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A computational method for simulating thermal cavitation induced by long-pulsed laser is 
presented. This method accounts for the absorption of laser light by a liquid, the formation 
of vapor bubbles due to localized heating, and the dynamics of the bubbles and the 
surrounding liquid. The physical model combines the Euler equations for a compressible 
inviscid two-phase fluid flow, a reduced form of the radiative transfer equation for laser 
radiation, and a local thermodynamic model of vaporization. The Euler equations are solved 
using the FInite Volume method with Exact two-phase Riemann solvers (FIVER). Following 
this method, numerical fluxes across phase boundaries are computed by constructing and 
solving one-dimensional bimaterial Riemann problems. The paper focuses on numerical 
methods for coupling the laser and fluid governing equations and tracking the vapor 
bubbles. An embedded boundary finite volume method is proposed to solve the laser 
radiation equation on the same mesh created for the Euler equations, which usually 
does not resolve the boundary and propagation directions of the laser beam. To impose 
boundary conditions, ghost nodes outside the laser domain are populated by mirroring 
and interpolation techniques. The existence and uniqueness of solution are proved for the 
two-dimensional case, leveraging the special geometry of the laser domain. The order of 
accuracy of the method is also proved, and verified using numerical tests. A method of 
latent heat reservoir is proposed to predict the onset of vaporization, which accounts for 
the accumulation and release of latent heat. A unique challenge associated with long-
pulsed laser is that the dynamics of vapor bubbles is driven not only by the inertia of the 
bubble nuclei, but also by the continuation of vaporization. In this work, the localized level 
set method is employed to track the bubble surface, and a method of local correction and 
reinitialization is proposed to account for continuous phase transitions. Several numerical 
tests are presented to verify the convergence of these methods. Two realistic simulations of 
laser-induced cavitation are presented at the end, showing that the computational method 
is able to capture the key phenomena in these events, including non-spherical bubble 
expansion, shock waves, and the “Moses effect”.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Laser-induced cavitation describes the formation of vapor bubbles in a liquid due to laser radiation. As a mechanism of 
bubble generation, it is widely used in basic research and microfluidic applications that require controlled bubble dynam-
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ics [1–6]. As a natural phenomenon, laser-induced cavitation also occurs in a broad range of applications that utilize laser 
to treat materials in a liquid environment. Examples in this category include liquid-assisted laser processing (e.g., underwa-
ter laser cutting [7,8], laser cleaning [9,10]), ocular laser surgery [11], laser angioplasty [12], and laser lithotripsy [13–16]. 
In many cases, cavitation is a major complexity, as it produces both beneficial and detrimental effects [16–18]. Therefore, 
understanding laser-induced cavitation and the subsequent bubble dynamics is crucial to improving the efficacy and safety 
of these technologies.

The duration of a laser pulse varies from 10−15 s to 1 s or longer in different applications. If the pulse duration is much 
smaller than the acoustic time scale (i.e. characteristic length divided by the speed of sound in the liquid), laser radiation 
can be viewed as a preceding event that stops before the vapor (or plasma) bubble starts to expand. In this case, the analysis 
of bubble and fluid dynamics can be separated from that of laser radiation. If the pulse duration is comparable to or longer 
than the acoustic time scale (i.e. long-pulsed laser), it may overlap with the expansion of the initial bubble. As a result, 
the dynamics of the bubble may be driven not only by the inertia of the initial bubble, but also by the continuation of 
phase transition. In practice, an evidence of this phenomenon is the observation of a non-spherical bubble that reflects the 
direction and profile of the laser beam [14,19–21]. In this scenario, laser radiation, phase transition (e.g., vaporization), and 
the dynamics of the bubble and the surrounding liquid are interdependent, and should be analyzed as a combined system. 
In this paper, we present a computational method for conducting this type of analysis.

Existing models of bubble dynamics can be roughly divided into three categories, namely the Rayleigh-Plesset equation 
and its variants (e.g., [22–24]), the boundary potential equation (e.g., [25–27]), and two-phase Euler and Navier-Stokes 
equations (e.g., [28–32]). Analyses based on these models typically start with one or multiple pre-specified bubbles with a 
constant initial state inside each bubble. For bubbles generated by long-pulsed laser, this approach is no longer applicable 
due to the continuation of laser radiation and phase transition. To our knowledge, a full-domain method that predicts 
continuous, laser-induced phase transitions together with the two-phase bubble/fluid dynamics has not been presented 
in the literature. This paper presents an effort towards filling this gap. We couple the two-phase Euler equations with a 
laser radiation equation that models the absorption of laser light by the two-phase fluid flow. The laser radiation equation 
is obtained by customizing the radiative transfer equation (RTE) using the special properties of laser beams, including 
monochromaticity, directionality, and a measurable (often non-zero) focusing or diverging angle. The coupled fluid-laser 
system accounts for the continuous absorption of laser by the fluid flow before and after bubble formation, as well as the 
effect of temperature variation and bubble dynamics on laser attenuation.

To solve the two-phase Euler equations, we employ the FInite Volume method with Exact two-phase Riemann solvers 
(FIVER), which has been validated for several laboratory experiments on inertial and shock-induced bubble dynamics [29,
30,33]. Following this method, the mass, momentum, and energy fluxes across the liquid-vapor interface are computed by 
constructing and solving one-dimensional bimaterial Riemann problems [33–36]. In this way, the discontinuity of equation 
of state across the material interface is directly accounted for in the fluxes. We propose to solve the laser radiation equation 
using the same finite volume mesh created for the fluid equations (i.e. Euler equations). Compared to previous studies that 
solve fluid equations and the RTE on different meshes [37–39], the proposed approach reduces the amount of work by 
the user on mesh generation and partition. It also eliminates the need of frequent, full-domain data transfer between two 
meshes, which can be complex and expensive in massively parallel computations. In most cases, only a fraction of the fluid 
domain is subjected to laser radiation, which means the boundaries of the laser radiation domain are embedded inside 
the fluid domain, and not resolved by the fluid mesh. To account for this complexity, we apply an embedded boundary 
method to impose the boundary conditions of the laser radiation equation. Specifically, we populate ghost nodes outside the 
laser domain using mirroring and interpolation techniques. This method has been widely used in fluid-structure interaction 
computations, sometimes also referred to as ghost cell or immersed boundary method [40–44]. If the embedded boundary 
has an arbitrary geometry, the image of a ghost node may not be unique, and the local interpolation problem may be 
under-determined. In this work, we prove for the two-dimensional case that for the special geometry of the laser radiation 
domain, the solution of the embedded boundary method exists and is unique.

To capture laser-induced vaporization, we propose a method of latent heat reservoir that accounts for the accumulation 
and release of latent heat. For each control volume in the liquid subdomain, an additional variable is introduced to store the 
latent heat required to break up the intermolecular bonds. The transition from liquid to vapor phase is realized numerically 
by switching the equation of state to that of the vapor phase, then adding the latent heat to the enthalpy of the vapor 
through an isochoric process. To track the bubble surface (i.e. liquid-vapor interface), we apply a localized level set method 
that solves the level set equation within a narrow band that contains the interface [45]. In the past, the level set method 
has been widely used to track the evolution of bubbles driven by the fluid velocity field (i.e. advection) [29,30,33,46–49]. 
To capture the effect of continuous vaporization, we switch the sign of the level set function value within control volumes 
that have just undergone a phase transition. Then, we solve the level set reinitialization equation [46] to restore the level 
set function to a signed distance function.

To demonstrate and assess the capabilities of the proposed computational method, we present six numerical experiments. 
Among them, there are four academic benchmark problems that are used to verify the convergence and/or order of accuracy 
of the aforementioned numerical methods. The last two numerical experiments are realistic simulations of laser-induced 
cavitation. In these simulations, we vary the width of the laser beam, and show that the computational method is able 
to capture several key phenomena that have been discovered in laboratory experiments, including non-spherical, beam-
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Fig. 1. Problem setup.

dependent bubble expansion, the emission of acoustic and shock waves, and the formation of a bubble channel that extends 
the range of laser radiation, also known as “Moses effect” [14,21,50,51].

2. Physical model

2.1. Fluid dynamics and thermodynamics

Fig. 1 provides an illustration of the problem investigated in this paper. As the cavitation bubble nucleates and expands, 
the fluid flow is dominated by high pressure, shock waves, and rapid interface motion. In comparison, viscous stresses 
and surface tension can be neglected. The effect of heat diffusion is also neglected in this work, as we focus on thermal 
radiation and advection. Based on these assumptions, the dynamics of the fluid flow is governing by the following Navier-
Stokes equations.

∂W (x, t)

∂t
+ ∇ ·F(W ) = ∇ · G(W ), ∀x ∈ �, t > 0, (1)

with

W =
⎡⎣ ρ

ρV
ρet

⎤⎦ , F =
⎡⎣ ρV T

ρV ⊗ V + p I
(ρet + p)V T

⎤⎦ , G =
⎡⎣ 0T

0
−qT

r

⎤⎦ ,

where � ⊂ R3 is the domain of the fluid flow, assumed to be time-independent. ρ , V , p, T denote the fluid’s density, 
velocity, pressure, and temperature, respectively. et is the total energy per unit mass (dimension: [length]2[time]-2), given 
by

et = e + 1

2
|V |2, (2)

where e denotes the fluid’s internal energy per unit mass. qr is the radiative heat flux (dimension: [mass][time]-3[length]-1), 
assumed to be induced by laser. Therefore, Eq. (1) can be viewed as an extension of Euler equations to include thermal 
radiation.

