modules in total. Genes from the same module are co-
expressed at certain tissue across the development, suggesting that they are likely co-regulated and
thus involved in similar biological processes, so we term them as ‘development modules’. Second,
we applied Scanpy®® on the single-cell RNA-seq dataset from Dataset 2% (Table S1) to identify
developmental expressed genes at the cell-type level. Specifically, for each of 11 cell-types, we

compared this cell-type with all other cell-types and found cell-type differentially expressed genes
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(adjust p-value < 0.01 and log fold change > 1). After iterating through 11 cell-types, we identified
2,032 cell-type expressed genes in total. Third, we overlapped each development module from a
tissue-type with each cell-type expressed gene set and performed hypergeometric tests (R function
phyper()) to determine the significance of the developmental gene overlaps between the tissue-
type and the cell-type (tissue-cell-type pair). We also adjusted the p-values of tests using
‘Benjamini-Hochberg procedure (BH)’. We selected the overlapped genes of tissue-cell-type pairs
with adjusted p<0.01 as significant overlapped gene sets. Finally, we obtained 1,533 genes as

human brain developmental genes (Data 3).

scRNA-seq data pre-processing

We used Seurat!® to preprocess all applied scRNA-seq datasets. In particular, we removed the cells
expressing less than 200 genes and the genes expressed within less than 30 cells. The rest cells
were filtered by mitochondrial genes to be less than 10. The preprocessed datasets were then log2

transformed.

Compared to bulk RNA-seq, scRNA-seq is noisy with random effects. To address this, recent

studies®’-68

used pseudo-bulk methods to aggregate single-cells across biological replicates and
improved downstream differential expression gene analyses. Therefore, we also applied the
pseudo-bulk methods**¢7-%8 to create pseudo-cells from single cells. Specifically, we first grouped
single cells into cell clusters. Each cluster represents one pseudo cell, and its expression levels are

the averaged gene expression of cells within the cluster. This step can also balance the sample

sizes across datasets, e.g., numbers of pseudo cells.

In particular, we benchmarked two major pseudo-bulk methods, PCA-based*? and Seurat, and

found the one for each application leading to a better BOMA alignment. The PCA based method
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calculated the principal components (PCs) of single cells, and then hierarchically clustered (R
function ‘hclust’) single-cells with the top 20 PCs to generate pseudo-cells, i.e., cell clusters. We
used the function FindClusters() in Seurat for clustering single-cells as Seurat-based method. We
used the PCA-based method for the analyses in Figure 3 and Figure 4, which were consistent with
the paper generating the data®’. However, we benchmarked the latter method and found it works
better than the PCA-based method, so we used the Seurat-based method for the analysis in Figure

5.

To determine how the alignment is affected by the number of pseudo-cells, using the dataset of
Figure 5, we tested different numbers of pseudo-cells by adjusting the ‘resolution’ parameter in
the Seurat FindClusters() function. In this way, we generated pseudo-cells that varied from ~1,000
to ~10,000 (Figure S5B, top panel). To evaluate the alignment accuracy, within the aligned
common manifold space, we calculated the pairwise distances of pseudo-cells of the same cell-
type. Specifically, the coordinates of pseudo-cells were standardized per pseudo-cell, then
distances between pseudo-cells of the same cell-type were averaged. Interestingly, the experiment
result shows BOMA is scalable to the number of pseudo-cells, with the pairwise distances not
significantly affected (Figure S5B, bottom panel). Considering this characteristic, and in order to
balance the number of pseudo-cells across datasets, we set a lower resolution for datasets with
more cells and set a higher resolution for datasets with fewer cells for the later analysis (Table S1).
In particular, for organoid data, we set the resolution values as 10 for Dataset 8 and 1 for Dataset
9; for brain data, we set the resolution values as 10 for Dataset 3, 5 for Dataset 4 and 1 for Dataset

S.
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Gene set enrichment analysis

We used Metascape® to perform the gene set enrichment analysis. The enriched categories include
KEGG pathways, Gene Ontology (GO) terms, protein-protein interactions, and diseases (via
DisGeNET). The false discovery rates (FDRs, g-values) were used to quantify the enrichment

significance.

Clustering BOMA-aligned samples and differentially expressed genes of
clusters

We applied the Spectral clustering from Python package ‘sklearn’”° to cluster aligned samples on
the common space, based on their alignment scores. The number of clusters can be adjusted by
tuning clustering parameters or by further sub-clustering on existing coarse clusters (Figure S2B).
We also identified differentially expressed genes (DEGs) of clusters. To this end, we used
Presto®” to perform the Wilcoxon rank sum test and auROC analysis by comparing cells from

each cluster with all others cells in the dataset.

Harmonization of cell types across datasets

Cell type names may vary across studies. For instance, cell types from Organoid Dataset 7 are
broad and different from many refined types in human brain. To solve this, we reassigned the types
of the cells in Dataset 7 using the human brain cell-types in Dataset 3 by the ‘TransferData’

function in R package Seurat'®

. We also merged some sub-cell-types to their broader types, e.g.,
EN-PFC1 to EN-PFC. Besides, even different studies for brains or organoids can have different

sub-cell-types. To make cell types across these studies comparable, we grouped annotated cell-

types from each study into common major cell-types (Table S4) for downstream comparative
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analyses. Also, for Dataset 8 without cell-type information, we annotated cell types using known

cell-type marker genes*? with Seurat.

Hypergeometric enrichment of cell-types and developmental time stages

For the cell clusters from BOMA applications to single cell data, we calculated their cell-type
enrichments (or developmental timepoint enrichments), revealing possible cellular and
developmental functions of the clusters. In particular, a hypergeometric test was performed for

such enrichment analysis, with the p-values being calculated as:

P(x>k)=zw

& (5

, where N is the total number of cells, n is the total number of cells of a certain cell-type (or cells
from a certain developmental timepoint), K is the number of cells in the cluster and k is the
number of cluster cells of certain cell-type (time point) in the cluster. Finally, we corrected the p-

values using BH method and selected p<0.05 as a significant threshold for enrichments.

