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Nested epistasis enhancer networks for robust

genome regulation
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Mammalian genomes have multiple enhancers spanning an ultralong distance (>megabases) to modulate
important genes, but it is unclear how these enhancers coordinate to achieve this task. We combine
multiplexed CRISPRi screening with machine learning to define quantitative enhancer-enhancer
interactions. We find that the ultralong distance enhancer network has a nested multilayer architecture
that confers functional robustness of gene expression. Experimental characterization reveals that
enhancer epistasis is maintained by three-dimensional chromosomal interactions and BRD4
condensation. Machine learning prediction of synergistic enhancers provides an effective strategy

to identify noncoding variant pairs associated with pathogenic genes in diseases beyond genome-wide
association studies analysis. Our work unveils nested epistasis enhancer networks, which can better
explain enhancer functions within cells and in diseases.

isease-associated genes, including onco-

genes, are frequently associated with

many remote enhancers spanning across

a long genomic distance [>megabases

(MDb)] (I-4). Genome-wide association
studies (GWAS) reveal that noncoding var-
iants of the regulatory elements, including
enhancers, account for >90% of variants in
diseases and can spread over a long distance
(5-8). Although individual enhancer variants
may present modest clinical risks (9) there
are examples showing that a combination of
multiple variants may greatly amplify the
effects in traits and diseases (10-12). Similar
to gene interactions (13), these enhancers may
interact as an epistatic network wherein the
effect of an enhancer is dependent on other
enhancers to regulate gene dosage and confer
robustness. Aside from these observations
it remains largely unknown why multiple
ultralong-distance enhancers exist for impor-
tant genes and how their interactions modu-
late gene regulation and diseases.

Enhancer interactions were previously studied
within a single enhancer cluster. For example,
super enhancers were defined as a dense cluster,
which contains adjacent enhancers within
tens of kilobases (kb) (14-16). Other enhancer
clusters similar to super enhancers were also
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reported including stretch enhancers and en-
hancer clusters (17, 18). A few examples by per-
turbing local enhancers within these enhancer
clusters showed they may interact additively or
synergistically for regulatory roles (19-25).
However, these short-range enhancers orga-
nized in a cluster cannot explain the preva-
lence of ultralong-distance enhancers in the
human genome.

It remains unknown how multiple enhancers
interact with one another over long genomic
distances to confer regulatory roles in gene
expression and disease risks. We hypothesize
that by using ultralong-distance enhancers
(>1Mb), disease-associated genes have evolved
high robustness to disruptive effects from
genetic variations. These interactions likely
occur through an elaborate network on the
three-dimensional (3D) genome organization
level.

High-resolution multiplexed perturbation of
enhancers reveals a nested two-layer
epistasis network

To gain insights into the ultralong-distance
enhancer network for disease-relevant genes,
we adopted a high-resolution approach to
quantitatively analyze enhancer interactions
in gene regulation. We chose the endogenous
MYClocus as a model system. As an important
oncogene governing cancer cell proliferation,
the MYC locus encompasses seven enhancers
(elto e7) spanning a 1.9-Mb region in K562
erythroleukemia cells (26). The reported linear
correlation between MYC expression and cellu-
lar growth supports its use as a model system
to quantitatively dissect the enhancer epistatic
network over ultralong distances (26, 27). We
conducted a multiplexed CRISPR interference
(CRISPRI) screen (28-30), using a pooled li-
brary consisting of 87,025 pairs of single guide
RNAs (sgRNAs) tiling all single and pairwise
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combinations of seven enhancers (Fig. 1A, fig.
S1, A and B, and table S1). We transduced the
pooled sgRNA library into K562 cells stably
expressing a doxycycline-inducible nuclease-
dead dCas9-KRAB fusion and cultured cells
for 30 doublings.