To model a multiphase flow, we assume that one equation of state (EOS) is specified for each phase. In this work, we 
consider a two-phase flow involving the liquid and vapor phases. Thus, the EOS can be written as

p = p(ρ, e,I) =
{
p0(ρ, e), if I = 0,

p1(ρ, e), if I = 1,
(3)

where I = I(x, t) ∈ {0, 1} denotes the phase (or material) identification number, p0(ρ, e) is the EOS of the liquid, and 
p1(ρ, e) the EOS of the vapor.

In the numerical tests presented in this paper, the stiffened gas EOS,

p0(ρ, e) = (γ0 − 1)ρe − γ0pc0, (4)
3
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is applied to model the liquid, and the (calorically) perfect gas EOS,

p1(ρ, e) = (γ1 − 1)ρe, (5)

is applied to model the vapor. Here, γ0, pc0, and γ1 are material-dependent parameters.
To properly model laser absorption, a temperature law is also needed for each phase. For the two-phase flow, the tem-

perature law can be written as

T = T (h,I) =
{
T0(h), if I = 0,

T1(h), if I = 1,
(6)

where h = e + p/ρ denotes enthalpy. T0(h) and T1(h) are the temperature laws of the liquid and vapor phases, respectively. 
In the numerical tests presented in this paper, we assume

T1(h) = 1

cp1

(
h − hc1

) + Tc1, (7)

for the vapor phase, where hc1 and Tc1 represent a reference state, and cp1 is the specific heat at constant pressure, assumed 
to be a constant. For the liquid phase modeled using the stiffened gas EOS, we also assume a constant cp , which gives

T0(h) = 1

cp0

(
h − hc0

) + Tc0. (8)

2.2. Liquid-vapor interface

At any time t ≥ 0, the subdomains occupied by the liquid and the vapor are given by

�0(t) = I−1
t (0), (9)

�1(t) = I−1
t (1), (10)

where I−1
t denotes the inverse function of I at time t .

The liquid-vapor interface, �, is therefore given by

�(t) = ∂�0(t) ∩ ∂�1(t). (11)

The interface conditions imposed in this work are those describing a contact discontinuity, i.e.,(
lim

x′→x, x′∈�0

V (x′, t) − lim
x′→x, x′∈�1

V (x′, t)
)

· n(x, t) = 0,

lim
x′→x, x′∈�0

p(x′, t) = lim
x′→x, x′∈�1

p(x′, t),
∀x ∈ �, t ≥ 0, (12)

where n denotes the normal to �.
We track � implicitly by solving the level set equation,

∂φ

∂t
+ V · ∇φ = 0, (13)

where φ is the level set function, initialized to be the signed shortest distance to the interface. We adopt the convention 
that the positive sign of φ corresponds to the liquid phase. In this way, �0, �1, and � are given by

�0(t) = {x ∈ �, φ(x, t) > 0}, (14)

�1(t) = {x ∈ �, φ(x, t) < 0}, (15)

�(t) = {x ∈ �, φ(x, t) = 0}. (16)

Combining Eqs. (9), (10), (14) and (15), the phase identification function I can also be derived using the level set function 
φ.

For problems in which the liquid-vapor interface emerges after the start of the computation (i.e. at some t > 0), we 
begin solving Eq. (13) after the interface emerges, while the fluid governing equations (1) are always solved from t = 0. At 
the end of each time step, a phase transition model is applied to check the thermodynamic state variables at each node 
and identify possible phase transitions. For each node that undergoes phase transition (e.g., vaporization), the local value of 
φ is reset to a small value that has the sign corresponding to the phase it transitions into (e.g., vapor). In this work, the 
magnitude of φ is set to be half of the minimum edge length within a neighborhood of the node. After this manipulation, 
4
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φ has the correct sign at every node, but it is no longer a distance function. We restore φ to a signed distance function by 
solving the reinitialization equation [46],

∂φ

∂ t̃
+ S(φ0)(|∇φ| − 1) = 0, (17)

to the steady state, which satisfies |∇φ| = 1. Here, t̃ is a fictitious time variable. φ0 is the level set function before reinitial-
ization. S(φ0) is a smoothed sign function, given by

S(φ0) = φ0√
φ2
0 + ε2

, (18)

where ε is a constant coefficient, set to the minimum element size of the mesh. The steady state solution of Eq. (17) is then 
used as the new initial condition to integrate the level set equation (13) forward in time. Details of the phase transition 
model and the implementation method are presented in Sec. 2.4 and Sec. 3.5.

The phase transition method described above requires frequent solution of Eq. (17). To reduce the computational cost, 
we employ the localized level set method [45], which means Eq. (13) is solved within a subset of � that contains points 
within a certain bandwidth (in terms of mesh connectivity) from the zero level set. In this way, Eq. (17) only needs to be 
solved within a narrow band that is slightly wider than the domain of Eq. (13). The localized domains of Eqs. (13) and (17)
are both updated at every time step.

2.3. Laser radiation

Let �L ⊂ � be the region inside the fluid domain that is subjected to laser radiation (Fig. 1). In general, the transfer of 
laser energy within �L is governed by the law of energy conservation [52], which can be written in an integral form as∫

∂V

(
L ŝ

) · ndA =
∫
V

(
μα(η)Lb(x, η) − μα(η)L(x, ŝ, η) − μs(η)L(x, ŝ, η) + μs(η)

4π

∫
4π

L(x, ŝi, η)�(ŝi, ŝ)dωi

)
dV , (19)

where V ⊂ �L denotes an arbitrary control volume, and ∂V its boundary. n denotes the unit normal to ∂V . L = L(x, ̂s, η)

denotes the spectral radiance (dimension: [mass][time]-3[length]-1) at position x ∈ R3, along direction ŝ, at wavelength η. 
Lb denotes blackbody radiance. μα and μs are the absorption coefficient and the scattering coefficient, respectively, which 
depend on the laser wavelength and the medium. �(ŝi, ̂s) is the scattering phase function, which describes the probability 
that a ray from one direction ŝi would be scattered into another direction ŝ. ω denotes the solid angle.

Applying the Gauss theorem to Eq. (19) yields

∇ · (L ŝ) = μα(η)Lb(x, η) − μα(η)L(x, ŝ, η) − μs(η)L(x, ŝ, η) + μs(η)

4π

∫
4π

L(x, ŝi, η)�(ŝi, ŝ)dωi, (20)

where ∇ denotes the gradient with respect to x.
The radiative heat flux qr in Eq. (1) is obtained by integrating L over all directions and the interval of relevant wave-

lengths, (ηmin, ηmax). That is,

qr(x) =
ηmax∫

ηmin

∫
4π

L(x, ŝ, η)ŝ dωdη. (21)

If ŝ is independent of x, the left-hand side of Eq. (20) becomes ∇L · s, which gives the well-known radiative transfer 
equation (RTE) [52,53].

The special properties of laser light allow us to simplify Eqs. (20) and (21). Because of monochromaticity, we can assume 
that L is non-zero only at a fixed laser emission wavelength, η0. Compared with the high intensity of the laser light, the 
blackbody radiance due to emission of the medium is small enough to be neglected. Because of the directionality of the 
laser light, and ignoring the emission term, we can assume that L is non-zero only along the direction of laser propagation, 
denoted by s. Hence,

L(x, ŝ, η) = L(x)δ(ŝ − s)δ(η − η0), (22)

where δ(·) denotes the delta function, and the variable L(x) on the right-hand side is radiance (dimension: [mass][time]-3).1

It should be noted that s is not always a constant. In particular, if the laser beams are focusing or diverging — which is 
common in practice — s is a function of x.

1 After this point, the variable L always denotes radiance.
5
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Fig. 2. Laser domain geometries. For focusing beams, it is assumed that the focal point is excluded from the domain.

Substituting Eq. (22) into Eq. (20) and setting Lb(x, η) = 0, we obtain

∇ · (Ls) = ∇L · s + (∇ · s)L = −μα L, (23)

where L = L(x), and s = s(x) is a known function. Similarly, substituting Eq. (22) into Eq. (21) yields

qr = Ls. (24)

Considering the cases of parallel, focusing, and diverging laser beams, the domain of the laser radiation equation, �L , 
can be a circular cylinder or a truncated cone (Fig. 2).

Let �L = ∂�L , and �LS ⊂ �L be the boundary that corresponds to the laser source. At the laser source, L can often be 
modeled using a Gaussian function [54] or set to a constant value, thereby providing a Dirichlet boundary condition. For a 
Gaussian beam,

L(x) = L0(r) = 2P0

πw2
0

exp
(−2r2

w2
0

)
, ∀x ∈ �LS , (25)

where r = ‖x − x0‖2 is the distance from point x to the center of the laser source, denoted by x0. P0 and w0 are model 
parameters corresponding to the power of the laser and the waist radius, respectively. P0 can be a constant or a function 
of time t . Either way, it should be adjusted from the actual laser power to account for the fact that the Gaussian function is 
restricted to a finite domain.

The absorption coefficient μα is a function of both the material identification number I and temperature T . Therefore, 
the laser radiation equation (23), the fluid governing equation (1), and the level set equation (13) are interdependent.

