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Motivation 

Organoids have become valuable models for understanding cellular and molecular 

mechanisms in human development including brains. However, whether 

developmental gene expression programs are preserved between human organoids 

and brains, especially in specific cell types, remains unclear. Importantly, there is a 

lack of effective computational approaches for comparative data analyses between 

organoids and developing human brains. To address this, we developed a machine 

learning framework for comparative gene expression analysis of brains and 

organoids, to identify conserved and specific developmental trajectories as well as 

developmentally expressed genes and functions, especially at cellular resolution.  

Summary 

Our machine learning framework, Brain and Organoid Manifold Alignment (BOMA) 

first performs a global alignment of developmental gene expression data between 

brains and organoids. It then applies manifold learning to locally refine the 

alignment, revealing conserved and specific developmental trajectories across brains 

and organoids. Using BOMA, we found that human cortical organoids better align 

with certain brain cortical regions than other non-cortical regions, implying 

organoid-preserved developmental gene expression programs specific to brain 
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regions. Additionally, our alignment of non-human primate and human brains 

reveals highly conserved gene expression around birth. Also, we integrated and 

analyzed developmental scRNA-seq data of human brains and organoids, showing 

conserved and specific cell trajectories and clusters. Further identification of 

expressed genes of such clusters and enrichment analyses reveal brain- or organoid-

specific developmental functions and pathways. Finally, we experimentally 

validated important specific expressed genes using immunofluorescence. BOMA is 

open-source available as a web tool for community use. 

 

Introduction 

The development of human brains, especially during the early periods, remains 

poorly understood1–3. Understanding how neural stem cells differentiate into the 

myriad cell types that form the brain, especially at the molecular level, such as gene 

expression and its regulatory mechanisms, will shed light on the human brain 

development and potentially further help understand the etiology of 

neurodevelopmental diseases. Several large collaborative consortia have been 

carried out to generate large-scale next generation sequencing data in human brains, 

aiming to provide functional genomic resources for understanding molecular 

mechanisms of human brain and brain development. For example, BrainSpan4 
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collected ~600 tissue samples from 48 postmortem human brains, ranging from 

prenatal to adult age groups and measured the transcriptomic and epigenomic data 

across developmental stages and brain regions. PsychENCODE1,5 generated multi-

omics data for approximately 2,000 postmortem brains, aiming to understand 

functional genomics and gene regulation in human adult brains and neuropsychiatric 

disorders. These consortia provided valuable public resources to decipher the 

developmental functional genomics and gene regulation in the human brain. 

However, the postmortem brain samples serve only as snapshots of the brain at 

different stages, whereas brain development is a dynamic process that requires 

crosstalk among various genes, cell types, brain regions and environment6. 

Because it is quite challenging to measure in-vivo molecular activities such as gene 

expression in human brains, animals such as rodents and non-human primates (NHP) 

have been used as models for studying molecular mechanisms during brain 

development. For example, Zhu et al.7 have thoroughly compared the bulk RNA-seq 

data of brain development between humans and rhesus macaques at multiple brain 

regions and time points. Particularly, they performed Non-negative Matrix 

Factorization to linearly factorize the gene expression matrix into five biologically 

meaningful ‘transcriptomic signatures’, which were then compared between human 

and NHP. Such comparisons demonstrated the usefulness of NHP models for 

studying brain development. However, their results also highlighted the divergence 
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of molecular mechanisms across species. This is also supported by previous studies 

that noticed that using animals as models is insufficient because brain maturation is 

specific to its developmental context4,8 and human brains have specific 

developmental programs that allow, for example, a dramatic size expansion when 

compared to other primates9.  

To solve these challenges, emerging 3D brain culture technologies, such as 

organoids, have been developed. These cultures utilize embryonic (ESCs) or induced 

Pluripotent Stem Cells (iPSC) and differentiate them into 3D human brain models10. 

An intriguing discovery is that iPSCs follow intrinsic programs and extrinsic cues to 

form 3-dimensional forebrain organoids (3DOs) that can be maintained for at least 

40 weeks and even over two years, with a transcriptomic signature corresponding to 

“birth” at 28 weeks of culture11,12.  Organoids as brain models, although in their 

early developing stages, have already found numerous medical applications. For 

example, Park et al. used 1,300 organoids to model the human brain and conducted 

drug screening for Alzheimer’s disease13. However, to what extent the in-vitro 

cultured organoids preserve the in-vivo complex dynamic process remains a 

question14, with contradictory conclusions that have been made by the community. 

For example, Gordon et al.11 cultured organoids for up to 694 days and used 

Transition Mapping (TMAP), a rank-rank hypergeometric test based method, to map 

the organoids bulk RNA-seq datasets with BrainSpan RNA-seq datasets and 
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demonstrated organoids culture could reproduce several developmental milestones 

of in-vivo brain development even at mid- to late-fetal stages. Velasco et al.15 

performed single-cell RNA-seq (scRNA-seq) on 166,242 cells isolated from 21 

organoids and  showed that organoids can virtually indistinguishably reproduce the 

cell diversity of the human cerebral cortex. On the other hand, Pollen et al.9 

compared human primary tissues versus human organoids, using canonical 

correlation analysis (CCA)16 and co-clustering of the mixture cells from both origins. 

They found organoids maintained the composition of cell types but varied in the cell 

percentages and concluded that using organoids as brain models is promising, but 

the organoids protocols need future improvements to better preserve the brain cell 

type fractions and cell functions9,17. Bhaduri et al.18 compared single-cell gene 

expression data of samples across different developmental periods and multiple 

cortical areas with organoids and found cellular stress pathways have been activated 

in organoids, which impairs cell-type specification during organoid development. 

All these studies highlight the promise of using organoids as models for brain 

developmental research; however, until now, the fidelity of organoid models is still 

under debate. One of the attributed reasons is the lack of dedicated computational 

approaches for integrative and comparative analysis of gene expression across 

developmental stages between brains and organoids, especially for single-cell 

datasets. 
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In particular, the comparative analysis of developmental data between brains and 

organoids can be viewed by machine learning as an alignment problem across 

multiple datasets. For instance, manifold alignment19,20, a popular machine learning 

technique, projects samples from multiple datasets onto a common latent space via 

mapping manifolds across datasets, e.g., multi-omics datasets21. The neighboring 

samples on the latent space suggest that they can be aligned and thus share similar 

features (or distant samples for unaligned). In general, manifold alignment 

algorithms22 can be supervised or unsupervised depending on whether the sample 

correspondence is provided (supervised) or not (unsupervised). A supervised 

approach needs predefined correspondence between the samples across two 

datasets23. For example, ManiNetCluster24 embeds samples into a latent manifold 

space and aligns them by minimizing the overall distances between corresponding 

samples. An unsupervised approach does not require correspondence, instead learn 

the correspondence across multiple datasets25. For example, MATCHER21 performs 

linear trajectory alignment based on latent Gaussian process; MMD-MA26 

maximizes mean discrepancy on a kernel space. UnionCom27 uses matrix 

optimization to match the distance matrices of each dataset. SCOT28 incorporates 

Gromov Wasserstein-based optimal transport to align single-cell datasets. However, 

the unsupervised approaches, in general, automatically assume a shared underlying 

structure among the aligned datasets29, which might not always be true. Besides, 



 8 

none of these manifold alignment methods considered prior time information across 

samples in development that can likely help increase performance and 

interpretability30 of the alignment. The developmental data for brains or organoids 

typically provide prior time information on developmental stages, e.g., 

Postconceptional weeks (PCWs) of developing brains, and cultured days of 

organoids. Such prior time information, though at low resolution, may help predict 

initial correspondences globally across samples from different datasets, in contrast 

to the fully unsupervised fashion. Building on such initial correspondence, further 

manifold alignment can then refine the alignment to reveal higher resolution and 

local timing by the manifold shapes that have been widely used to uncover pseudo 

timings31. However, to the best of our knowledge, manifold alignment has yet been 

applied for integrative and comparative analysis of brain and organoid data, 

especially for development and single cells.  