Trajectory analysis for BOMA alignment

Since BOMA applies the manifolds to align single cells between brains and organoids, the
manifold shapes from aligned cells are expected to reveal potential developmental trajectories. To
further identify such trajectories, we used SCORPIUS! to infer the developmental trajectory for
each cell-type on the common space. Primarily, for each cell-type, we input the 3D coordinates of
its cells on the common space from BOMA to the infer trajectory() function of SCORPIUS
(maximum iteration of 100) to output the trajectory. To determine a root on the trajectory, we first

cut the trajectory into 10 continuous segments. Each cell was assigned to the closest segment based
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on the distance. Then a developmental time for each segment can be determined by averaging the
prior times of all cells in that segment. We then assign the segment with minimum averaged time
as the root. Besides, for each cell type, we also used FindMarkers() in Seurat!® to identify
differentially expressed genes in the type’s cells of each segment, i.e., “Segment cell-type DEGs”
implying development-stage-specific gene expression patterns at the cell-type level. To allow gene
expression values to be comparable across datasets, the IntegrateData() function of Seurat was

used to integrate datasets by identify a set of anchor genes.

Experimental validation of genes in specific cell types and developmental
stages

Fixed organoids were cryosectioned (17um) and stained with antibodies against proteins and
markers of interest as described’*. Organoid sections were washed with PBST (PBS containing
0.1% Triton X-100) and blocked in blocking buffer (10% normal goat serum (Sigma-Aldrich) and
0.3% Triton X-100 in PBS) for 1 hour at room temperature. Primary antibodies - anti-BRN2
(mouse, 1:500, Santa Cruz, SC-393324), anti-PSMBS5 (rabbit, 1:1000, Novus Bio, NBP-13820),
or anti-SATB2 (mouse, 1:100, Gen Way, 20-372-60065), anti-SOX2 (Mouse, 1:500, Abgent,
Am2048a), anti-TBR1 (Rabbit, 1:1000, Abcam, Ab31940), or anti-CTIP2 (Rat, 1:500, Abcam,
ab18465) were diluted in blocking buffer and incubated with the organoid sections overnight at
4°C . Sections were then washed 4 x 5 min with PBST. Alexa Fluor secondary antibodies (Thermo
Fisher Scientific) were diluted in blocking buffer and incubated with organoid sections for 35min.
at room temperature. Organoid sections were washed 4 x 5 min with PBST and counterstained
with DAPI. They were then washed 2 x 5 min with PBST. Sections were scanned and visualized

using either a Nikon A1 confocal microscope (Nikon) or an Axiolmager Z2 ApTome microscope
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(Zeiss). The numbers of marker positive cells were quantified by unbiased stereology using
Stereolnvestigator software (MicroBrightField, Inc) as described’”> PCW 19 human neocortex was
fixed in 10% neutral buffered formalin at 4°C for 72 hours, cryoprotected with incubation in
successive solutions of 10%, 20%, and 30% sucrose, and stored in 30% sucrose + 0.1% sodium
azide. For validation experiments, PCW 19 human neocortex was embedded in Optimal Cutting
Temperature (OCT) compound, cryosectioned at 30um thickness, and mounted on TOMO®
adhesion slides (Matsunami Glass USA #TOM-11/90). Sections were washed in PBS (2 x 15 min)
and incubated in blocking solution containing 5% (v/v) normal donkey serum (Jackson
ImmunoResearch Laboratories) and 0.3% (v/v) Triton X-100 in PBS for 30 min at room
temperature. Primary antibodies - anti-BRN2 (mouse, 1:500, Santa Cruz, SC-393324), anti-
PSMBS5 (rabbit, 1:1000, Novus Bio, NBP-13820) or anti-SATB2 (mouse,1:100, Gen Way, 20-
372-60065) were diluted in blocking solution and incubated with tissue sections for 24 h at 4°C.
Sections were washed with PBST (1X PBS + 0.3% Triton X-100) prior to being incubated with
the appropriate fluorophore-conjugated secondary antibodies (Jackson ImmunoResearch Labs) for
30 min at room temperature. All secondary antibodies were raised in donkey and diluted at 1:250
in blocking solution. Sections were washed with PBST (3 x 5 min), treated with Autofluorescence
Eliminator Reagent (Millipore #2160) according to manufacturer instructions, and coverslipped
with Vectashield Plus Antifade Mounting Medium (Vector Laboratories #H-1000). Human
neocortical samples were imaged on a Nikon Al confocal microscope. Z-stack images taken at
20x magnification with a step size of 2um were imaged from n=3 sections. CellProfiler software
was utilized to quantify positive cells. Difference significance between organoid and human

cortical plate marker positive cell percentages was test by unpaired t-test with Welch’s correction.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Hypergeometric test was used to identify human brain developmental genes and determine
associated developmental stages of cell clusters. P-values was adjusted by Benjamini-Hochberg
method to keep the significance level < 0.05. Wilcoxon rank sum test and auROC analysis were
used to identify DEGs. Unpaired student's t-test with Welch's correction was used to report the P-
value when comparing differences between organoid and cortical plate. Two-side t-test was used

for all the paired comparisons.

Supplementary Excel tables

Data 1: marker genes of two chimpanzee organoids specific clusters. Related to Figure 3.

Data 2: differentially expressed genes within excitatory neurons of human brains or organoids.

Related to Figure 5.

Data 3: 1,533 human brain development related genes. Related to STAR Methods
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