2.4. Laser-induced vaporization

Due to the absorption of laser light, the temperature at any point within �L ∩�0 will increase following the temperature 
law defined in Sec. 2.1, until the vaporization temperature, Tvap, is reached at the point. After reaching Tvap, additional heat 
will not cause further temperature increase. Instead, it increases the material’s intermolecular potential energy. In this work, 
we introduce a new variable, �(x, t) (dimension: [length]2[time]-2), to store this additional energy. � is initialized to 0
everywhere. At any point, it starts to increase only after the local temperature has reached Tvap.

Let l denote the material’s latent heat of vaporization (dimension: [length]2[time]-2). When �(x, t) reaches l, a transition 
from the liquid phase to the vapor phase occurs at the point x, which means x moves from �0 into �1. At the same time, 
the accumulated latent heat (�, which is equal to l) is released, and added to the enthalpy of the vapor. In an Eulerian 
reference frame, this is done through an isochoric process in order to satisfy mass conservation.

Specifically, for any point in �L that undergoes phase transition, let ρ0 and e0 denote the density and internal energy 
at this point right before phase transition. After phase transition, the density at this point remains ρ0, while the internal 
energy, e, is given by

e + p1(ρ0, e)

ρ0
= e0 + p0(ρ0, e0)

ρ0
+ �, (26)

where p0(·, ·) and p1(·, ·) are the EOS of the liquid and vapor phases, respectively (see Sec. 2.1). Depending on the choices 
of EOS, e can be solved from Eq. (26) analytically or numerically.
6
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Fig. 3. Dependencies of the model equations.

This method is referred to as a method of latent heat reservoir in this paper, as � can be viewed as a reservoir that 
accumulates the latent heat of vaporization. It takes Tvap and l as input parameters, which can be constants or functions. 
The method is similar to those presented in [55] and [56], despite that fluid dynamics equations are not solved there.

As a summary, Fig. 3 shows the dependencies of all the model equations. The numerical solution process starts with 
initializing the fluid density (ρ), velocity (V ), and pressure (p) fields at time t = 0. If a bubble exists at this time, the level 
set function φ is initialized to be a signed distance function with the zero level set being the bubble surface. Otherwise, 
φ does not need to be initialized, as the level set equation solver will remain inactive until material interface appears. The 
fluid governing equations (1) and the level set equation (13) are integrated in time using the same time integrator. Within 
each time step, the exchange of data between different solver modules are indicated in Fig. 3.

3. Numerical methods

3.1. Solution of the fluid governing equations

Let �h be a spatial discretization of the computational domain � (Fig. 4). Around each node ni ∈ �h , a control volume 
Ci is created. All the control volumes form the dual mesh.

Integrating Eq. (1) within Ci gives∫
Ci

∂W h

∂t
dx+

∫
Ci

∇ ·F(W h)dx =
∑
e∈Th
i∈e

∫
e

∇ · G(W h)N
(e)
i (x)dx, (27)

where Th denotes the set of elements in the mesh. N(e)
i (x) denotes a shape function in element e associated with node ni . 

The left-hand side of Eq. (27) is evaluated using a finite volume method. The right-hand side is computed using a finite 
element method. After spatial discretization, we obtain the semi-discrete form,

∂W i

∂t
+ 1

‖Ci ‖
∑

j∈Nei(i)

∫
∂Cij

F(W ) · ni jdS = 1

‖Ci ‖
∑
e∈Th
i∈e

∫
e

∇ · G(W h)N
(e)
i (x)dx, (28)

where W i denotes the average of W in control volume Ci . Nei(i) denotes the set of nodes connected to node ni by a facet, 
∂Cij = ∂Ci ∩ ∂C j . ni j is the unit normal to ∂Cij . ‖Ci‖ denotes the volume of Ci .
7
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Fig. 4. 2D illustration of an arbitrary (i.e. unstructured) node-centered finite volume mesh. The elements of the primal mesh are shown in solid lines, while 
the control volumes that form the dual mesh are shown in dashed lines.

A second-order explicit Runge-Kutta method is used to integrate Eq. (28) in time. The FIVER method is used to calculate 
the fluxes across the facet ∂Cij [29,30,33,57]. In this problem, based on the locations of node ni and node n j , there are two 
possibilities:

(a) If ni and n j are in the same fluid subdomain, the well-known monotonic upstream-centered scheme for conservation 
laws (MUSCL) [58] is used to compute the fluxes across facet ∂Cij .

(b) If ni and n j belong to different fluid subdomains (i.e. one in �0 and the other in �1), a one-dimensional bimaterial 
Riemann problem is constructed along the edge between ni and n j , i.e.

∂w

∂τ
+ ∂F(w)

∂ξ
= 0, with w(ξ,0) =

{
w i, if ξ ≤ 0,

w j, if ξ > 0,
(29)

where τ denotes the time coordinate. ξ denotes the spatial coordinate along the axis aligned with ni j and centered 
at the midpoint between ni and n j . The initial state w i and w j are given by projecting the states W i and W j onto 
the ξ axis. At any τ > 0, the interface conditions (12) are satisfied by the solution of Eq. (29). For the stiffened gas 
and perfect gas EOS used in the numerical tests, Eq. (29) is solved analytically. The states to the left and right of the 
interface are used in the numerical flux function to compute the fluxes across the interface. In the test cases presented 
in this paper, the local Lax-Friedrichs flux (a.k.a. Rusanov flux) function is used, as it is simple and directly applicable 
to arbitrary EOS. The FIVER method has also been used in the past with other numerical flux functions, such as Roe, 
HLLE, and HLLC (e.g., [59]).

3.2. Solution of the level set equation and the reinitialization equation

The level set equation (13) can be solved using finite difference and finite volume methods on structured and un-
structured meshes (e.g., [29,30,33,48,49]). In the numerical tests presented in this paper, the equation is solved using a 
third-order upwind finite difference method with a second-order explicit Runge-Kutta time-integrator.

When solving the level set reinitialization equation, it is difficult to restore φ to a signed distance function without 
causing any change to the location of the interface (i.e. the 0 level set of φ). This difficulty has led to different methods for 
updating the φ values at the first layer of nodes next to the interface (see, for example, [48,49]). We have implemented the 
constrained reinitialization methods presented in [49], referred to as HCR-1 and HCR-2, as well as a simple method that 
does not modify the φ values at the first layer of nodes (Eq. (39) in [48]). For the numerical tests presented in this paper, 
all the three methods produced similar and converging results.

3.3. Solution of the laser radiation equation

A finite volume method is implemented to solve the laser radiation equation. Integrating Eq. (23) within any control 
volume Ci , and applying the divergence theorem, we get∑

j∈Nei(i)

Aij Li j(si j · ni j) =
∫

∇ · (Ls)dx = −
∫

μα(T )Ldx = −‖Ci ‖μα(Ti)Li, (30)
Ci Ci

8
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where Aij is the area of facet ∂Cij . Li is the cell-average of L within Ci . Li j is the value of L at facet ∂Cij . si j denotes the 
laser direction at ∂Cij . As shown in Fig. 4, si j is set to the laser direction at the midpoint between nodes ni and n j .

A mean flux method (e.g., [60]) is applied to evaluate Li j . For a node-centered finite volume formulation, Li j is computed 
by

Li j =
{
αLi + (1 − α)L j if si j · nij ≥ 0

(1 − α)Li + αL j if si j · nij < 0
. (31)

The value of parameter α can be varied between 0.5 and 1. When α = 1.0, the resulting scheme is also referred to as 
the step method [60].

Substituting Eq. (31) into Eq. (30) yields a system of linear equations with the cell-averages of laser radiance as un-
knowns. Many linear solvers can be applied to solve this system. For example, using the Gauss-Seidel method, the iterative 
formula for updating Li is given by

Li = −

α
∑

j∈Nei(i)
Dij<0

Aij Dij L j + (1− α)
∑

j∈Nei(i)
Dij≥0

Aij Dij L j

‖Ci ‖μα(Ti) + (1− α)
∑

j∈Nei(i)
Dij<0

Aij Dij + α
∑

j∈Nei(i)
Dij≥0

Aij Dij

, (32)

where Dij = si j · ni j .
Based on Eqs. (23) and (24), the divergence of the radiative flux, ∇ · qr , is given by

∇ · qr = ∇ · (Ls) = −μαL. (33)

Substituting Eq. (33) into the right-hand side of Eq. (28) yields∑
e∈Th
i∈e

∫
e

( − ∇ · qr
)
hNi(x)dx =

∑
e∈Th
i∈e

∫
e

(
μα(T )L

)
hNi(x)dx. (34)

3.4. Embedded boundary method

In general, the fluid mesh �h does not contain a subset of nodes, edges, and elements that resolve the boundary of 
�L or the laser propagation directions s(x). To handle this issue, an embedded boundary method is applied. We divide the 
boundaries of �L into three parts, namely the source boundary (�LS ), the far-field boundary (�LF ), and the side boundary 
(�LG ) (Fig. 2). All of them can be embedded in the fluid mesh. The embedded boundary method can also be divided into 
three parts, as shown in Algorithms 1-1, 1-2, and 1-3.

First, we construct a label function L to identify whether the laser radiance at a node has been computed. Let Li denote 
the label of node ni , which can be 0 or 1. At each time step, we initialize L as follows.

Li =
{
1, xi ∈ �L,

0, otherwise,
(35)

where xi denotes the coordinates of node ni . This is shown as Step 1 in Algorithm 1-1.