In this paper, we developed a manifold learning framework, Brain and Organoid 

Manifold Alignment (BOMA), to align developmental gene expression data across 

human brains and organoids, aiming to better understand conserved and specific 

gene expression and functions. In particular, BOMA adopts a semi-supervised 

manifold alignment manner. That is, using prior timing information from datasets, 

we first perform a global alignment at a coarse-grained level to generate a 

correspondence matrix among samples. Next, a non-linear manifold alignment is 
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performed to refine the alignment and identify the developmental trajectories 

comprising cross-dataset samples with higher resolution, local pseudo times. The 

aligned and unaligned samples aim to uncover conserved and specific developmental 

trajectories across human brains and organoids. We first demonstrated an application 

of BOMA by aligning bulk RNA-seq gene expression datasets and observed a 

similar developing trend as in the original respective publications11. By aligning 

organoids with different human brain regions, we also found that organoids are more 

similar to certain brain regions at specific time points. We also aligned the scRNA-

seq data of human versus chimpanzee organoids and observed a delayed 

development of human organoids compared with chimpanzee organoids. Finally, we 

compared recent time-series scRNA-seq datasets between human brains and human 

organoids in development. We found both common and uniquely expressed genes 

between the brains and organoids at resolutions of cell types across developmental 

stages. Moreover, we experimentally validated the expression of genes displaying 

differences between brains and organoids in selected cell types. BOMA is also 

available as an open-source web tool for community use. 
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Results 

Brain-Organoid Manifold Alignment (BOMA) framework 

for comparative analyses of gene expression data between 

brains and organoids 

As shown in Figure 1, BOMA inputs developmental gene expression matrices of the 

brain and organoid samples (e.g., tissues, cells). First, it uses global alignment to 

align the samples and initialize a sample-wise correspondence matrix at a coarse-

grain level (e.g., via manifold warping). Second, BOMA performs a manifold 

alignment using the correspondence matrix as the initial alignment. This step finds 

shared manifolds of the samples and maps them onto a common manifold space. The 

manifold shapes of the samples on the space are expected to uncover various 

developmental trajectories, which can be either conserved across brains and 

organoids (aligned samples) or brain/organoid-specific (unaligned samples). Finally, 

BOMA clusters the samples on those trajectories and finds underlying differentially 

expressed genes (DEGs), enriched gene functions, and associated phenotypes for 

each cluster, providing a deeper understanding of developmental functional 

genomics in brains versus organoids.  The full description of the BOMA model is 

available in Methods and Materials. 



 11 

To demonstrate BOMA as a framework for comparative analysis of brains and 

organoids development, we carried out several experiments in the following sections. 

We first applied BOMA on bulk RNA-seq datasets, including human brains, Non-

Human Primates (NHP) brains and human organoids. We further demonstrated the 

utility of BOMA in aligning scRNA-seq datasets, which includes single-cell data 

integrated from multiple independent studies. We also benchmark several state-of-

the-art alignment tools using these datasets. 

Spatiotemporal conservation and divergence of gene 

expression between organoid and brain regions 

Recent landmark studies compared gene expression between the human brain and 

organoid development11. However, our understanding of where and when gene 

expression in various brain regions is conserved or different from organoids is still 

unclear. To this end, we applied BOMA to align developmental gene expression data 

of human brains and organoids at the bulk tissue level.  The brain dataset includes 

brain tissue samples in c (Dataset 1, N=460, Dataset 1, Table S1) from 16 human 

brain regions (Table S2). The organoid dataset includes organoids from a recently 

published long-term cultured ‘human cortical spheroid (hCS)’ organoid bulk RNA-

seq dataset11 (N=62, Dataset 6).  
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Our alignment shows these brain and organoid samples primarily follow a shared 

trajectory on the common space, indicating potential conservation during their 

development (Figure 2A). In particular, as shown in Figure 2B, the organoid samples 

from 25 days to 250 days were aligned with the brain tissue samples at prenatal 

stages11. At 300 days, the organoid samples started to gain postnatal signatures, 

indicated by their high alignment scores with postnatal brain samples (Figure 2B). 

Also, organoids after 350 days were not well aligned with any brain samples, which 

indicates that the late-stage organoids may differ from postnatal brain development. 

This observation was consistent with a recent comparison of brains and organoids 

development11.  

Furthermore, we also interrogated which human brain regions are most similar to 

organoids in development. To answer this, we assessed the BOMA alignment of 

brain samples from each individual region with the organoid samples (Figure S1A-

C). As expected, distinct alignment patterns were found for different brain regions, 

with cortical areas aligning better with hCS organoids than non-cortical brain 

regions during early developmental stages up to 200 days (Figure 2C-D). At 200 

days, the alignment scores of cortical regions are significantly higher than non-

cortical regions (two-side t-test p=0.000696). To find which genes are potentially 

driving the alignment, we correlated individual gene expression with organoid 

pseudotime (z-axis in Figure 2A) and identified 54 genes significantly correlated 
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with the pseudotime as summarized in Figure S1D. We also identified cortical 

(N=51) and non-cortical marker genes (N=75) by finding significantly upregulated 

genes across the two regions. Interestingly, many more genes upregulated during 

organoid development were also significantly highly expressed in cortical areas 

compared to non-cortical regions (N=9 vs N=1). Besides, we didn’t observe any 

significant overlap between the pseudotime-correlated genes with the marker genes 

of each individual cortical area (Figure S1D). However, our alignment shows within 

the neocortex, several cortical areas like OFC, IPC, AIC, STC may be better aligned 

with cortical organoids than other cortical areas up to 100 days (two-side t-test 

p=0.00108; Figure 2D, Figure S1E). It is important to note that because several brain 

regions did not have samples from Stage 2, we removed Stage 2 from all the regions 

for the BOMA alignment. As a result, organoids at 25 days cannot align well with 

any brain samples. Therefore, these results suggest that cortical organoids 

specifically preserve brain-regional development at certain stages (i.e., 

spatiotemporal conservation), instead of mimicking the whole brain development. 

Interestingly, they also suggest that organoids are transcriptomically closer to certain 

neocortical areas, particularly perisylvian and orbital frontal areas, than they are to 

other neocortical areas. 
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Developmental gene expression discrepancies between human 

and chimpanzee organoids  

We also applied BOMA to align human and Non-Human Primates (NHP) brains, 

revealing their conserved developmental gene expression across species. 

Specifically, we aligned rhesus macaque brain (N=366)7 with human brain samples 

(N=460) from BrainSpan using BOMA. We found those samples were aligned most 

closely around the time of birth (Figure S2A), indicating that brain gene expression 

across two species becomes more similar at the bulk tissue level perinatally7.  

To deepen our understanding of the conservation and specificity of developmental 

gene expression at cellular resolution across human and NHP organoids, we applied 

BOMA to developmental scRNA-seq data and aligned single cells of human 

organoids (Number of cells: N=47,130, Dataset 732) versus chimpanzee organoids 

(N=26,228, six time points, Dataset 7). BOMA alignment was performed on the 

pseudo-cells identified by a similar approach as the study generated the datasets32, 

aiming to combat single-cell expression noises. Each pseudo-cell represents a group 

of cells with similar gene expression patterns. In total, 938 human and 483 

chimpanzee organoid pseudo-cells were generated for BOMA. Our analysis shows 

that these pseudo-cells from the two species organoids were aligned in general to a 

common trajectory, which indicates cross-species developmental similarity(Figure 
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3A). However, some discrepancies could also be observed. First, compared with 

human cells, chimpanzee cells were shifted towards a later time over the 

maturational trajectory (towards the left in Figure 3A), suggesting that chimpanzee 

organoids were developing faster than human organoids (Figure 3B). The observed 

protracted maturation of human organoids is in line with the previous study32, and 

was also observed in other cross-species comparison studies on organoids33,34 as well 

as on 2D cultures35,36. Second, we noticed that two sets of chimpanzee cells 

(Chimpanzee_1 and Chimpanzee_2, Figure 3A, right panel) could not be well 

aligned with any human cells. To understand the functional relevance of these two 

sets of cells (Data 1), we first identified each cell set by their coordinates. We then 

extracted upregulated genes using Presto37,38 to compare cells from each set with all 

other. Finally, functional enrichment analysis was performed using these genes 

(Figure 3C). Genes upregulated in Chimpanzee_2 were mostly enriched with brain 

developmental functions (FDR < 10e-5). For example, the most significantly 

enriched term, ‘Neuron projection morphogenesis’ is related to the maturation of 

neurons and circuit assembly39. These observations again indicate faster maturation 

of chimpanzee organoids. On the other hand, upregulated genes in Chimpanzee_1 at 

early time points (0 and 4 days) were enriched in cell division processes (e.g., cell 

cycle, chromatin remodeling, etc.).  These genes suggest Chimpanzee_1 is likely an 

intermediate cell type between pluripotent stem cell and neural progenitor, as these 
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cells express genes associated with pluripotency (e.g. POU5F1, DSG2), early 

embryonic development and patterning (e.g. NKX1-2, DSP, NR6A1, MGST1), neural 

tube development (e.g. CTHRC1, PKDCC, PRTG), and brain development/neural 

progenitors (e.g. TDGF1, TGFB2, PODXL, LIN28A, FOXH1, FSTL1). They also 

express neuron-specific genes and neuron-enriched genes (e.g. RIT2, DNMT3B, 

MAP1B). In support of this, Kanton et al.’s32 original analysis of this data also 

indicated the presence of neuroectoderm cells. 