We calculated the depletion score of each
sgRNNA pair by comparing the relative abun-
dance before and after cell culture (Fig. 1A,
fig. S2, A and B, and table S2; see Methods).
Using the depletion scores to fit a linear addi-
tive model we calculated enhancer interaction
scores to identify epistasis interactions and
generated a high-density quantitative epistasis
map of enhancer-targeting sgRNAs (Fig. 1B
and fig. S2, C to E; see Methods). We confirmed
the epistasis interaction scores were reprodu-
cible across biological replicates and different
sgRINA pairs targeting the same enhancer pair
(fig. S2, F to I). We observed clusters of sgRNAs
targeting the same pairs of enhancers show-
ing similar patterns of synergistic or additive
interactions, suggesting an epistatic interaction
relationship between enhancer pairs (Fig. 1B
and figs. S2E and S3A).

We computed the epistasis interaction scores
for each enhancer pair by averaging the epista-
sis interaction scores of the top 25% sgRNA
pairs (Fig. 1C and fig. S3B; see Methods). We
observed synergistic epistasis when perturbing
distant enhancer pairs (>1 Mb), with all four
proximal enhancers (el to e4) showing strong
synergistic interactions with the other three
distant enhancers (e5 to €7) upon perturba-
tion. By contrast, perturbation of enhancer
pairs within the proximal or distant group
mostly showed additive interactions (Fig. 1C).

Our data suggested a nested two-layer ar-
chitecture of the enhancer epistasis network
in regulating genes with large-scale landscapes
(Fig. 1D). In the first layer (layer I), enhancer
pairs (<100 kb at the MYC locus) behave addi-
tively after perturbation, suggesting that indi-
vidual enhancers contribute independently to
gene expression. In the second layer (layer II),
distant enhancer pairs showed nonlinear syn-
ergistic effects after perturbation, which are
speculated to function as compensatory regu-
latory elements for one another to maintain
the robustness of gene expression upon per-
turbation. These synergistic enhancers are
distributed over long genomic distances, which
likely reduces the chance of co-mutation and
thus confers robustness of gene expression
against mutations or chromosome perturba-
tions. We define synergistic regulatory en-
hancers (SREs) as a pair of distant enhancers
with synergistic effects on gene expression
upon perturbation.

We experimentally validated SREs and non-
SRE pairs by examining whether they can
combinatorically perturb MYC expression and
cellular growth. Using different sgRINA pairs
targeting the same SREs (e3 and e7; e4 and
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Fig. 1. High-resolution multiplexed CRISPRi perturbation of ultralong-
distance enhancers at the MYC locus reveals a nested two-layer
epistasis network. (A) (Top) The MYC locus regulated by multiple enhancers
distributed over an ultralong distance (~1.9 Mb). (Bottom) Diagram showing
the multiplexed CRISPRi screening for high-resolution dissection of enhancer
interactions. K562 cells expressing the doxycycline (Dox)-inducible dCas9-
KRAB are transduced by a pooled sgRNA library targeting single or double MYC
enhancers. Cells are harvested to sequence the pairwise sgRNA enrichment
before and after 30 doublings. sgT, targeting sgRNA; sgC, control sgRNA.

(B) A quantitative epistasis map of sgRNA pairs targeting all enhancer
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combinations in the MYC locus. Each dot represents the epistasis interaction
score of a pair of sgRNAs smoothed by adjacent sgRNAs. (C) A quantitative
enhancer epistasis map at the MYC locus. (D) A nested two-layer model for the
enhancer epistasis network. (E and F) gRT-PCR of MYC mRNA expression

for perturbing SREs e3 and e7 or e4 and e7 (E), or non-SREs el and e4 or €5
and e7 (F). P = 0.02, 1.13 x 105, 0.13, 0.61, for e3 and e7, e4 and e7, el

and e4, e5 and e7, respectively. Data are represented as individual biological
replicates (dots) and the mean value (black bar). The purple area indicates
the expected additive effect by plotting mean + one standard derivation.

P values are calculated by t test.
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Fig. 2. A machine learning model for analyzing determinants of the SRE
synergy. (A) An elastic net regularized linear regression model for predicting
epistasis interaction scores. We selected features including the chromatin spatial
interaction (S;) and co-occupancy (COj) of 38 TFs and 8 HM profiles. (B) The
relative importance of each feature group for predicting epistasis interaction
scores. The representative feature has the highest correlation in that group

€7), we observed synergistically decreased MYC
expression as well as cell proliferation (Fig. 1E,
fig. S4, A to C, and table S1). In comparison,
inhibiting enhancers within the same proximal
or distant groups led to additive repression
effects (Fig. 1F and table S1).