Algorithm 1-1: Embedded Boundary Method, Part I: Imposing the source condition.
1 Step 1: Initialize the label function L
2 for ∀ni ∈ �h do
3 Li ← 1, xi ∈ �L

4 Li ← 0, xi /∈ �L

5 end
6 Step 2: Embed the source boundary �LS

7 Ns ← {nk ∈ �h
∣∣ xk ∈ �LS }, where xk is the coordinates of node nk

8 for ∀ni ∈Ns do
9 if Gaussian beam then

10 Li ← 2P0

πw2
0

exp
(

− 2r2i
w2

0

)
(Eq. (25))

11 else
12 Li ← Lc � Lc is a constant value for the radiance of the laser source
13 end
14 Li ← 1
15 end
9
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For the source boundary �LS , we consider a small region surrounding �LS to be the laser source region. This region is 
defined by

�LS = {x ∈ �
∣∣ B(x,ds) ∩ �LS �= ∅}, (36)

where ds is a small distance comparable to the characteristic element size of �h , and B(x, ds) denotes the ball centered at 
x with radius ds . All the nodes within �LS are identified and stored in a set, Ns . For any node ni ∈ Ns , the laser radiance 
Li is computed using the source condition, e.g., Eq. (25) for a Gaussian beam. Then, we set the label Li = 1. This is Step 2 
in Algorithm 1-1.

To embed the side and far-field boundaries, we define the set of ghost nodes, NG , to include the first layer of nodes 
outside �L whose label is still 0. For any ghost node ni ∈ NG , its projection point on ∂�L , denoted by g i , is defined to be 
the nearest point on �LF ∪ �LG , i.e.

g i = argmin
x∈�LF ∪�LG

‖x− xi‖2. (37)

We store the ghost nodes whose projection points are on �LF in set N f , which corresponds to the far-field boundary. 
The others are stored in another set, Ng , which corresponds to the side boundary. This is shown as Step 3 in Algorithm 1-2. 
Thus, we have

N f ∪Ng = NG , N f ∩Ng = ∅. (38)

For the far-field boundary �LF , we use a constant extrapolation method to populate the corresponding ghost nodes. For 
any node ni ∈ N f , the radiance Li is set to be the same as its nearest neighbor within �L . Then, the label Li is set to 1. 
This is Step 4 in Algorithm 1-2. In practice, the far-field boundary should be sufficiently far from the laser source such that 
the radiance there is very low. Therefore, performing constant extrapolation near this boundary will have minimal effect on 
the overall solution accuracy.

Algorithm 1-2: Embedded Boundary Method, Part II: Identify ghost nodes.
17 Step 3: Identify ghost nodes
18 NG ← {nk ∈ �h

∣∣ Lk = 0 & ∃n j ∈ Nei(nk), x j ∈ �L}
19 for ∀ni ∈NG do
20 Find g i = argminx∈�LF ∪�LG

‖x− xi‖2
21 end
22 N f ← {nk ∈NG

∣∣ gk ∈ �LF }
23 Ng ← {nk ∈NG

∣∣ gk ∈ �LG }
24 Step 4: Embed the far-field boundary �LF

25 for ∀ni ∈N f do
26 Li ← L j , with x j = argminnk∈�L

‖xk − xi‖2
27 Li ← 1
28 end

For the side boundary �LG , we populate the corresponding ghost nodes to enforce a symmetric boundary condition, as 
shown in Step 5 in Algorithm 1-3. This ensures that there are no radiative fluxes crossing the side boundary, i.e.

∇L(x) · n = 0, x ∈ �LG , (39)

where n is the outward unit normal of �LG . To enforce this boundary condition, a mirroring method is used. We define the 
image point pi for any ghost node ni ∈ Ng as

xpi = 2g i − xi, (40)

as shown on Lines 31 − 33 in Algorithm 1-3. Then, a linear interpolation method is applied to compute the radiance at xpi . 
In two-dimension (2D), there are three possibilities for the position of pi .

(a) If xpi coincides with the position of a node within �L , the radiance at the image is set to the radiance at this node.
(b) If xpi is on an edge of an element, the radiance is computed by linear interpolation along this edge.
(c) If xpi is inside an element, which must have at least one vertex within �L , the radiance at the image is computed by 

linear interpolation within this element.

Thus, the radiance at xpi is given by

L(xpi ) =

⎧⎪⎨⎪⎩
L j, if xpi = x j, x j ∈ �L

fl(L j, Lk), if xpi ∈ ∂e jk

f (L , L , L ), if x ∈ e

, (41)
l j k l pi jkl

10
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where fl denotes the linear interpolation function. ∂e jk denotes an edge that connects nodes n j and nk . e jkl denotes an 
element, assumed to be a triangle, that has n j , nk , and nl as vertices.

This interpolation method can be easily extended to the three-dimensional (3D) case by including a new scenario in 
which the image point is inside a 3D element. For meshes that contain non-simplex elements, we recommend that the 
non-simplex elements first be divided into simplices (see the remark at the end of Sec. 3.4.1).

Next, the radiance at ghost node ni is computed by

Li = L(xpi ), (42)

and we set the label Li = 1.
By Eqs. (37), (40), and (42), the symmetric boundary condition (Eq. (39)) is enforced on the side boundary of �L .

Algorithm 1-3: Embedded Boundary Method, Part III: Mirroring and interpolation.
30 Step 5: Embed the side boundary �LG

31 for ∀ni ∈Ng do
32 xpi ← 2g i − xi
33 end
34 while ∃ ni ∈Ng , Li = 0 do
35 for ni ∈Ng do
36 if Li = 0 then
37 if xpi = x j then
38 L(xpi ) ← L j

39 else if xpi ∈ ∂e jk then
40 L(xpi ) ← fl(L j , Lk)
41 if ∃no ∈ {n j , nk}, xo �= xi &Lo = 0 then
42 continue
43 end
44 else
45 L(xpi ) ← fl(L j , Lk, Ll), with {n j , nk, nl} being the vertices of element e jkl

46 if ∃no ∈ {n j , nk, nl}, xo �= xi &Lo = 0 then
47 continue
48 end
49 end
50 Li ← L(xpi )
51 Li ← 1
52 end
53 end
54 end

It should be noted that when populating ghost nodes, the interpolation may involve other ghost nodes within the same 
element that have not been populated yet. This means the equations in the second and third cases of Eq. (41) may be 
under-determined. Therefore, we need to keep iterating over all ghost nodes with label L = 0. This is performed using the
while loop in Algorithm 1-3.

3.4.1. Existence and uniqueness of solution
The mirroring and interpolation method described above has been employed in embedded/immersed boundary methods 

for solving fluid-structure interaction problems [40–44]. It should be noted that for an arbitrary surface embedded in a 
discretized spatial domain, Algorithm 1 may involve ambiguity or an infinite loop, which essentially means the solution of 
laser radiance at ghost nodes may either not exist, or be not unique. Fig. 5 shows two examples in 2D. Sub-figure (a) shows 
that when the subdomain enclosed by the embedded boundary is not convex, the image of a node may not be uniquely 
defined. In this scenario, Algorithm 1-2 would break at Line 20 due to ambiguity. Also, the while loop in Algorithm 1-3
may never terminate due to the existence of interdependent ghost nodes that cannot be populated. Sub-figure (b) shows 
that even if the embedded body is convex, the while loop may still be an infinite loop.

Nonetheless, because of the directionality of laser, the embedded laser radiation subdomain, �L , is either a cylinder or 
a truncated cone (Fig. 2). Therefore, the image of any ghost node is uniquely defined by Eqs. (37) and (40). Next, we prove 
the existence of solution by showing that the while loop in Algorithm 1-3 cannot be an infinite loop. For this purpose, we 
assume that �h is reasonably fine, such that the diameter of any transverse cross-section of �L is greater than two times 
the maximum size of the elements in �h that intersect this cross-section. Moreover, we assume that all the elements in �h

are simplices. Other types of elements can always be divided into simplices.

Proposition 1 (Existence of solution). Under the conditions described above, Algorithm 1 terminates (i.e. Li = 1, ∀ni ∈ Ng ) after a 
finite number of iterations.
11
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Fig. 5. Two examples in 2D showing that for an arbitrary boundary embedded in a mesh, the mirroring and interpolation method described in Algorithm 
1 may involve ambiguity or an infinite loop. In example (a), the image of node n5 is not uniquely defined due to a non-convex embedded body. Also, Li , 
1 ≤ i ≤ 5 will remain 0, preventing the while loop from termination. In example (b), L1 and L2 will remain 0, leading to an infinite while loop.

Fig. 6. Illustration of the proof (by contradiction) of Proposition 1 in 2D.

Proof. (For the 2D case.) We prove the proposition in 2D by contradiction, using some basic graph theory. If Algorithm 1
does not terminate after a finite number of iterations, there must be a set of ghost nodes for which the label function L
remains 0. Let Ñ ⊂ Ng denote this set. We show by contradiction that Ñ = ∅.

Because of Steps 3 and 4 in Algorithm 1-2, the projection of any node in Ñ on ∂�L must be on the side boundary, 
which in 2D means the upper or lower boundary. Let Ñ(u) and Ñ(l) be the set of ghost nodes in Ñ whose projection point 
is on the upper and lower boundary, respectively. Hence, Ñ = Ñ(l) ∪ Ñ(u) . If Ñ �= ∅, at least one of Ñ(u) and Ñ(l) is not 
empty.