Therefore, our BOMA alignment revealed a developmental gene expression 

similarity between human and chimpanzee organoids. Our analysis also uncovered 

the cross-species discrepancy in neural development and cellular functions. These 

results demonstrate the capability of BOMA to compare emerging organoid single-

cell data and provide insights into underlying cellular and molecular mechanisms 

driving neurodevelopment. 

Cell-type level conservation in development between human 

brains and organoids derived from embryonic stem cells 

To broaden BOMA applications to single-cell datasets of human brains versus 

organoids, we first benchmarked BOMA on two particular single-cell datasets. The 

comparison of human brains and organoids, especially at the cell-type level, will 

greatly advance our understanding of how well in-vitro cultured organoids model 
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the in-vivo human brain. We first aligned single-cell data from cortical regions of 

postmortem human brains (N=4,261, Dataset 3)40 with those of organoids 

differentiated from a well-established human embryonic stem cell (ESC) line (H9, 

N=11,048, Dataset 7)32. This human brain dataset covers prenatal samples across 6-

32 PCWs, while the organoid dataset includes organoids from 0 day up to 4 months 

in vitro. Before performing the alignment, human brain pseudo-cells (N=490) and 

organoid pseudo-cells (N=497) were generated from both datasets.  

Our earlier analysis of bulk RNA-seq datasets (Figure 2B) shows organoids up to 4 

months could be aligned across prenatal developmental periods, indicating the 

developmental time ranges of these two separate studies are comparable. Thus, we 

aligned these two scRNA-seq datasets and identified five cell clusters in the common 

space (Methods). Each cluster represents a group of cells that likely have similar 

functions (Figure 4A). Interestingly, each individual cluster contains cells from both 

brains and organoids, suggesting the in-vitro organoids likely is composed of the 

major cell types in the human brain. To understand functions underlying those 

clusters, we calculated the cell-types enriched in each cluster. For a given cluster, 

the enrichments were performed for the cluster cells from brains and organoids 

separately. And we observed the enriched cell types in each cluster were generally 

matched(Figure 4B).  For instance, Cluster 1 was mainly enriched for early 

developing cells, such as radial glia (RG), and oligodendrocyte progenitor cell 
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(OPC); Cluster 2 was associated with intermediate progenitor cells (IPC), and 

newborn excitatory neuron (nEN); Cluster 3 was mainly mapped to excitatory 

neuron (EN); Cluster 4 was mainly mapped to inhibitory neuron (IN); Cluster 5 was 

mainly mapped to endothelial cells. The details of cell-type annotations can be found 

in Table S3. It is worth pointing out that we only performed coarse clustering to 

show the high-level correspondence of cell-types between aligned brains and 

organoids. Further sub-clustering reveal more refined cell type enrichments of each 

sub-clusters (Figure S2B). 

Moreover, it is also important to look at matching developmental timing between 

brains and organoids. Determining the corresponding developmental periods during 

which cells are generated and specified in organoids will greatly benefit the design 

of culturing experiments. To address this, we identified the associated 

developmental stages of each cluster by calculating the significance of cells 

overlapping between each stage versus each cluster (Methods). In general, we 

observed each cluster was associated with different developmental stages (Figure 

4C). Together with the fact that clusters are composed by different cell types, this 

indicated the dynamic maturation of cell types across development. Interestingly, we 

observed that brains and organoids development follow a similar pattern, which 

again supports the developmental conservation between two datasets. However, 

discrepancies were observed for Cluster 5, which is significantly associated with 
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microglia, endothelial and mural cells in the brains, but with radial glia (RG) in the 

organoids (Figure 4B), reflecting the fact that these cell types have distinct origins 

from neurons and glia in the brain. Also, Cluster 5 is associated with later 

developmental stages in brains (>24 PCWs) but with earlier cultured time-points in 

organoids (<1 month, Figure 4C). This suggests that brain cells in this cluster are 

more mature than organoid cells. This observation was supported by BOMA-aligned 

cells on the common space in Figure 4A, where brain cells stretched longer in this 

cluster than organoid cells.  

Besides, we tested robustness of BOMA using this dataset (Figure 4). To do this, we 

challenged BOMA by intentionally adding mismatched regional-cells/cell-types 

(Red Blood Cells, RBC) (Figure S2C) or removing certain cell types (Figure S2D). 

Our results show BOMA performs reasonably well under those challenges in terms 

of preserving shared developmental trajectory and identifying cell type specific 

branches. 

Large-scale alignment of integrated datasets in human brains 

and organoids derived from induced pluripotent stem cells 

Brain organoids differentiated from iPSC have been used extensively to model 

human brain development and developmental disorders18,41,42. Here, we tested 

BOMA performance for aligning large-scale datasets of human brains versus both 
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iPSC and ESC derived organoids. In particular, we integrated scRNA-seq datasets 

from multiple studies to align single cells of human brains and human brain 

organoids (Methods). The integrated datasets have 57 human brain samples and 28 

iPSC or ESC derived organoids. The brain data contains 175,334 cells across 5.85-

37 PCWs, while the organoids data contains 187,179 cells across 21-105 cultured 

days. Similar to previous analyses, we first clustered cells into pseudo-cells (1,018 

in brains, 872 in organoids) to remove stochastic noise, and afterward evaluated the 

batch effects across datasets. tSNE plots show that minimum batch effects persist 

after reducing cells to pseudo-cells (Figure S3A-B, top panels). We then input 

pseudo-cells into BOMA for alignment. We found that BOMA aligns the two large-

scale integrated datasets reasonably well, showing aligned cell trajectories with 

similar cell-type distributions between brain and organoid cells in the common space 

(Figure 5A, Figure S3A-B, bottom panels). For instance, OPCs were embedded in 

the middle, excitatory neurons, inhibitory neurons, and radial glia were aligned in a 

separate branch, while IPCs spread across both excitatory neurons and radial glial 

cells branches. Expectedly, even less batch effects were observed after BOMA 

alignment (Figure S3A-B). 

Progenitor cells, such as IPCs, can divide and differentiate into postmitotic 

excitatory neurons in the developing cerebral cortex. This suggests that IPCs should 

align with neurons on the same maturational trajectory. To test whether this is true, 
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we compared the developmental distribution of cultured IPCs with aligned 

excitatory neurons and radial glia (RG) within organoid samples. Interestingly, we 

did observe a time shift between IPCs with excitatory neurons (EN, e.g., IPC of 3 

weeks can align with EN of 10 weeks, IPC of 8 or 10 weeks can align with EN of 

15 weeks, etc.), but not between IPCs and RGs (Figure 5B). The differences in 

alignment of IPCs with RGs versus ENs make sense given the timing of the events 

of neuronal cortical development. RGs divide asymmetrically to produce either two 

RGs or one RG daughter cell and one IPC. IPCs then undergo symmetric divisions 

to produce postmitotic neurons that migrate to their proper cortical layers.  

Moreover, we benchmarked other state-of-the-art methods and compared them with 

BOMA. Although Seurat16 (Figure S3C) and Liger43 (Figure S3D) can perform 

alignment at single-cell level, both failed to identify the developmental trajectories. 