We performed H3K9me3 and H3K27ac chro-
matin immunoprecipitation sequencing (ChIP-
seq) to characterize the resolution of using
dCas9-KRAB for enhancer perturbation. We
confirmed no spreading effects of KRAB on
adjacent enhancers (fig. S5, A and B, and fig.
S6, A and B). We also knocked out pairs of
enhancers by transducing sgRNAs to K562
cells that stably expressed the nuclease Cas9
(see Methods). We confirmed consistent syn-
ergistic and additive interactions between e3
and e7 and el and e4, respectively (fig. S7, A
and B). However, we also observed deletions of
large chromatin regions when knocking out
pairs of enhancers (fig. S7, C to F). This ob-
servation was consistent with reports that
gene editing at multiple sites on the same
DNA can induce megabase-scale chromosome

Lin et al., Science 377, 1077-1085 (2022)

BRD4 co-occupancy

deletions, which potentially confounds the
study of enhancer interactions (31, 32). These
results together confirm that dCas9-KRAB is a
high-resolution approach for studying multi-
ple enhancer interactions without unwanted
large DNA deletions.

Machine learning modeling reveals
determinants of SRE synergy

We next developed a machine learning model
based on an elastic-net regularized generalized
linear model to analyze the determinants of
SRE synergy (33) (Fig. 2A). We examined pub-
licly available transcription factor (TF) binding
profiles, histone modification (HM) profiles,
and H3K27ac HiChIP datasets that capture
DNA-DNA spatial contacts in K562 cells (table
S3; see Methods) (5). Among all features spa-
tial DNA contact is the most relevant feature
and was inversely correlated with calculated
epistasis interaction scores (Fig. 2, B and C,
and fig. S8A). We found that the spatial con-
tacts between SREs were weaker than non-
SREs, which displayed an inverse pattern with

2 September 2022

(fig. S8A). m.s.e., mean squared error. (C to F) Correlation between epistasis
interaction scores and Z-scores normalized spatial contact (C) and BRD4
co-occupancy (E). (D) Heatmap of normalized HiChlIP interaction intensity
between enhancers. (F) Correlation between predicted SRE scores and observed
epistasis interaction scores. In (C), (D), and (F), red, SREs; blue, non-SREs.
The Pearson correlation coefficient (R) and P value are shown.

the enhancer epistasis map (Fig. 2D versus
Fig. 1C). In addition, the co-occupancy of
bromodomain-containing protein 4 (BRD4), a
key chromatin-associated coactivator, showed
a strong anticorrelation with epistasis interac-
tion scores (Fig. 2, B and E, and fig. S8, A and B).

The elastic net regression model performed
better for predicting SREs compared with
simple linear models using individual repre-
sentative features (fig. S8, C and D). Predicted
scores of all enhancer pairs were correlated
with observed epistasis interaction scores
assessed from the CRISPRi screen (Fig. 2F).
Altogether, our machine learning model sug-
gests that spatial DNA contacts and BRD4
co-occupancy are two major determinants for
predicting SREs.

The SRE model can predict synergistic
enhancer interactions at other genomic loci

We next verified whether the SRE prediction
model can be generalized to study other genes
that have multiple enhancers spanning an ultra-
long distance in different cell types (fig. SOA;
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Fig. 3. Experimental validation of predicted SREs at other genomic loci
in different cell types. (A to D) Prediction and validation of SREs at
BCL9 (A) and KTNI loci (B) in K562 cells, and COX6C (C) and FOXPI loci
(D) in Jurkat cells. (Top) Diagram showing multiple enhancers spanning an
ultralong distance at each genomic locus. (Bottom left) Rank of predicted
SREs using the model. Dashed line represents the empirical threshold

see Methods). We examined the enhancer pro-
files of four disease-relevant genes: BCL9 and
KTNI in K562 cells and COX6C and FOXP1
in Jurkat cells, all of which have multiple en-
hancers spreading over a large genomic dis-
tance (3.3, 0.8, 1.1, and 0.5 Mb, respectively)
(Fig. 3, A to D; see Methods). We used the SRE
prediction model to calculate putative SREs
and non-SREs and designed sgRNA pairs to
target each SRE and non-SRE.