Assume Ñ(u) �= ∅. For any node ni ∈ Ñ(u) , let ei ∈ �h denote the element in �h that contains the image point, pi . 
Among the vertices of ei , at least one of them must be a node in Ñ , and is not ni . Otherwise, in Line 45 of Algorithm 1, 
ni would have been populated, leading to Li = 1. The mesh resolution condition mentioned above further ensures that this 
node must be within Ñ(u) . We refer to this node as a patron of ni . For example, in Fig. 6, n2 is a patron of n1; n3 and n4

are patrons of n2. In other words, each node in Ñ(u) must have at least one patron in Ñ(u) . Because all the elements in �h

are triangles (and hence convex), if n j is a patron of ni , the line segment pin j is entirely covered by element ei .
Now, we define a directed graph G(Ñ(u), E), using Ñ(u) as the set of vertices/nodes. The set of edges, E, comprises all 

the patronages within Ñ(u) , i.e.

E = {(ni,n j) | ni,n j ∈ Ñ(u),n j is a patron of ni}. (43)

Because each node in Ñ(u) has at least one patron, the outdegree of each node is at least 1. We apply a basic theorem in 
graph theory: a directed graph in which every vertex has outdegree greater than or equal to 1 contains a directed cycle [61]. 
Let sequence

C = {ns,ns+1, · · · ,ns+k,ns} ⊂ Ñ(u) (44)

denote the shortest directed cycle in G. If G has multiple directed cycles of the minimum length, let C be any of them. 
Because the elements in mesh �h are triangles, it is not possible for two nodes in Ñ(u) to be a patron of each other. 
Therefore, G cannot have any multiple edge. Obviously, it cannot have any self-loop either. Therefore, the length of C is 
12
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Fig. 7. An example in 2D showing that even if the embedded boundary is a straight line, the mirroring and interpolation method described in Algorithm 1
may still involve an infinite loop if the mesh has a non-simplex element. In this example, L1 and L2 will remain 0.

at least 3, i.e. k ≥ 2 in (44). For each pair of nodes ns+i , ns+ j (i < j) in C, the corresponding elements es+i , es+ j must be 
different. Otherwise, {ns, · · · , ns+i, ns+ j+1, · · · , ns+k, ns} would be a shorter directed cycle.

In the following, we show that because the upper boundary of �L is a straight line, a cycle like C cannot exist.
First, any two of the line segments

psns+1, ps+1ns+2, · · · , ps+kns

cannot intersect. Otherwise, the two different elements in mesh �h that cover them would have to intersect and overlap.
Without loss of generality, let ns be the node in C that is closest to the laser source, as shown in Fig. 6. Let point q

be the intersection of nsps and the upper boundary of �L , i.e. the projection point of ns . The line segment ps+kns must 
cross the upper boundary of �L at a point that is farther from the laser source than q.2 Let r denote this point, as shown 
in Fig. 6.

All the other nodes in C, namely ns+1, · · · , ns+k−1, must be located within the triangle defined by ns , q, and r as 
vertices. In Fig. 6, this triangle is shown as the gray, shaded area. Otherwise, if ns+i is the first node in the sequence that is 
located outside of the triangle, then ps+i−1ns+i would intersect ps+kns .

Because ns+k−1 is inside the triangle, while ns+k is outside and to the right, ps+k−1ns+k has to intersect ps+kns , which 
contradicts the statement above highlighted in italic text. Therefore, Ñ(u) = ∅.

In the same way, we can prove Ñ(l) = ∅. Hence, Ñ = Ñ(u)
⋃

Ñ(l) = ∅ �
Remark. One of the conditions of the proposition is that all the elements in �h are simplices. Fig. 7 shows that when a 
2D unstructured mesh has a quadrangle element, Algorithm 1 may not terminate due to an infinite loop. As recommended 
in Sec. 3.4, for non-Cartesian meshes, any non-simplex elements may be divided into simplices when updating the laser 
radiance at ghost nodes.

3.4.2. Order-of-accuracy analysis
The laser radiation equation, Eq. (23), can be written as

R(L) ≡ ∇ · (Ls) + μα(T )L = 0. (45)

Similarly, its finite volume discretization, (30), can be written as

Rh(L) ≡ 1

‖Ci ‖
∑

j∈Nei(i)

Aij Li j(si j · ni j) + μα(Ti)Li = 0, (46)

where Li j is calculated using the mean flux method, Eq. (31).
Let ̃L(x) denote the solution of Eq. (45). We show that for a uniform Cartesian grid,

Rh (̃L) = (1 − 2α)Ch + O (h2) (47)

at each node within �L . Here, h denotes the character size of the control volume. In other words, the mean flux method is 
second-order accurate if α = 0.5.

For simplicity of notation, we consider the 2D case. For an arbitrary node ni, j inside �L , let Li, j denote the numerical 
solution at this node, which is also the center of control volume Ci, j . Therefore,

2 If there are multiple nodes in C that have the same, smallest distance to the laser source, at least one of them satisfies the requirement. Let that one 
be ns .
13
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Fig. 8. 2D illustration of the finite volume method for the order-of-accuracy analysis.

Rh(Li, j) = 1

�x
(cos θi+ 1

2 , j Li+ 1
2 , j − cos θi− 1

2 , j Li− 1
2 , j) + 1

�y
(sin θi, j+ 1

2
Li, j+ 1

2
− sin θi, j− 1

2
Li, j− 1

2
)

+ μα(i, j)Li, j = 0,
(48)

where �x and �y denote the width of Ci, j in x and y directions, respectively. θ denotes the angle between s and the x
axis, and its subscript indicates the position where it is evaluated (Fig. 8).

Substituting Eq. (31) into Eq. (48) yields

Rh(Li, j) = 1

�x
(cos θi+ 1

2 , j(αLi, j + (1− α)Li+1, j) − cos θi− 1
2 , j(αLi−1, j + (1 − α)Li, j))

+ 1

�y
(sin θi, j+ 1

2
(αLi, j + (1− α)Li, j+1) − sin θi, j− 1

2
(αLi, j−1 + (1 − α)Li, j))

+ μα(i, j)Li, j = 0.

(49)

Substituting the exact solution ̃L(xi, j) into Eq. (49) yields

Rh (̃L(xi, j)) = 1

�x
(cos θi+ 1

2 , j(α L̃(xi, j) + (1 − α)̃L(xi+1, j)) − cos θi− 1
2 , j(α L̃(xi−1, j) + (1− α)̃L(xi, j)))

+ 1

�y
(sin θi, j+ 1

2
(α L̃(xi, j) + (1 − α)̃L(xi, j+1)) − sin θi, j− 1

2
(α L̃(xi, j−1) + (1− α)̃L(xi, j)))

+ μα(i, j)̃L(xi, j).

(50)

Expanding ̃L and θ about xi, j gives

Rh (̃L(xi, j)) =(
cos θi, j

∂ L̃

∂x
+ sin θi, j

∂ L̃

∂ y

) + L̃(xi, j)
(
cos θi, j

∂θ

∂ y
− sin θi, j

∂θ

∂x

) + μα(i, j)̃L(xi, j)

+ 1

2
(1− 2α)

(
cos θi, j�x

∂ 2̃L

∂x2
+ sin θi, j�y

∂ 2̃L

∂ y2
)

+ 1

2
(1− 2α)

(
�y cos θi, j

∂ L̃

∂ y

∂θ

∂ y
− �x sin θi, j

∂ L̃

∂x

∂θ

∂x

) + O (�x2,�y2),

(51)

where all the derivatives are computed at xi, j . By Eq. (45),(
cos θi, j

∂ L̃

∂x
+ sin θi, j

∂ L̃

∂ y

) + L̃(xi, j)
(
cos θi, j

∂θ

∂ y
− sin θi, j

∂θ

∂x

) + μα(i, j)̃L(xi, j) = R(̃L(xi, j)) = 0. (52)

Substituting Eq. (52) into Eq. (51) yields

Rh (̃L(xi, j)) = 1

2
(1 − 2α)

(
cos θi, j�x

∂ 2̃L

∂x2
+ sin θi, j�y

∂ 2̃L

∂ y2
+ cos θi, j�y

∂ L̃

∂ y

∂θ

∂ y
− sin θi, j�x

∂ L̃

∂x

∂θ

∂x

)
+ O (h2),

(53)

where h = max(�x, �y). �
If ni, j is near the side boundary of �L , some of its neighbors (i.e. ni±1, j , ni, j±1) may be ghost nodes. As an example, 

assume ni, j+1 is a ghost node. Based on Algorithm 1-3, the radiance at ni, j+1 is computed using the embedded boundary 
method, i.e.
14
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Li, j+1 =
nk∑
k=1

wkLk, (54)

where nk denotes the number of vertices of the element that contains the image of node ni, j+1. wk is the weight associated 
with vertex k in linear interpolation. Thus, we have

Li, j+1 = L̃(xpi, j+1) + O (h2), (55)

where xpi, j+1 is the coordinates of the image of node ni, j+1. Therefore, the embedded boundary method updates the values 
of L at ghost nodes up to second-order accuracy, which is equivalent to a first-order approximation of the symmetry 
boundary condition, Eq. (39).

Remarks.

• The analysis above can be easily extended to 3D, giving the same orders of accuracy for the finite volume method and 
the embedded boundary method.