Several other manifold based alignment method (UnionCom27, SCOT28, MMD-

MA26) can map the pseudo-cells into a manifold space, but the cell types were not 

embedded closely (Figure S3E-G). MetaNeighbor44, a correlation-based method for 

characterizing cell-type replicability across scRNA-seq datasets, had computational 

memory issues when applied on all cells within this dataset, and was unable to 

identify cell-type replicability on a 10% sub-sampled dataset (Figure 3H). In 

summary, BOMA outperforms other platforms in terms of both finding aligned cell 
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trajectories and discovering cell-type developmental conservation across large-scale 

human brain and organoid datasets. 

Brain-organoid aligned trajectory analysis reveals conserved 

and distinct developmentally expressed genes in specific cell 

types  

Aligned cell trajectories by BOMA between human brains and organoids show 

developmental processes across various cell types. To further understand the gene 

expression programs driving cell-type maturation, we identified maturation 

trajectories based on the coordinates of cells corresponding to each cell type in the 

common space, such as excitatory neurons (Figure 5C) and IPCs (Figure S4A). Then, 

we identified the genes that are differentially expressed (DEGs) across the cell-type 

trajectory between brains and organoids. The enrichment analysis of those DEGs 

revealed conserved and specific developmental functions of the cell type across 

brains and organoids (Methods). 

The cell-type trajectories revealed the pseudotimes of individual cells during 

development (i.e., cell positions over the trajectory), hypothetically providing higher 

timing resolution than the prior timing information. By cutting the trajectory into 

segments and correlating them with the developing stages, we found that the 
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segments of such pseudo-times significantly correlate with real developmental 

stages (Figure 5D for EN with adjusted p=0.0275 in brains, p=0.0002 in organoids, 

and Figure S4A for IPC trajectory), which suggests that this trajectory (pseudo-time) 

captures the real developmental maturation of cell types. 

We then identified the DEGs for each segment along each cell-type’s trajectory 

(Methods). We identified 549 organoid and 310 brain upregulated genes that were 

differentially expressed within at least one segment of the excitatory neuron’s 

trajectory (Data 2). Functional enrichment of these DEGs showed that organoids 

upregulated genes were mapped to chemical stress response, which is supported by 

a previous study18(Figure 5E). On the other hand, the brain upregulated genes were 

mapped to brain development processes, as expected.  

To validate the differential expression of some of these DE genes, we performed 

immunofluorescence in the developing human neocortex and human organoids at 

different stages of differentiation (Figure S4B). We found that the expression 

changes of important genes across stages (percentage of expressed cells) are greatly 

consistent with our results. SATB2, encoding a transcription factor defining  cortical 

neuron projection identity,48 and POU3F2, encoding a transcription factor important 

for primate RG expansion and differentiation49, displayed only low levels of 

expression throughout development period of the organoids by BOMA, and were 

identified as significantly upregulated in excitatory cells of the human neocortex as 
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compared to human organoids at late stages (~19PCW) (Figure 6A-B, BH adjusted 

Wilcoxon rank sum test p=1e-2). Consistent with these results, immunofluorescent 

staining followed by quantitative analyses of human organoids across 8-, 10.5-, and 

14-weeks of differentiation, corresponding to segments 7, 8, and 9, respectively, 

showed only a small proportion of SATB2+ (<1.5%, Figure 6C, Figure S18B) or 

POU3F2+ (~3%, Figure 6F, Figure S18C) cells, whereas immunofluorescent 

staining of human tissue confirmed the enrichment of SATB2+ and POU3F2+ cells 

in the cortical plate at 19PCWs as compared to organoids at 14 weeks (Figure 6D-E 

with t-test p=0.0038 and 6G-H with t-test p=0.001). SATB2 and POU3F2 are 

expressed in excitatory upper layer cortical neurons in both the human brain 45,46 and 

cortical organoids47–49, which are formed after the appearance of deep layer neurons 

that express markers such as TBR1 and BCL11B (also known as CTIP2). At the ages 

examined, our organoids have predominantly TBR1+ or BCL11B+ cells in the 

region surrounding the progenitor-rich (SOX2+) zone, indicating that at these stages, 

deep layer, but not superficial layer, neurons have been formed (Figure S4B, top 

panel). We expect that analysis of older organoid datasets (greater than 15 weeks in 

vitro) using BOMA would show increased numbers of these two cell populations, as 

has been shown by other studies using immunostaining47 or bulk RNA-seq 

approaches11. 
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On the other hand, PSMB5, encoding a 20S proteasome subunit, demonstrated 

consistent but slightly decreasing expression across the maturation trajectories by 

BOMA (Figure 6A), and was validated by immunostaining of human organoids 

(Figure 6I, Figure S18E ~10% of cells). Although PSMB5 exhibited higher 

expression than SATB2 or POU3F2 at earlier stages in both organoids and brains, in 

later stages it exhibited similar levels of expression to those genes only in the brain 

(Figure 6A-B). Consistent with this trend, we saw similar proportions of cells that 

were positive for SATB2, POU3F2, or PSMB5 in 19PCWs human cortical plate by 

immunostaining (Figure 6D-J). Significantly more PSMB5+ cells were found to be 

enriched in human neocortex (t-test, p=0.0011), but mostly in deep layer and 

subplate neurons (Figure 6K), suggesting that human organoids may have a lower 

abundance of subplate neurons at this in vitro stage. Another possibility is that while 

many cells in the organoid express PSMB5 at the mRNA level, they do not express 

high levels of PSMB5 protein or that the organoids used to generate these datasets 

contained larger cortical plate regions, and thus higher proportions of PSMB5+ cells. 

Discussion 
In this work, we present BOMA as a framework for comparative analysis of gene 

expression between brains and organoids, with an attempt to understand the genomic 

regulations during their development. Our evaluation of BOMA on both bulk tissue 

and single-cell datasets demonstrated its scalability. Spatiotemporal and species-
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wise gene expression patterns have been observed by our alignment. Genes 

differentially expressed across cell-types and developmental stages were also 

identified by our scRNA-seq analysis. Although we only focused on comparing 

RNA-seq datasets between brains and organoids, BOMA can be easily applied to 

compare pairs of any samples (RNA-seq or other modalities). Hence, we provide a 

web tool of BOMA for general community use. 

Comparing to existing methodology for comparative analysis between scRNA-seq 

data, BOMA semi-supervised approach performed better than the unsupervised 

methods as suggested by our results. The global alignment step not only improves 

the model interpretability, but also improves BOMA’s capabilities to find aligned 

developmental trajectories. scRNA-seq data are in general noisy and stochastic, the 

pseudo-bulk methods we benchmarked demonstrated these approaches can diminish 

scRNA-seq noises as well as combat batch effects across datasets. Future 

development of more accurate scRNA-seq technologies will potentially improve the 

alignment. Also, the scRNA-seq datasets were integrated from multiple published 

studies, so the input of BOMA can be confounded by various experimental factors, 

for instance, sample-wise batch effects, organoids culturing periods, sample sizes, 

sample time, and sequencing depths, etc. As showed in the results, BOMA 

significantly reduced these confounders and demonstrated superior performance for 

integrative analysis of multiple studies. In addition, as a framework, BOMA can 
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easily incorporate other existing alignment methods (e.g., Manifold Warping, CCA, 

etc.). BOMA’s supervised manner allows the correspondences between sample pairs 

to be incorporated into the alignment as prior knowledge. For example, users can 

define any correspondence information based on their own domain knowledge. Cell 

correspondences generated by other alignment tools (e.g., Seurat, Liger, etc.) can 

also be incorporated as prior knowledge of BOMA by defining the correspondence 

matrices. The experiments of intentionally inserting mismatched brain regions and 

cell types demonstrated the robustness of BOMA. However, including RBCs do 

make alignment more challenging, with fewer common trajectories observed 

between brains and organoids (Figure S2C versus Figure 4A). One possible future 

solution is to run BOMA multiple times. For example, we can first run BOMA once 

to detect aligned/unaligned cells. Then for aligned cells, we can run BOMA again to 

discover shared developmental trajectory. However, for unaligned cells, we can 

apply manifold learning and dimensionality reduction technics (e.g., diffusion map, 

etc.) to discover dataset-specific trajectories on the reduced latent space. In terms of  

alignment metrics, we considered both the local distances and direction of global 

trajectories. It is important to consider both, since neither can capture the  alignment 

quality separately. However, our current way of designing the global similarity is 

simply calculating the cosine similarity between vectors of aligned trajectories. 
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More complex approaches (e.g. Procrustes analysis50, etc.) considering the shape of 

the aligned trajectories might be useful to better capture the global similarity. 