We observed synergistic changes in gene
expression when targeting the predicted SRE
pairs (Fig. 3, A to D and fig. S9, B to E), as well
as additive effects when targeting the non-SRE
pairs (fig. S9, B and C). These data suggested
that our machine learning model can predict
functional interaction between enhancers (SRE
or non-SRE) that regulate different genes span-
ning an ultralong distance in different cell
types. We further developed a website (http://
enhancer.stanford.edu/) by exploring all 4835
putative networks of ultralong distance en-
hancers (=5 enhancers; >200 kb interdistance)
across six cell types (GM12878, K562, Jurkat,

Lin et al., Science 377, 1077-1085 (2022)

A549, HUVEC, and HCT116), which reports
many predicted SREs and associated epistasis
interaction scores.

Inhibition of SREs leads to synergistic
reduction of local spatial contacts
and BRD4 condensation

To experimentally examine the predicted deter-
minants of the SRE model, we performed Trac-
looping assays on CRISPRi-perturbed samples
targeting an SRE pair e3 and e7 to measure
both spatial contacts and chromatin accessibil-
ity (fig. S10A) (34). We observed that inhibi-
tion of individual enhancers decreased spatial
contacts only between the targeted enhancer
and other elements whereas simultaneous in-
hibition of e3 and €7 led to synergistic reduc-
tion of the spatial contacts at the MYC locus
(Fig. 4, A and B), which is consistent with the
observed epistatic effects on MYC expression
and cell growth (Fig. 1E and fig. S4, A and B).
By contrast simultaneous inhibition of a non-
SRE pair el and e4 led to additive reduction of

spatial contacts (fig. S10B). We also observed

2 September 2022

from the MYC locus. Orange dots indicate the validated SREs. (Bottom
right) gRT-PCR of mRNA expression for each gene when perturbing

the predicted SREs. Data are represented as individual biological replicates
(dots) and the mean value (black bar). The purple area indicates the
expected additive effect by plotting mean + one standard derivation.

P values are calculated by t test.

that inhibition of SREs showed no substantial
difference from the additive effects on chro-
matin accessibility (fig. S10, C to E), suggesting
that chromatin accessibility is less involved in
synergistic interactions.

Perturbation of the distant enhancer e7 in-
creased spatial contacts among the proxi-
mal enhancers and the promoter (e.g., el-e3,
el-e4, e2-e3, e2-e4, e3-promoter, and e4-
promoter) (Fig. 4, A and B). Similarly, perturb-
ing e3 or e4 led to increased spatial contacts
among the distant enhancers (Fig. 4, A and
B, and fig. S10B). These observations imply a
possible compensation mechanism on the
spatial DNA contact between the SREs, which
likely confers robustness of gene expression
upon genome disruption (e.g., mutations or
loss of DNA-TF interactions).

We next investigated the relationship be-
tween enhancer interactions and BRD4 lo-
calization. Clustered coactivator condensates
mediated by BRD4 can assemble the tran-
scription apparatus at enhancers to drive ro-
bust gene expression (35-37). Our machine
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learning model predicted that the SREs were
associated with distinct BRD4 clusters (Fig. 2E
and fig. S11A). We examined this relationship
by studying BRD4 colocalization at the MYC
locus through immunostaining and fluores-

cence in situ hybridization (FISH) confocal
imaging.

Compared with wildtype K562 cells, inhibit-
ing individual enhancers (e3 or e7) resulted
in a small reduction in colocalization between

BRD4 and MYCloci, whereas simultaneous
inhibition of e3 and e7 synergistically decreased
colocalization (49.0%) and the percentage of
cells showing colocalization (66.7%) (Fig. 4,
C and D). Similar results were observed for
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Fig. 5. Synergistic interactions between predicted SRE variants influence
gene expression and disease risk in an epistatic manner. (A and B) Analysis
of predicted SRE variants at the MYC locus in K562 cells for influence on

gene expression. (A) quantile-quantile (QQ) plot showing the distribution of

P values for the epistasis influence on MYC expression between e4 and e6
variants (red) in LAML patients, compared with random permutations (gray);