• The analysis above assumes a Cartesian grid. In Section 4.1, we present a numerical order-of-accuracy analysis for 2D 
unstructured meshes. The results obtained from the numerical analysis are consistent with the findings obtained here.

3.5. Phase transition

The method of latent heat reservoir described in Sec. 2.4 is implemented in the coupled laser-fluid computational frame-
work. At the end of each time step, for each control volume Ci in �L ∩ �0, the liquid temperature Ti is obtained by Eq. (6). 
We compare it with Tvap , and there are three possibilities.

(a) If Ti ≤ Tvap and �i = 0, no additional actions are taken.
(b) If Ti ≤ Tvap and �i > 0, we use the latent heat stored here (i.e. �i) to increase the local temperature up to Tvap . 

Specifically, let e = evap be the solution of

T (ρi, e) = Tvap . (56)

We update �i and ei as follows.

�i = �i −min(evap − ei, �i), (57)

ei = ei +min(evap − ei, �i). (58)

(c) If Ti > Tvap , we reduce Ti to Tvap , and move the excessive heat to the latent heat reservoir, �i . Again, we solve Eq. (56)
to obtain evap . Then, �i and ei are updated by

�i = �i + (ei − evap), (59)

ei = ei − (ei − evap) = evap . (60)

Next, we compare �i and l to determine if phase transition should occur at node ni . If �i ≥ l, this control volume undergoes 
phase transition. The phase identification number Ii is changed to be 1, which identifies the vapor phase. The density ρi
and velocity V i in Ci remain unchanged. �i is added to the enthalpy of the vapor, and the internal energy is updated by 
Eq. (26).

If �i < l, but Ci undergoes phase change due to the motion of the liquid-vapor interface, the stored energy �i is added 
to the internal energy, ei .

4. Numerical experiments

4.1. Verification of the laser radiation solver

We present three test cases to assess the convergence and order of accuracy of the laser radiation solver, including the 
mean flux method presented in Sec. 3.3 and the embedded boundary method presented in Sec. 3.4.

Fig. 9 shows the setup of these test cases. In all the cases, a parallel Gaussian laser beam with power P0 = 560 W is 
imposed. The use of a parallel beam allows us to derive the exact solution of the problem in closed-form expression. The 
laser source is placed at x = 0 mm, with a radius of 0.3 mm (i.e. −0.3 mm ≤ y ≤ 0.3 mm). The computational domain, �, 
has a length of 1.7 mm and a radius of 0.5 mm. Therefore, the upper and lower boundaries of the laser radiation domain, 
�L , are embedded in �. In Tests 1 and 2, the entire computational domain is assumed to be filled with liquid water, with 
laser absorption coefficient μα = 2.42 mm−1 [13]. The waist radius of the laser beam (w0) is set to 0.15 mm in Test 1
15
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Fig. 9. Problem setup for the verification of the laser radiation solver.

Table 1
Meshes for the verification of the laser radiation solver.

Mesh Characteristic 
edge length (mm)

Edge length variation Number 
of nodes

Number 
of elements

Max (mm) Min (mm)

1 0.025 0.0330 0.0188 1535 2892

2 0.0125 0.0161 0.0094 5974 11594

3 0.00625 0.0086 0.0047 23582 46458

4 0.003125 0.0046 0.0022 92083 182756

5 0.0015625 0.0025 0.00097 355091 707364

6 0.00078125 0.0012 0.00048 1399305 2793066

and 0.35 mm in Test 2. Therefore, the numerical result obtained from Test 2 would be more sensitive to errors induced by 
the embedded boundary method. In Test 3, the waist radius is set to be the same as in Test 2. In addition, we introduce a 
bubble within �L with a radius of 0.2 mm. The fluid inside the bubble is assumed to be water vapor, with a laser absorption 
coefficient of 0.

Six unstructured triangular meshes with different resolutions are generated to discretize the computational domain, �. 
The number of elements increases from 2, 892 in Mesh 1 to 2, 793, 066 in Mesh 6. Because these meshes are not uniform, 
the edges in each mesh do not have the same length. The characteristic edge length varies from 2.5 × 10−2 mm in Mesh 1
to 7.8125 × 10−4 mm in Mesh 6. Additional information about these meshes are presented in Table 1.

For each test case, different values of α (see Eq. (31)) between 0.5 and 1 are tested. For each value of α, six simulations 
are performed using the six different meshes. The numerical solutions of laser radiance (L) obtained with α = 0.5 using the 
finest mesh are shown in Fig. 10. The laser radiance in Test 1 has a higher peak value than that in Test 2, and is also more 
focused. This can be explained by the difference in waist radius between the two test cases. In Test 3, the laser radiance 
remains constant within the bubble along the laser’s propagation direction. This is because the laser absorption coefficient 
is set to 0 inside the bubble. In Tests 2 and 3, the laser radiance on the side boundary of �L is clearly non-zero, and has 
a large gradient in the normal direction. Therefore, the embedded boundary method plays a significant role in these two 
cases.

To assess the convergence and order of accuracy of the numerical methods, we compare the numerical solutions with 
the exact solutions at three sensor points. The locations of these sensor points are marked in Fig. 9. Their coordinates (in 
mm) are x1 : (0.1, 0.05), x2 : (0.4, 0.15) and x3 : (0.8, 0.25), respectively. Specifically, Sensor 1 is close to the laser source, 
in the upstream direction of the bubble (in Test 3). Sensor 2 is placed inside the bubble, and Sensor 3 near the (embedded) 
upper boundary of �L .

At each sensor, the relative error is computed by

e(xi) = |L(xi) − L̃(xi)|
L̃(xi)

, i = 1,2,3, (61)

where L(xi) is the numerical solution at xi , calculated by linearly interpolating the simulation results within the element 
that contains the point. For the parallel beam used in these cases, the exact solution of laser radiance at these sensor points 
are given by
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Fig. 10. Numerical solution of laser radiance (unit: g/s3) obtained using the finest mesh. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)⎧⎪⎨⎪⎩

L̃(xi) = L̃(xsi )exp(−μα |xi − xsi |), i = 1,3,

L̃(x2) =
{̃
L(xs2)exp(−μα |x2 − xs2 |), Tests 1 and 2,

L̃(xs2)exp(−μα |xb2 − xs2 |), Test 3,

(62)

where xsi , i = 1, 2, 3 is the projection point of xi on the laser source plane, and the radiance there can be calculated by 
Eq. (25). xb2 is the left intersection point between the laser beam that passes through x2 and the bubble surface.

The relative errors at the three sensor points are shown in Figs. 11, 12, and 13 for the three test cases, respectively. The 
horizontal axis is the characteristic mesh edge length, h, in a log scale. The vertical axis shows the relative error, e, also in 
a log scale. Therefore, the slope of the straight lines that fit the errors obtained with different meshes gives the order of 
accuracy obtained at each sensor point. For reference, straight lines with slopes 1 and 2 are also shown in each figure.

For Test 1 (Fig. 11), we observe a first-order convergence rate for α = 1.0 and a second-order convergence rate for 
α = 0.5 at all the three sensors. This is consistent with the analytical result derived in Sec. 3.4 (cf. Eq. (47)), despite that the 
derivation was performed for a Cartesian mesh, while the numerical tests employed unstructured triangular meshes. In Test 
2, and for α = 0.5, second-order accuracy is still obtained at all the sensors, including the one that is close to the embedded 
boundary, i.e. x3 (Fig. 12). This indicates that the embedded boundary method presented in Sec. 3.4 retains second-order 
accuracy in the interior of the laser radiation domain.

In Test 3, even with α = 0.5, we only observe a first-order convergence rate at the three sensor points (Fig. 13). A 
comparison with Test 2 suggests that this accuracy order reduction is caused by the discontinuity of solution at the bubble 
surface, which results from the discontinuity of the absorption coefficient, μα . It is noteworthy that when α = 0.5, the laser 
radiance at any node is influenced by neighbors in both upstream and downstream directions. Therefore, the errors made 
at the bubble surface also influence the order of accuracy at Sensor 1, which is in the upstream direction of the bubble.
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Fig. 11. Relative error in laser radiance at three sensor points: Test 1.

Fig. 12. Relative error in laser radiance at three sensor points: Test 2.

4.2. Verification of the level set equation solver

To verify the convergence of the numerical methods for solving the level set equation (Sec. 3.2), we present two bench-
mark problems that have been widely used in previous studies (e.g., [48,49]).

First, we apply the level set method to track a circle that undergoes large, vortex-induced distortion. The computa-
tional domain is defined by � = [0, 1] × [0, 1]. Initially, a circle with radius r = 0.15 is centered at (x, y) = (0.5, 0.75). 
A solenoidal velocity field is specified to deform the circle into a slender spiral tape, and then restore it to its original 
configuration. The velocity field is time-dependent, given by:{

u = 2 sin2(πx) sin(π y) cos(π y) cos(πt/t f ),
v = −2 sin(πx) cos(πx) sin2(π y) cos(πt/t f ),

(63)

where t f = 8.0 is the final time, when the circle returns to its original configuration.
This test problem is solved using three different methods, including

(a) the full-domain level set method without reinitialization,
(b) the full-domain level set method with reinitialization performed at every time step, and
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Fig. 13. Relative error in laser radiance at three sensor points: Test 3.