Our manifold alignment analysis showed gene expression similarities between 

organoids and brains, demonstrating the viability of using organoids to understand 

human brain development15. However, differences were also observed in the 

comparative analysis, which suggests future protocol optimizations are needed9. Our 

data indicate that, compared to developing brain tissue, organoids contain relatively 

fewer superficial layer neurons (SATB2+POU3F2+) and fewer PSMB5+ cells , which 

in human tissue appear to enrich among deep layer and subplate neurons. 

Optimization of earlier organoid protocols has shown that reducing oxidative stress 

within organoids by cutting or slicing can improve long-term maintenance of neural 

progenitor populations, leading to expansion of cortical-plate/subplate-like regions, 

more distinct lamination, and increased abundance of superficial layer neurons51–53. 

Using BOMA to analyze future scRNA-seq datasets from organoids generated using 

these recently optimized protocols would provide better indication of how similar 

organoids are to the developing human brain. Additionally, future analyses could 

compare datasets from organoids generated using different protocols to determine 

whether certain approaches better recapitulate specific features of brain development, 

such as formation of long-range projections or more abundant numbers of outer 
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radial glia. This information would allow researchers to choose the organoid system 

best suited to their research questions.  

Previous studies have demonstrated the wide application of organoids as 

experimental models for drug-screening of diseases13,54,55. Other studies have also 

shown using patient-derived organoid (PDO) platforms to improve preclinical drug 

discovery in personalized medicine56. Recent clinical trials are moving towards cell 

therapy of diseases using lab cultured organoids57–59. All these reports suggested 

unprecedented opportunities for organoids in both lab research and clinical treatment. 

Thus, we believe BOMA, which allows a deeper understanding of the gene 

regulatory mechanisms underlying the cultured organoids, will benefit future clinical 

studies. 

Limitations of Study 

Our evaluation of BOMA was only based on limited samples from limited cultured 

periods, with limited numbers of pseudo-cells. Future studies using longer cultured 

organoids and more samples are recommended for better comparative analysis 

between brains and organoids. 
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Main figure titles and legends 

Figure 1. Brain and Organoid Manifold Alignment (BOMA), a computational framework 

for comparative analyses of developmental gene expression data between brains and 

organoids. (A) BOMA inputs multiple developmental gene expression datasets (genes by samples) 

from brains and organoids. The samples are ordered by prior timing information in development.  

(B) Step 1 - Global alignment to infer the correspondences of samples across the datasets at a 

coarse-grain level. (C) Step 2 – Local alignment to refine the alignment and map samples onto a 

common manifold space. (D) Clustering and functional analysis of aligned samples on the 

common space, e.g., brain-organoid conserved (square) or specific (circle and triangle) clusters 

and developmental trajectories (black curves). Downstream analyses of those clusters can discover 
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differentially expressed genes, enriched gene functions, and associated phenotypes. GO: Gene 

Ontology. 

Figure 2. Spatiotemporal conservation and divergence of gene expression between organoid 

and brain regions. (A) Aligned human brain4 and organoid11 samples on the common space from 

BOMA. Human brain samples are from BrainSpan and are colored orange by developmental 

stages. The stages were described by Kang et al.60, which characterize the periods of embryo to 

develop into adulthood brains. t: time. Organoid samples are colored blue by cultured days. PCW: 

Post Conception Weeks; M: Month; Y: Year. (B) Correlation plot shows the similarity (quantified 

as ‘Local Alignment Score’, Methods) of aligned samples. Each dot is the averaged similarity 

across all pairs of samples at the specific developmental time points. Both the color and the size 

of the dots represent the local alignment score. (C) Pairwise local alignment scores between 

organoids with brain samples from OFC and MD. (D) Averaged BOMA alignment scores between 

organoids versus the 16 brain regions. To calculate the averaged alignment score, for each organoid 

sample, its distance to the nearest sample from a certain brain region was used to calculate the 

local alignment score. The local alignment score was then weighted by the global alignment score 

of each brain region (See Methods). The weighted alignment score of organoids from the same 

timepoint were averaged to show in the heatmap. Brain regions abbreviations are listed in Table 

S2. 

Figure 3. Developmental gene expression alignment between human and chimpanzee 

organoids. (A) The samples of human and chimpanzee organoid cells32 (visualized by pseudo-

cells) in the common space after BOMA alignment. Human and chimpanzee organoid cells were 

plotted separately for comparison. The dot colors represent the experimental time points. The 

dashed line on the left panel shows the direction of the developing trajectory. Two chimpanzee 
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organoid-specific clusters (Chimpanzee_1 and Chimpanzee_2) are highlighted on the right panel. 

(B) Averaged pseudotime between human and chimpanzee organoids. Pseudotime is defined as 

the x-axis coordinates in (A). Each dot represents the averaged pseudotime of samples at a certain 

timepoint (0-120 days). (C) Functional enrichments of the chimpanzee-organoid specific clusters 

marker genes. 

Figure 4. Alignment of developmental gene expression between human brains and human 

ESC organoids. (A) The human brain40 and organoid32 cells (visualized by pseudo-cells) on the 

common space after BOMA alignment. Left: human brains. Right: human organoids. Aligned cells 

were grouped into 5 clusters). (B) The associated cell-types of each cluster from the enrichment 

analysis (hypergeometric test, Methods). ComplexHeatmap61 was used to plot the significance of 

associated cell-types for each cluster. U: early timepoint cells of unknown cell types40. (C) The 

associated developmental stages (time points) of cell clusters (hypergeometric test, Methods). The 

stages were described by Kang et al.60 to characterize the periods of human embryo to develop into 

adulthood brains. t: time. PCW: Post Conception Weeks. Dots represent associations with 

Benjamini-Hochberg (BH) adjusted p-values <0.05.  

Figure 5. Large-scale alignment of integrated scRNA-seq datasets in human brains and 

organoids from multiple studies. Five scRNA-seq datasets of human brains18,40,62 and 

organoids18,42  were applied. (A) The human brain and organoid cells (visualized by pseudo-cells) 

on the common space after BOMA alignment. Left: brains. Right: organoids. The dots are colored 

by given cell-types from the datasets. (B) Experimental time correspondence between aligned 

intermediate progenitor cells (IPC) versus excitatory neurons (ENs)/radial glia (RGs) within 

organoids samples. (C) Inferred developmental trajectory for ENs based on their coordinates on 

the common space. Top: brains. Bottom: organoids. (D) Trajectory segments vs. prior 
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development stages (experimental timepoints). Human brain cells from segments earlier than 

Stage 6 were grouped together due to the limited sample sizes. Mann-Kendall trend test for mean 

values of each segment was used to test the trending significance. (E). The enriched functions and 

pathways of genes significantly upregulated in organoid ENs, genes upregulated in brain ENs and 

genes expressed in both brains and organoids. 

Figure 6. Experimental validation of developmental expression of predicted brain- and 

organoid- specific genes. (A-B): Developmental expression profiles of SATB2, POU3F2, and 

PSMB5 mRNAs in human organoids (A) and human neocortex (B), determined by BOMA. Time 

correspondence for each segment ID can be found in Figure 5D. (C,F,I): Immunostaining of 

cortical organoids (n=3) revealed percentages of cells expressing SATB2(C), POU3F2(F) and 

PSMB5(I) during the maturation at 8, 10.5 and 14 weeks. (D,G,J): Quantification of SATB2+, 

POU3F2+, and PSMB5+ cells showed significant enrichment for human cortical plate (PCW 19, 

correspond to segment 9) as compared to organoids (14 weeks, corresponding to segment 9). 