P value in Kolmogorov-Smirnov (KS) test. (B) MYC expression in LAML
patients stratified by e4 and e6 SRE variants. *P < 0.05 in Wilcoxon test. (C to
G) Analysis of predicted SRE variants at the MYC locus in GM12878 cells for
influence on gene expression and associated disease risk. (C) Diagram showing
the rank of predicted SREs; orange dots show top SREs. (D) QQ plot showing
the distribution of P values for the epistasis influence of Bel and Be7 variants

Lin et al., Science 377, 1077-1085 (2022) 2 September 2022

(red) on MYC expression in the B lymphoblasts of 373 European individuals,
compared with random permutations (gray). P value in KS test. (E) MYC
expression in the B lymphoblasts from individuals stratified by Bel and Be7
variants. **P < 0.01 in Wilcoxon test. (F) and (G) Calculated odds ratio on the
relapse risk in acute lymphoblastic leukemia (ALL) (F) and Crohn's disease
(CD) (G). Odds ratios are calculated by considering the genotypes of individual
variants or both SRE variants. Colors represent the odds ratios. (H and I) Analysis
of predicted SRE variants at the CHD7 locus in GM12878 cells for influence

on ALL. (H) Diagram showing the rank of predicted SREs; orange dots show top
SREs. (I) Calculated odds ratio on the relapse risk in ALL. Odds ratios are
calculated by considering the genotypes of individual variants or both SRE
variants. Colors represent the odds ratios.
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another SRE pair e4 and e7 (fig. S11, B and C).
We also performed 3D FISH to better quantify
the fluorescent intensity of the BRD4 con-
densate at the MYClocus. Whereas individ-
ual enhancer perturbation slightly decreased
the BRD4 intensity (27.2% and 5.4% for e3 and
e7, respectively), simultaneous perturbation
led to synergistic BRD4 reduction (62.8%)
(Fig. 4, E and F, and movies S1 to S4). By con-
trast, simultaneous inhibition of non-SRE el
and e4 led to additive decrease of colocalization
between BRD4 and MYC loci (fig. S11D). We
further used a BRD4 inhibitor, JQI, to investi-
gate whether BRD4 condensation was involved
in maintaining the synergistic interaction of
SRE (38). Consistently, with increasing JQ1
concentrations the synergistic effects from SRE
perturbation decreased and then disappeared,
implying the importance of BRD4 condensa-
tion for enhancer synergy (fig. S11, E and F).

These results together confirmed that SRE
perturbation synergistically reduced spatial
DNA contact and BRD4 condensation at the
target genomic locus, which led to synergistic
changes in gene expression (Fig. 4, A to F, and
Fig. 1E). Based on computational and exper-
imental analysis, we propose a speculative
model (Fig. 4G): while perturbing individual
enhancers modestly reduces spatial con-
tacts and BRD4 condensation, perturbation
of two distant enhancers considerably alters
the 3D chromosome organization and BRD4
condensation to confer synergistic regula-
tory roles.

Synergistic interactions between predicted
SRE variants influence gene expression
and disease risk

We evaluated whether SRE genetic variants
spanning the ultralong distance can alter gene
regulation and disease risks in an epistatic
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Fig. 6. Genome-wide analysis of epistatic influence of SRE variants on
disease risk. (A) Percentage of enhancer pairs with observed epistatic
effects on ALL relapse risk for predicted SREs and non-SREs. (B and

C) Percentage of enhancer pairs (B) and genes (C) exhibiting interactive
effects on ALL relapse risk. SRE pairs: enhancer pairs with top 40% SRE
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manner (fig. S12A). We examined the effect
of our validated SREs within the MYClocus
using an acute myeloid leukemia (LAML) pa-
tient database containing genomic and tran-
scriptomic data. In LAML patients, we observed
that e4 and e6 SRE variants interacted more
frequently to alter MYC expression than that
expected by chance, additive effects, and non-
SRE variants (Fig. 5A and fig. S12, B to D; see
Methods and Supplementary Text). A large
difference in MYC expression levels was ob-
served in two patient groups stratified by the
genotype combinations of e4 and e6 SRE var-
iants, whereas there were no dynamic changes
when considering the genotypes of individual
SRE variants (Fig. 5B).