Fig. 14. Vortex-induced distortion of a circle: Numerical results obtained using (a) the full-domain level set method without reinitialization (left column), (b) 
the full-domain level set method with reinitialization after each time step (middle column), and (c) the narrow-band level set method with reinitialization
after each time step (right column). In each sub-figure, the red curve is the numerical solution of the zero level set. The blue curve is a reference solution 
generated using Method (a) on a 20482-cell mesh.

(c) the localized level set method (bandwidth: 10) with reinitialization performed at every time step.

All the three methods are tested on a 10242-cell mesh. To generate a reference solution, Method (a) is used to perform 
a simulation on a 20482-cell mesh. The numerical solutions at t = t f /2 and t = t f are visualized in Fig. 14.

At t = t f /2, the maximum distortion of the circle is reached. The 0 level set obtained by Method (a) agrees well with 
the reference solution. However, by examining the non-zero level sets, it is clear that the level set function φ is no longer a 
signed distance function. The 0 level sets obtained by Methods (b) and (c) are similar to each other. Overall, they are also 
in good agreement with the reference solution. But it is evident that the sharp end of the spiral-shaped surface is smeared 
(and hence shorter). Because of reinitialization, the level set function φ is maintained as a signed distance function in both 
cases. At t = t f , the 0 level set obtained by all the three methods matches well with the reference solution.
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Fig. 15. Rotation of a slotted disk: Numerical solutions obtained using two meshes (64 × 64 and 1024 × 1024) at three different time instants. In each 
sub-figure, the red curve marks the numerical solution of the 0 level set, i.e. the surface of the slotted disk. The blue curve shows the exact solution.

This benchmark problem shows that the localized level set method (i.e. Method (c)) provides similar accuracy compared 
to the full-domain level set method (i.e. Methods (a) and (b)). For problems involving laser-induced vaporization, the reini-
tialization of level set needs to be performed frequently in order to capture local phase transitions, which renders Method 
(a) unsuitable. Between Methods (b) and (c), the latter can be significantly faster in sequential computations, because it uses 
a smaller computational domain. Nonetheless, due to the possibility of load unbalance, this advantage may become less ob-
vious in parallel computations where some subdomains may be largely or entirely within the computation bandwidth. In 
subsequent numerical tests, Method (c) is used to solve the level set equation.

Next, the rotation of a slotted disk is simulated to assess the performance of the localized level set method in tracking 
sharp corners. The computational domain is a square, defined by � = [0, 100] × [0, 100]. A disk with radius r = 15 is 
initially placed in the upper part of �, centered at (x, y) = (50, 75). A 5 × 25 slot is cut out of the disk, thereby creating 
several sharp corners that make the problem challenging for implicit interface tracking methods. The slotted disk is forced 
to rotate about the center of � by a time-independent solenoidal velocity field, (u, v) = (π/314(50 − y), π/314(x − 50)). 
By design, the disk should return to its initial position at time t f = 628.

For this problem, the level set function is reinitializatized every 10 time steps. The results obtained using a 642-cell 
mesh and a 10242-cell mesh are shown in Fig. 15. Specifically, the solutions at three time instants, namely t f /3, 2t f /3 and 
t f , are plotted. The results on the coarser mesh show that the 0 level set matches the exact solution in the curved parts of 
the slotted disk. But the sharp corners are gradually smeared. However, with the mesh refined, the 0 level set converges to 
the exact solution at all the time instants.

4.3. Verification of level set reinitialization after phase transition

As described in Sec. 3.5, when local phase transitions are detected, we update the sign of φ to track the new liquid-
vapor interface, then restore it to a distance function by solving the reinitialization equation, Eq. (17). Here, we present one 
numerical test to demonstrate this method.

In this test, the computational domain is 3D, defined by � = [−0.5 mm, 0.5 mm] × [−0.5 mm, 0.5 mm] ×
[0 mm, 0.5 mm]. The boundary with z = 0 mm is set to be a symmetry boundary. Initially, the domain is assumed to 
be occupied entirely by the liquid phase, without a liquid-vapor interface. After one time step (3.45 × 10−9 s), a spherical 
region centered at the origin of the domain, with radius r = 0.1 mm, is assumed to undergo phase transition. In the second 
time step, at the nodes within the aforementioned spherical region, φ is set to a small negative value, comparable to the 
local element size. Then, the level set reinitialization equation is solved to convert φ into a signed-distance function.

This test problem is solved on four meshes with different resolutions, specifically, from 50 × 50 × 25 cells to 400 ×
400 × 200 cells. Fig. 16 shows the numerical result of φ at three stages, namely (a) before phase transition, (b) after phase 
transition, but before level set reinitialization, and (c) after level set reinitialization.
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Fig. 16. Reinitialization of the level set function after phase transition.

At Stage (a), there is only one phase, and the value of φ is a constant positive value in the entire domain. At Stage (b), φ
has the correct sign at every node, but it is not a signed distance function. At Stage (c), φ has both the correct sign and the 
correct absolute value that corresponds to the shorted distance from each node to the liquid-vapor interface. It can also be 
observed that as the mesh gets refined, the numerical solution of the 0 level set converges to a hemisphere, which is the 
true solution.

4.4. Laser-induced cavitation: a broad Gaussian beam

We apply the coupled laser-fluid solver presented in Fig. 3 and Sec. 3 to simulate the formation and expansion of 
a bubble induced by a broad Gaussian laser beam. Fig. 17 shows the setup of this problem. Specifically, we consider a 
cylindrical domain with a radius of 6 mm and a length of 12 mm, as shown in Fig. 17a. Initially, the domain is filled with 
water with density ρ0 = 0.001 g/mm3, velocity v0 = 0 mm/s, pressure p0 = 100 kPa, and temperature T0 = 273.15 K.

A Holmium:YAG laser with a wavelength of 2.12 × 10−3 mm is simulated. The laser source is placed at x = −0.5 mm, as 
shown in Fig. 17b. The radius of the laser fiber is set by r = 0.1825 mm, following the lab experiments presented in [14]. 
The beam is assumed to have a divergence of 7.5◦ . The spatial profile of laser radiance at the source is shown in Fig. 17c. A 
Gaussian distribution is assumed, with waist radius w0 = 0.12 mm. The temporal profile of the laser power (P0) is shown 
in Fig. 17d. Specifically, the power grows rapidly from 0 to 2.854 kW within 0.2 μs. This peak power is maintained for a 
period of 9.8 μs. Then, it vanishes rapidly within 0.2 μs. The laser absorption coefficient, μα , is set to 2.42 mm−1 for liquid 
water [13] and 0.001 mm−1 for the vapor.

In this simulation, liquid water is modeled by the stiffened gas EOS with γ0 = 6.12 and pc0 = 343 MPa (see Eq. (4)), 
following [30]. Water vapor is modeled by the perfect gas EOS, with γ1 = 1.34 (Eq. (5)). The specific heat at constant 
pressure, cp , is set to 4.2 × 109 mm2/(s2K) for liquid water and 2.0 × 109 mm2/(s2K) for water vapor. The vaporization 
temperature and latent heat are set by Tvap = 373.15 K and l = 2256.4 J/g, respectively.

The simulation is carried out on a two-dimensional mesh, leveraging the cylindrical symmetry of the problem. The 
mesh is Cartesian, with approximately 338, 000 elements. In the most refined region, the characteristic element size is 
approximately 2.5 × 10−3 mm. To track the vapor bubble, the localized level set method is used with a bandwidth of 6
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Fig. 17. Cavitation induced by a broad Gaussian beam: Problem setup.

Fig. 18. Cavitation induced by a broad Gaussian beam: Laser radiance at different time instants.

elements on each side of the interface. A second-order Runge-Kutta method is used to advance both the fluid governing 
equations and the level set equation in time. The time step size is around 3 × 10−4 μs. The simulation is terminated at 
t = 50 μs. Results obtained from the simulation include the time-histories of the density, velocity, pressure, and temperature 
fields of the two-phase fluid flow, the level set function φ that tracks the liquid-vapor interface, and the laser radiance 
field.

Fig. 18 shows the result of laser radiance at twelve time instants during the simulation. The laser fiber is added to the 
images for ease of interpretation. It is not modeled in the simulation. The overall evolution of laser radiance is consistent 
with the temporal profile of laser power shown in Fig. 17d. More specifically, Sub-figures (1), (2), and (3) capture the 
rapid ramp-up of laser power in the first 0.2 μs. Because of the absorption by water, laser radiance decreases along the 
propagation direction. In Sub-figures (3) to (5), the laser radiance field remains the same, because the source power is 
constant during this time interval. At 4.8 μs, vaporization occurs, as a small bubble appears in front of the laser fiber. This 
bubble can be observed clearly in the inset image in Sub-figure (6). Sub-figures (7) to (10) capture the initial expansion of 
the vapor bubble, caused by the high internal pressure. It can be observed that laser radiance decreases much slower inside 
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Fig. 19. Cavitation induced by a broad Gaussian beam: Temperature field at different time instants.

the bubble, due to the lower absorption coefficient. For example, in Sub-figures (5) and (10), the laser source power is the 
same. Nonetheless, the hot zone (i.e. the region with high radiance) is clearly longer in the latter. In other words, the bubble 
has created a channel that allows laser energy to be delivered further. This phenomenon is sometimes referred to as the 
Moses effect [14,21,50,51].