Differences between organoid and cortical plate were tested using unpaired t-test with Welch’s 

correction, p=0.0038 for SATB2+ cells, p=0.001 for POU3F2+ cells, and p=0.0011 for PSMB5+ 

cells. (E,H,K): Representative images of organoid and human brain sections. Scale bar: 50 m. 
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STAR Methods 
 

RESOURCE AVAILABILITY 

Lead Contact 

Requests for further information should be directed to the lead contact, Daifeng Wang 

(daifeng.wang@wisc.edu). 

Materials Availability 

This study did not generate new materials. 

Data and Code Availability 

• This paper analyzes existing and publicly available data. All the datasets used and 

generated in our study were deposited in Zenodo 

(https://doi.org/10.5281/zenodo.7236202) and they are publicly available as of the date of 

publication. Datasets include supplementary dataset 1-3 from this work. 

• All original codes has have been deposited in Zenodo 

(https://doi.org/10.5281/zenodo.7556083) and  at are also publicly available at GitHub 

(https://github.com/daifengwanglab/BOMA) and is publicly available as of the date of 

publication. A web app of BOMA is available at http://daifengwanglab.org/boma-

webapp/. 

https://doi.org/10.5281/zenodo.7556083
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• Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Human WC5907 iPSC line72 was maintained on mouse embryonic fibroblast feeder layers as 

described73 and differentiated into organoids as carried using a published protocol74. Briefly, iPSCs 

were lifted using dispase (0.4mg ml-1) and transferred to low attachment flasks (Greiner Bio-One) 

in hESC media plus two SMAD inhibitors SB-431542 and LDN-193189 from days 0-5.  Organoids 

were then switched to neural medium plus growth factors EGF (20ng ml-1; R&D Systems) and 

FGF2 (20ng ml-1; WiCell) from days 6-24. After 24 days, organoids were cultured in neural 

medium supplemented with growth factors BDNF (20ng ml-1; Peprotech) and GDNF (20ng ml-1; 

Peprotech) until day 43 with media changes every 2-3days. Organoids were collected at 8, 10.5, 

and 14 weeks of differentiation and fixed with 4% PFA overnight. They were then washed with 

PBS 3x for 15min, and transferred to a 30% sucrose solution for 48hrs. Organoids were embedded 

in OCT and 30% sucrose (1:1) and stored in -80 freezer until analysis.  

 

METHODS DETAILS 

Brain-Organoid Manifold Alignment (BOMA) 

Emerging organoids have been widely used as models to mimic complex brain development.  We 

developed BOMA pipeline to use manifolds to align gene expression data between brain and 

organoid samples (e.g., tissues, cells) (Figure 1). Such brain-organoid expression data alignment 
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from BOMA aims to uncover conserved (aligned) and specific (unaligned) developmental gene 

expression patterns across brains and organoids. Our further downstream analyses of such 

expression patterns allow a deeper understanding of developmental functional genomics at both 

tissue and cell-type levels, especially in organoids.  

Suppose that we want to compare two developmental gene expression datasets (e.g., brains vs. 

organoids) matrices, 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑚] ∈ 𝑅𝑑×𝑚 and 𝑌 = [𝑦1, 𝑦, … , 𝑦𝑛] ∈ 𝑅𝑑×𝑛, where 𝑑 is the 

number of genes, 𝑚  and 𝑛  are the number of samples within each dataset, 𝑥𝑖 ∈ 𝑅𝑑  is a 𝑑 -

dimensional vector representing the expression levels of 𝑑 genes in the 𝑖𝑡ℎ sample in 𝑋, and  𝑦𝑗 ∈

𝑅𝑑 is also a 𝑑-dimensional vector representing the expression levels of 𝑑 genes in the 𝑗𝑡ℎ sample 

in 𝑌 . The samples of {𝑥𝑖 , 𝑖 = 1,2, … , 𝑚} and {𝑦𝑗 , 𝑗 = 1,2, … , 𝑛} are ordered by prior timing 

information if available. BOMA carries out the alignment by two major steps. In Step 1, BOMA 

globally aligns brain and organoid samples, based on prior timing (or any sequential) information 

of samples. Such prior timing information is typically at low resolution, e.g., only cultured days 

available for many cells in organoids. This global alignment establishes the initial correspondence 

across brain and organoid samples. In Step 2, from such initial correspondence, BOMA applies 

manifold learning to locally refine the alignment and co-embed brain and organoid samples onto 

a common manifold space. The manifold shapes of the samples on the space are expected to 

uncover various developmental trajectories, which can be either conserved across brains and 

organoids (aligned samples) or brain/organoid specific (unaligned samples). Furthermore, the 

manifold shapes from the space are expected to form developmental trajectories, revealing 

potential pseudo times among samples. Such pseudo times, at a refined high resolution, provide 

unobserved timing from prior information. 
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BOMA Step 1 - Global Alignment: This step aligns X and Y at a coarse-grained level and 

initializes the correspondence matrix (𝑊) for the next step. Primarily, we introduce two popular 

methods for global alignment. 

1) Dynamic Time Warping (DTW). DTW finds the optimal set(s) of aligned samples (𝜋*) between 

𝑋 and 𝑌 by minimizing the sum of distances between all aligned sample pairs: 

𝜋* =  𝑎𝑟𝑔𝑚𝑖𝑛𝜋∈𝐴(𝑥,𝑦)(∑ 𝑑(𝑥𝑖 , 𝑦𝑗)(𝑖,𝑗)∈𝜋 ), 

where 𝑑(𝑥𝑖 , 𝑦𝑗) is the distance between the ith and jth samples of X and Y, 𝐴(𝑥, 𝑦) is the set of all 

possible alignments between the two datasets. Distance of the samples x and y used here is defined 

by  𝑑(𝑥, 𝑦) =
1

1+𝑐𝑜𝑟(𝑥,𝑦)
, where 𝑐𝑜𝑟(𝑥, 𝑦) is the Pearson Correlation. 

Specifically, we used R package, dtw63 to perform the DTW alignment. In this work, we chose the 

constraint as ‘open begin and end’, which means that two sequential datasets can be unaligned at 

the beginning and end. The aligned samples from DTW can be used to initialize a corresponding 

matrix among samples, 𝑊, where Wij=1 if samples 𝑥𝑖, 𝑦𝑗  are aligned, and = 0 otherwise.  

2) Correlation based kNNgraph: This method first calculates the Pearson Correlation of each 

sample pair and then constructs a k-nearest neighbor graph (kNNgraph) by linking each sample 

with its k (a hyperparameter) most correlated neighbors in the other dataset. The adjacency matrix 

of the constructed kNNgraph can thus be used as the correspondence matrix 𝑊.  

In real application, if timing information is available, the global alignment of BOMA can be carried 

out by manifold warping or dynamic time warping as we demonstrated in aligning developmental 

bulk tissue data. However, if priori timing information is unavailable, the global alignment step of 

BOMA can learn the correspondences across samples that can be used for the following local 



 39 

alignment. To this end, the users can choose the correlation based kNNgraph. Besides the two 

methods mentioned above, this step can also be accomplished by other methods, e.g., Liger43, 

which uses Nonlinear Matrix Factorization(NMF) for single-cell alignment; Seurat16, which aligns 

single cells by identifying anchor genes.  