We further examined the epistatic effect of
MYC SRE variants on gene regulation in B lym-
phoblastic cells. We named the enhancers in
GM12878 B lymphoblastoid cells as Be and
used the SRE model to predict the interaction
network among seven enhancers and rank
SREs (Fig. 5C). We examined the interac-
tions of variants across predicted SREsin a
database of B lymphoblast genomic variants
and transcriptomes (39). Although no differ-
ence in MYC expression was seen when looking
at the genotypes of single enhancer variants
a significant difference in MYC expression
was observed when combinatorically consid-
ering the genotypes of SRE variants at Bel
and Be7 (Fig. 5, D and E, and fig. S12, E to
G; Supplementary Text), or Be6 and Be7 (fig.
S12, H and I).

Next, we applied the predicted SREs to in-
vestigate the association of MYC SRE variants
in B cell-associated diseases, acute lympho-
blastic leukemia (ALL), and Crohn's disease
(CD) (40-44). In the top four predicted SRE
pairs, we identified two SRE instances—Bel

and Be7 and Be2 and Be7—where the SRE

2 September 2022

variant pairs can synergistically influence
the clinical risk, including ALL relapse risk
and CD disease risk (fig. S13, A to E; Sup-
plementary Text). Particularly, when we strat-
ified case and control population based on
SRE variants the odds ratio was significantly
higher than that of the odds ratio determined
by individual SRE variants alone or additively
(Fig. 5, F and G, and fig. S13, F and G; Supple-
mentary Text).

We also predicted SREs in other gene loci in
GM12878 cells and observed the epistatic in-
fluence of SRE variants in gene expression and
clinical risks, including the leukemogenesis-
associated CHD7locus and B cell antigen CD180
locus (45) (Fig. 5, H and I, and figs. S13G, S14,
and S15; see Methods), which both have en-
hancer networks spreading ultralong genomic
distance (0.4 Mb and 1.2 Mb, respectively).

The SRE model better identifies epistatic
influence of genome-wide noncoding
variants on disease risk

Finally, we applied the SRE prediction model
to the genome-wide analysis in GM12878 cells
to link multiple enhancer variants to disease
risk. Among more than 900 genes containing
ultralong distance enhancer networks, we fo-
cused on 70 immune- or cancer-related and
highly expressed genes (fig. S16, A and B, and
fig. S17; Supplementary Text). Notably, the pre-
dicted SRE scores correlated well with the
epistatic effects of noncoding variants on the
clinical risk for ALL relapse patients (Fig. 6A;
Supplementary Text). Specifically, 27.9% of pre-
dicted SREs targeting 55.7% of genes showed
epistatic effects on ALL relapse risk through
our SRE model, which is significantly higher
than the non-SRE pairs (Fig. 6, B and C). Fur-
thermore, the SRE model also identified sig-
nificantly more ALL-associated pathogenic

B C D @ Locus-by-locus model
(2]
Jedede 'z Jededede @ SRE epistasis model
oo 50 ek
307 27.9% 8 8 60+ 55.7% n
B c = . 7]
gL £ £ 40
5 O 5% 5
= .9 > I o
g 207 8.2 40+ € 30
50 B S
85 £3 £,
© 0 32 © <V
‘é§10— 22 g8 207 1319 2
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- 2 g0 =10
® 3 S s s
<] o= <
o~ (O [ -
non-SRE SRE ES non-SRE SRE >1.25  >1.50 >1.75 >2.00
Odds ratio

predicted score; non-SRE pairs: enhancer pairs with bottom 10% SRE
predicted score. (D) Comparison of identified ALL pathogenic genes between
the SRE model and the traditional locus-by-locus model at different odds
ratio levels. In all figures, *P < 0.05; **P < 0.01; ***P < 0.001; ****P <
0.0001 in Fisher's exact test.
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genes compared with the traditional locus-
by-locus model (Fig. 6D). For example, among
22 literature-reported ALL-associated path-
ogenic genes (table S4; Supplementary Text),
our SRE model recovered 10 genes, whereas
the locus-by-locus model showed only two
genes (Fig. 6D; Supplementary Text). There-
fore, the SRE prediction model can effectively
elucidate the epistatic influence of multiple
noncoding variants on associated clinical risk.