Fig. 19 presents the temperature field at twelve time instants, showing the absorption of laser by the liquid and the 
resulting vaporization. In Sub-figures (1), (2), and (3), it is clear that water temperature is highest at the tip of the laser 
fiber, along its central axis. The temperature decreases in radial directions due to the Gaussian beam profile. It also decreases 
in the axial direction, for which there are two reasons. First, the absorption of laser by water leads to the decay of laser 
radiance in the axial direction. Second, the laser beam used in this simulation has a 7.5◦ divergence angle. At around 1.5 μs, 
the specified vaporization temperature, Tvap, is reached at the tip of the laser fiber, which appears as a yellow region in 
Sub-figure (3). The temperature in this region remains constant until 4.8 μs, when vaporization occurs. During this time, 
the absorbed laser energy is used to overcome the intermolecular bonds in liquid water. In the simulation, it is stored in 
the latent heat reservoir (�) described in Sec. 3.5. Meanwhile, the region where Tvap has been reached expands in both 
axial and radial directions. At 4.8 μs (Sub-figure (10)), the latent heat of vaporization has been accumulated at the tip of the 
laser fiber. At this point, phase transition occurs, and the latent heat is converted into the enthalpy of the vapor phase. As 
a result, the vapor bubble has a high internal pressure. The pressure jump across the bubble surface leads to the emission 
of a shock wave, which can be seen in Sub-figures (11) and (12).

Fig. 20 presents the pressure field at sixteen time instants between 0 and 50 μs. The formation and expansion of the 
vapor bubble are both captured in these images. Sub-figure (1) is taken at the same time as Fig. 19(1), which shows the 
rapid increase of thermodynamic pressure due to the absorption of laser energy. An outgoing shock wave is emitted from 
the high pressure zone, which is captured in Sub-figure(2). Subsequently, Sub-figures (3) and (4) show that as the shock 
wave travels outward, the pressure in front of the laser fiber decreases. Sub-figure (5) is taken at the time when vaporization 
occurs. The sudden release of latent heat leads to a dramatic increase of pressure inside the vapor bubble, exceeding 108 Pa. 
The pressure outside the bubble is less than 105 Pa. This significant pressure jump leads to the emission of an outgoing 
shock wave, captured in Sub-figures (6), (7), and (8). The pressure jump also propels the bubble to expand, which is captured 
in Sub-figures (6) through (16). At 50 μs (Sub-figure (16)), the bubble evolves into a teardrop shape around the central axis 
of the laser beam.

The velocity field at the same time instants is visualized in Fig. 21. In Sub-figures (1) through (4), it can be observed that 
due to the absorption of laser energy, the water in front of the laser fiber flows outward. From Sub-figure (2) to (4), the 
velocity decreases gradually, as the laser radiance stops growing. After the formation of vapor bubble, the velocity around 
the bubble surface increases dramatically, which reflects the bubble’s expansion. Notably, the magnitude of fluid velocity 
is higher at the front of the bubble (i.e. the 3 o’clock direction in the images) compared to other regions. This difference 
gradually drives the bubble to grow into a teardrop shape. The same shape has been observed in laboratory experiments. 
For example, Fig. 22 shows the setup of an experiment using the same type of laser, as well as a bubble image captured by 
high-speed photography [14].
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Fig. 20. Cavitation induced by a broad Gaussian beam: Pressure field at different time instants.

Fig. 21. Cavitation induced by a broad Gaussian beam: Velocity field at different time instants.
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Fig. 22. A teardrop-shaped vapor bubble observed in a laboratory experiment of laser-induced cavitation [14].

Fig. 23. Cavitation induced by a narrow Gaussian beam: Problem setup. (a) Geometry of the laser radiation domain. (b) Spatial profile of laser radiance (at 
peak power).

4.5. Laser-induced cavitation: a narrow Gaussian beam

To demonstrate the potential use of the computational method for parametric studies, we simulate cavitation induced by 
a narrower laser beam. The same setup described in Sec. 4.4 is adopted, except that the waist radius of the Gaussian beam 
is reduced by a factor of 2 to 0.06 mm, and the angle of divergence is reduced to 0◦ (Fig. 23).

Fig. 24 shows the laser radiance field at twelve time instants. In comparison with Fig. 18, the laser beam is clearly 
narrower. Also, the maximum radiance, which is achieved along the central axis of the beam, is higher compared to the 
previous case. In this case, vaporization starts at 1.3 μs, much earlier than in the previous case. This moment is captured 
by Sub-figure (5). After this time, vaporization continues in the axial direction. Therefore, the evolution of the vapor bubble 
is driven both by the high pressure inside the bubble and the continuous phase transition. This is another major difference 
from the previous case. In Sub-figures (6) through (12), it can be observed that the bubble gradually grows into an elongated, 
conical shape. Because of the elongated bubble, the Moses effect is more significant in this case, as shown in Sub-figures 
(7) through (10).

Fig. 25 shows the temperature field at twelve time instants. Compared with the previous case (Fig. 19), several differences 
are clearly evident. First, the temperature around the central axis of the laser beam rises at a higher speed. As a result, the 
vaporization temperature, Tvap, is reached at 0.4 μs, earlier than 1.5 μs in the previous case. Also, the latent heat required 
for vaporization is also achieved at an earlier time, that is, 1.3 μs versus 4.8 μs. The expansion of the initial bubble is slower 
than the increase of internal energy in front of the bubble. Therefore, vaporization continues in the axial direction, which 
leads to an elongated bubble.

Fig. 26 shows the pressure field at sixteen time instants. Up to the time of vaporization (i.e. 1.3 μs), the main features 
exhibited in the pressure field are similar to those observed in the previous case. In particular, an outward going shock 
wave is captured in Sub-figures (1)-(4). Sub-figure(4) is taken at the time of vaporization, when a small, high pressure 
bubble appears right in front of the laser fiber. The shock wave induced by the pressure jump across bubble surface is 
captured in Sub-figure (5). A major difference from the previous case (cf. Fig. 20) is that the continuation of vaporization in 
the axial direction leads to the emission of new shock waves at the tip of the bubble. These shock waves are captured in 
Sub-figures (6) through (10). At 10.2 μs, laser radiation stops. Afterwards, vaporization also stops, and the bubble continues 
to grow due to the inertial effect. At the end of the simulation (50 μs), an elongated bubble is observed. This type of 
elongated bubbles have also been captured in laboratory experiments using high-speed photography. For example, see Fig. 2 
in [19] and Fig. 7 in [21].
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Fig. 24. Cavitation induced by a narrow Gaussian beam: Laser radiance at different time instants.

Fig. 25. Cavitation induced by a narrow Gaussian beam: Temperature field at different time instants.

Fig. 27 presents the velocity field at the same time instants as in Fig. 26. As expected, high velocity can be observed 
around and within the elongated vapor bubble. Notably, the velocity is not much higher at the tip of the bubble (i.e. the 3
o’clock direction) than in other regions (e.g., the upper and lower sides). This indicates that the bubble’s elongation in the 
axial direction is primarily driven by the continuation of vaporization.

5. Summary

A computational method for simulating cavitation induced by long-pulsed laser is presented. The definition of “long-
pulsed” varies for different laser technologies and applications. In this paper, it refers to laser pulses with a duration that 
is comparable to or longer than the acoustic time scale. In this context, the processes of laser radiation, phase transition 
(i.e. vaporization), and bubble/fluid dynamics overlap both in time and in space. The computational method is designed to 
simulate these processes simultaneously using a physical model that accounts for their dependencies (Fig. 3).
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Fig. 26. Cavitation induced by a narrow Gaussian beam: Pressure field at different time instants.

Fig. 27. Cavitation induced by a narrow Gaussian beam: Velocity field at different time instants.
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An embedded boundary method is presented to couple the fluid dynamics equations with the laser radiation equation, 
allowing the latter to be solved on the same finite volume mesh constructed for the former. This mesh generally does not 
resolve the boundaries of the laser radiation domain. As a result, special treatments are needed to avoid spurious radiation 
fluxes across the side boundary of the laser radiation domain. The basic idea of the embedded boundary method is to set 
the laser radiance at selected nodes outside the laser domain (i.e. ghost nodes) to be equal to the linearly interpolated 
radiance values at their images inside the domain, thereby imposing a symmetry boundary condition. The existence and 
uniqueness of solution is proved for the 2D case, leveraging the special geometry of laser domains.

An implicit interface tracking method is presented to track the dynamics of the cavitation bubble(s). This method can 
be viewed as an extension of the conventional level set method that accounts for the formation and expansion of bubbles 
due to phase transitions. During a simulation, local vaporization is detected using a method of latent heat reservoir, which 
keeps track of the increase of intermolecular potential energy prior to phase transition. At any time step, if vaporization 
is detected at some nodes in the mesh, a level set reinitialization equation is solved to restore the level set function to a 
signed distance function with respect to the expanded vapor bubble.

Several numerical experiments are presented to demonstrate and assess the computational method. The convergence and 
accuracy properties of the numerical techniques are first assessed using simple academic problems. The predictive capability 
of the computational method is demonstrated using two realistic simulations. It is shown that even with relatively simple 
material models — perfect and stiffened gas EOS, linear temperature laws, constant vaporization temperature and latent 
heat — and without ad hoc calibration, the computational method is able to capture several important phenomena in laser-
induced cavitation, including non-spherical, beam-dependent bubble expansion (Figs. 21 and 27), shock waves (Figs. 20 and 
26), and the Moses effect (Figs. 18 and 24).
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