BOMA Step 2 - Local Alignment: this step performs a manifold alignment of 𝑋 and 𝑌 using the 

correspondence matrix (𝑊) from Step 1 as the initial alignment. Specifically, manifold alignment 

finds shared manifolds of samples from 𝑋  and 𝑌  and maps them onto a common space. The 

proximate samples on this space suggest well aligned, whereas distant samples for unaligned. To 

this end, it aims to find the functions 𝑓𝑋
∗
 and 𝑓𝑌

∗
 that minimize the following loss function to map 

the samples onto the common space: 

𝑓𝑋
∗, 𝑓𝑌

∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑓𝑋,𝑓𝑌
(1 − 𝜆) ∑ ∑‖𝑓𝑋(𝑥𝑖) − 𝑓𝑌(𝑦𝑗)‖

2

2
𝑊𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

+ 𝜆 ∑ ∑ ‖𝑓𝑋(𝑥𝑖) − 𝑓𝑋(𝑥𝑗)‖2
2𝑊𝑋

𝑖,𝑗

𝑚

𝑗=1

𝑚

𝑖=1

+ 𝜆 ∑ ∑ ‖𝑓𝑌(𝑦𝑖) − 𝑓𝑌(𝑦𝑗)‖2
2𝑊𝑌

𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

, where 𝑊𝑖,𝑗 is the correspondence between 𝑥𝑖 and 𝑦𝑗 from Step 1.  It can be weighted, or it can 

be binary (e.g. 0: aligned, 1: un-aligned) as in this work. 𝑊𝑋  and 𝑊𝑌  are two neighborhood 

similarity matrices, which were generated by kNNgraph. 𝜆 is a scalar, which constitutes the trade-

off between the alignment across datasets and preserving manifolds within datasets. By default, 

we set 𝜆  equals 0.5. Here, we use nonlinear manifold alignment (NMA) to solve the above 

optimization problem. NMA is non-parametric and directly estimates the coordinates of samples 

on the common space from optimal alignment via eigen-decomposition24. Also, we implement 

NMA in this step using our previous method and tool, ManiNetCluster24. 
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After mapping samples onto the common manifold space by BOMA, we can simply calculate the 

Euclidean distances of samples on the space, i.e., 𝑑𝑖𝑗 for Samples 𝑖 and 𝑗. A local alignment score 

between samples 𝑖 and 𝑗 can be then defined by 𝑆𝑖𝑗 =
1

(1+𝑑𝑖𝑗)
. The high alignment scores suggest a 

well aligned pair of samples.  However, the local alignment score can only evaluate the local 

similarity between a pair of aligned samples. When the time information is available, we want to 

ensure the two aligned trajectories evolve towards the same direction across time. To capture the 

global similarity between two aligned datasets (e.g., brains and organoids), we consider the 

direction of their aligned trajectories. This global similarity can be defined by the cosine of the 

angle between the two aligned trajectories 𝑆𝐺 =
𝐴∙𝐵

‖𝐴‖‖𝐵‖
, where A and B are vectors that represent 

the directions of two aligned trajectories after BOMA alignment. ‖𝐴‖ and ‖𝐵‖ are the L2 norm of 

these two vectors. A higher value of 𝑆𝐺 means the two trajectories have more similar directions 

with each other. In this work, when the time information is available (e.g., DTW), we define A 

and B as vectors pointing from the earliest timepoint to the latest timepoint of the aligned samples. 

However, when the time information is not available (e.g., correlation based kNNgraph for single-

cell datasets alignment), we simply set 𝑆𝐺 = 1. Finally, we use 𝑆𝐺 as a weight factor to adjust the 

loal similarity score 𝑆𝑖𝑗 , and define a BOMA alignment score (𝑆𝐴, 𝑤ℎ𝑒𝑟𝑒 𝑆𝑖𝑗
𝐴 = 𝑆𝐺 ∗ 𝑆𝑖𝑗 ) to 

capture both the local and global alignment similarity. 

Gene expression datasets of brains and organoids 

As summarized in Table S1, we collected recently published RNA-seq gene expression datasets 

for brains and organoids, covering both bulk tissues and single cells across differential 

developmental stages.  
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Briefly, Dataset 14 contains bulk-tissue RNA-seq of 826 samples from 16 regions of human brains 

(n=460) and 9 regions of RM brains(n=366) in Brainspan and PsychENCODE projects. Dataset 

264 contains single-cell RNA-seq (scRNA-seq) of 40,000 cells from human brain germinal zone 

and developing cortex regions between 17-18 Postconceptional Weeks (PCWs). Dataset 340 

contains scRNA-seq data of 4,261 cells in human brains between 6-32 PCWs. Dataset 462 contains 

scRNA-seq data of 57,868 cells from four human brain primary samples at different developmental 

stages between 16-24 PCWs. Dataset 518 includes scRNA-seq of 136,254 cells from human brain 

samples collected at 14,18,22 PCWs. Dataset 611 is from the cultured organoid samples and 

includes bulk RNA-seq data of 62 samples from ten time points between 50 days to ~ two years. 

Dataset 732 contains scRNA-seq of 73,358 cells in organoids from human or chimpanzee between 

0 days to four months. Dataset 842 contains scRNA-seq of 11,838 cells from organoids cultured 

for 105 days. Dataset 918 contains scRNA-seq of 189,346 organoid cells of culturing time spanning 

3-10 weeks. 

Identification of human brain developmental genes 

We identified a set of genes related to human brain development at both tissue- and cell-type levels, 

as input features for BOMA alignment (Figure S5A). First, we used the bulk RNA-seq data in 

BrainSpan4 to predict co-expression gene modules within each brain tissue (region) by WGCNA65 . 

We identified 1,191 co-expression gene modules in total. Genes from the same module are co-

expressed at certain tissue across the development, suggesting that they are likely co-regulated and 

thus involved in similar biological processes, so we term them as ‘development modules’. Second, 

we applied Scanpy66 on the single-cell RNA-seq dataset from Dataset 264 (Table S1) to identify 

developmental expressed genes at the cell-type level. Specifically, for each of 11 cell-types, we 

compared this cell-type with all other cell-types and found cell-type differentially expressed genes 
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(adjust p-value < 0.01 and log fold change > 1). After iterating through 11 cell-types, we identified 

2,032 cell-type expressed genes in total. Third, we overlapped each development module from a 

tissue-type with each cell-type expressed gene set and performed hypergeometric tests (R function 

phyper()) to determine the significance of the developmental gene overlaps between the tissue-

type and the cell-type (tissue-cell-type pair). We also adjusted the p-values of tests using 

‘Benjamini-Hochberg procedure (BH)’. We selected the overlapped genes of tissue-cell-type pairs 

with adjusted p<0.01 as significant overlapped gene sets. Finally, we obtained 1,533 genes as 

human brain developmental genes (Data 3).  

scRNA-seq data pre-processing  

We used Seurat16 to preprocess all applied scRNA-seq datasets. In particular, we removed the cells 

expressing less than 200 genes and the genes expressed within less than 30 cells. The rest cells 

were filtered by mitochondrial genes to be less than 10. The preprocessed datasets were then log2 

transformed.  

Compared to bulk RNA-seq, scRNA-seq is noisy with random effects. To address this, recent 

studies67,68 used pseudo-bulk methods to aggregate single-cells across biological replicates and 

improved downstream differential expression gene analyses. Therefore, we also applied the 

pseudo-bulk methods32,67,68 to create pseudo-cells from single cells. Specifically, we first grouped 

single cells into cell clusters. Each cluster represents one pseudo cell, and its expression levels are 

the averaged gene expression of cells within the cluster. This step can also balance the sample 

sizes across datasets, e.g., numbers of pseudo cells.   

In particular, we benchmarked two major pseudo-bulk methods, PCA-based32 and Seurat, and 

found the one for each application leading to a better BOMA alignment. The PCA based method 
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calculated the principal components (PCs) of single cells, and then hierarchically clustered (R 

function ‘hclust’) single-cells with the top 20 PCs to generate pseudo-cells, i.e., cell clusters. We 

used the function FindClusters() in Seurat for clustering single-cells as Seurat-based method. We 

used the PCA-based method for the analyses in Figure 3 and Figure 4, which were consistent with 

the paper generating the data32. However, we benchmarked the latter method and found it works 

better than the PCA-based method, so we used the Seurat-based method for the analysis in Figure 

5. 

To determine how the alignment is affected by the number of pseudo-cells, using the dataset of 

Figure 5, we tested different numbers of pseudo-cells by adjusting the ‘resolution’ parameter in 

the Seurat FindClusters() function. In this way, we generated pseudo-cells that varied from ~1,000 

to ~10,000 (Figure S5B, top panel). To evaluate the alignment accuracy, within the aligned 

common manifold space, we calculated the pairwise distances of pseudo-cells of the same cell-

type. Specifically, the coordinates of pseudo-cells were standardized per pseudo-cell, then 

distances between pseudo-cells of the same cell-type were averaged. Interestingly, the experiment 

result shows BOMA is scalable to the number of pseudo-cells, with the pairwise distances not 

significantly affected (Figure S5B, bottom panel). Considering this characteristic, and in order to 

balance the number of pseudo-cells across datasets, we set a lower resolution for datasets with 

more cells and set a higher resolution for datasets with fewer cells for the later analysis (Table S1). 

In particular, for organoid data, we set the resolution values as 10 for Dataset 8 and 1 for Dataset 

9; for brain data, we set the resolution values as 10 for Dataset 3, 5 for Dataset 4 and 1 for Dataset 

5. 
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Gene set enrichment analysis  

We used Metascape69 to perform the gene set enrichment analysis. The enriched categories include 

KEGG pathways, Gene Ontology (GO) terms, protein-protein interactions, and diseases (via 

DisGeNET). The false discovery rates (FDRs, q-values) were used to quantify the enrichment 

significance. 

Clustering BOMA-aligned samples and differentially expressed genes of 

clusters 

We applied the Spectral clustering from Python package ‘sklearn’70 to cluster aligned samples on 

the common space, based on their alignment scores. The number of clusters can be adjusted by 

tuning clustering parameters or by further sub-clustering on existing coarse clusters (Figure S2B). 

We also identified differentially expressed genes (DEGs) of clusters. To this end, we used 

Presto37,38 to perform the Wilcoxon rank sum test and auROC analysis by comparing cells from 

each cluster with all others cells in the dataset. 

Harmonization of cell types across datasets 

Cell type names may vary across studies. For instance, cell types from Organoid Dataset 7 are 

broad and different from many refined types in human brain. To solve this, we reassigned the types 

of the cells in Dataset 7 using the human brain cell-types in Dataset 3 by the ‘TransferData’ 

function in R package Seurat16. We also merged some sub-cell-types to their broader types, e.g., 

EN-PFC1 to EN-PFC. Besides, even different studies for brains or organoids can have different 

sub-cell-types. To make cell types across these studies comparable, we grouped annotated cell-

types from each study into common major cell-types (Table S4) for downstream comparative 
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analyses. Also, for Dataset 8 without cell-type information, we annotated cell types using known 

cell-type marker genes42 with Seurat.  

Hypergeometric enrichment of cell-types and developmental time stages 

For the cell clusters from BOMA applications to single cell data, we calculated their cell-type 

enrichments (or developmental timepoint enrichments), revealing possible cellular and 

developmental functions of the clusters. In particular, a hypergeometric test was performed for 

such enrichment analysis, with the p-values being calculated as: 

𝑃(𝑥 > 𝑘) = ∑
(

𝐾
𝑥 ) (

𝑁 − 𝐾
𝑛 − 𝑥 )

(
𝑁
𝑛)𝑥>𝑘

 

, where 𝑁 is the total number of cells, 𝑛 is the total number of cells of a certain cell-type (or cells 

from a certain developmental timepoint), 𝐾  is the number of cells in the cluster and 𝑘  is the 

number of cluster cells of certain cell-type (time point) in the cluster. Finally, we corrected the p-

values using BH method and selected p<0.05 as a significant threshold for enrichments.  

Trajectory analysis for BOMA alignment 

Since BOMA applies the manifolds to align single cells between brains and organoids, the 

manifold shapes from aligned cells are expected to reveal potential developmental trajectories. To 

further identify such trajectories, we used SCORPIUS71 to infer the developmental trajectory for 

each cell-type on the common space. Primarily, for each cell-type, we input the 3D coordinates of 

its cells on the common space from BOMA to the infer_trajectory() function of SCORPIUS 

(maximum iteration of 100) to output the trajectory. To determine a root on the trajectory, we first 

cut the trajectory into 10 continuous segments. Each cell was assigned to the closest segment based 
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on the distance. Then a developmental time for each segment can be determined by averaging the 

prior times of all cells in that segment. We then assign the segment with minimum averaged time 

as the root. Besides, for each cell type, we also used FindMarkers() in  Seurat16 to identify 

differentially expressed genes in the type’s cells of each segment, i.e., “Segment cell-type DEGs” 

implying development-stage-specific gene expression patterns at the cell-type level. To allow gene 

expression values to be comparable across datasets, the IntegrateData() function of Seurat was 

used to integrate datasets by identify a set of anchor genes. 

Experimental validation of genes in specific cell types and developmental 

stages 

Fixed organoids were cryosectioned (17um) and stained with antibodies against proteins and 

markers of interest as described74. Organoid sections were washed with PBST (PBS containing 

0.1% Triton X-100) and blocked in blocking buffer (10% normal goat serum (Sigma-Aldrich) and 

0.3% Triton X-100 in PBS) for 1 hour at room temperature. Primary antibodies - anti-BRN2 

(mouse, 1:500, Santa Cruz, SC-393324), anti-PSMB5 (rabbit, 1:1000, Novus Bio, NBP-13820), 

or anti-SATB2 (mouse, 1:100, Gen Way, 20-372-60065), anti-SOX2 (Mouse, 1:500, Abgent, 

Am2048a), anti-TBR1 (Rabbit, 1:1000, Abcam, Ab31940), or anti-CTIP2 (Rat, 1:500, Abcam, 

ab18465) were diluted in blocking buffer and incubated with the organoid sections overnight at 

4°C . Sections were then washed 4 x 5 min with PBST. Alexa Fluor secondary antibodies (Thermo 

Fisher Scientific) were diluted in blocking buffer and incubated with organoid sections for 35min. 

at room temperature. Organoid sections were washed 4 x 5 min with PBST and counterstained 

with DAPI. They were then washed 2 x 5 min with PBST. Sections were scanned and visualized 

using either a Nikon A1 confocal microscope (Nikon) or an AxioImager Z2 ApTome microscope 
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(Zeiss). The numbers of marker positive cells were quantified by unbiased stereology using 

StereoInvestigator software (MicroBrightField, Inc) as described75 PCW 19 human neocortex was 

fixed in 10% neutral buffered formalin at 4°C for 72 hours, cryoprotected with incubation in 

successive solutions of 10%, 20%, and 30% sucrose, and stored in 30% sucrose + 0.1% sodium 

azide. For validation experiments, PCW 19 human neocortex was embedded in Optimal Cutting 

Temperature (OCT) compound, cryosectioned at 30um thickness, and mounted on TOMO® 

adhesion slides (Matsunami Glass USA #TOM-11/90). Sections were washed in PBS (2 x 15 min) 

and incubated in blocking solution containing 5% (v/v) normal donkey serum (Jackson 

ImmunoResearch Laboratories) and 0.3% (v/v) Triton X-100 in PBS for 30 min at room 

temperature. Primary antibodies - anti-BRN2 (mouse, 1:500, Santa Cruz, SC-393324), anti-

PSMB5 (rabbit, 1:1000, Novus Bio, NBP-13820) or anti-SATB2 (mouse,1:100, Gen Way, 20-

372-60065) were diluted in blocking solution and incubated with tissue sections for 24 h at 4°C. 

Sections were washed with PBST (1X PBS + 0.3% Triton X-100) prior to being incubated with 

the appropriate fluorophore-conjugated secondary antibodies (Jackson ImmunoResearch Labs) for 

30 min at room temperature. All secondary antibodies were raised in donkey and diluted at 1:250 

in blocking solution. Sections were washed with PBST (3 x 5 min), treated with Autofluorescence 

Eliminator Reagent (Millipore #2160) according to manufacturer instructions, and coverslipped 

with Vectashield Plus Antifade Mounting Medium (Vector Laboratories #H-1000). Human 

neocortical samples were imaged on a Nikon A1 confocal microscope. Z-stack images taken at 

20x magnification with a step size of 2um were imaged from n=3 sections. CellProfiler software 

was utilized to quantify positive cells. Difference significance between organoid and human 

cortical plate marker positive cell percentages was test by unpaired t-test with Welch’s correction. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Hypergeometric test was used to identify human brain developmental genes and determine 

associated developmental stages of cell clusters. P-values was adjusted by Benjamini-Hochberg 

method to keep the significance level < 0.05. Wilcoxon rank sum test and auROC analysis were 

used to identify DEGs. Unpaired student's t-test with Welch's correction was used to report the P-

value when comparing differences between organoid and cortical plate. Two-side t-test was used 

for all the paired comparisons. 

Supplementary Excel tables 

Data 1: marker genes of two chimpanzee organoids specific clusters. Related to Figure 3. 

Data 2: differentially expressed genes within excitatory neurons of human brains or organoids. 

Related to Figure 5.  

Data 3: 1,533 human brain development related genes. Related to STAR Methods 
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