Discussion

Our work differs from previous studies on in-
teractions (<100 kb) within enhancer clusters
(e.g., super enhancers) (19-25, 46). Although
small-scale perturbations revealed additive
(21, 22, 46) or synergistic (23, 25) interactions
within these enhancer clusters, it remains un-
known whether enhancers distributed on a
very large scale (>1 Mb) play interactive roles
for gene regulation. Our results demonstrate
that the observed nested synergistic inter-
actions over the long distance and additive
interactions in the short distance are impor-
tant for an integrated function in the enhancer
network; whereas the additive effects ensure
a high expression level, the synergistic effects
confer robustness against perturbations. Addi-
tional quantitative interaction mapping at more
genomic loci in more cell types (e.g., diploid
cells to rule out aneuploidy effects) should
allow for the derivation of distance require-
ments for ultralong distance enhancer net-
works and a universal prediction model for
enhancer networks. It should also help eluci-
date whether strong versus weak inhibition
effects of individual enhancers determine
whether they are SREs or non-SREs.

Our analysis showed that SREs are prevalent
in the mammalian genome. The identifica-
tion of SREs is consistent with evidence from
studies in the 1000 Genomes Project, which
showed that enhancer regions can be deleted
without obvious phenotypic alterations (47, 48).
Theoretically, long-distance enhancers are less
likely to be mutated at the same time, which
avoids co-mutagenesis and thus provide com-
pensation effects on important gene expres-
sion against mutations. Our website—which
comprehensively explores genome-wide SREs—
provides a resource to study enhancer in-
teractions for gene regulation and multiple
noncoding variants for diseases.

Because perturbations of individual en-
hancers may exhibit modest effects on gene
expression, multiplexed perturbation of en-
hancers in the native chromatin context is cru-
cial to fully elucidate their roles. We observed
clusters of sgRINA pairs showing similar pat-
terns of synergistic or additive interactions
within an enhancer (fig. S3A), suggesting a
high-resolution (~300 bp) subenhancer in-
teraction mapping capability. We note that
as a result of dCas9-KRAB spreading effects

Lin et al., Science 377, 1077-1085 (2022)

(500 bp~1 kb estimated by H3K9me3 peaks)
(fig. S5, A and B), results from dCas9-KRAB
should be validated with the Cas9 nuclease
knockout for very close enhancers (<1 kb).
Nevertheless, our analysis among 15 cell lines
showed that >90% of enhancers have an inter-
distance of >1 kb. By contrast, because the Cas9
nuclease may induce unwanted DNA deletions
when perturbing multiple enhancers (fig. S7, C
to F) (31, 32), dCas9-KRAB offers technology
for high-throughput study of enhancer inter-
actions with high resolution and minimal side
effects.

We provided a speculative model that links
the 3D genome and BRD4 interaction to the
ultralong distance enhancer network (Fig. 4G).
In this model, large BRD4 condensates are
formed by smaller distinct BRD4 clusters at
individual enhancers (49), which connects
these enhancers across ultralong distances
to create weak 3D spatial contacts (50). This
model is consistent with our quantitative map-
ping of enhancer networks that showed an
inverse correlation between spatial contacts
and synergistic interactions. Although the
inverse correlation may be partly derived from
the genomic distance, our experimental vali-
dation demonstrated that the 3D genome
organization at SREs is casually linked to the
synergistic interactions.

‘With more whole genome DNA sequencing
data available in patients, the SRE model
can be applied to infer the biological roles of
SRE variants in cancer and other diseases
and interpret the interactive influence of non-
coding elements on disease risk to aid diagno-
sis and therapy.
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Enhancer network interprets disease risk

Many important genes in human cells have multiple enhancers, noncoding DNA elements that regulate gene
expression. It has been a puzzle why many enhancers exist and how they work together over long genomic distances.
Combining multiplexed CRISPR interference and machine learning, Lin et al. reveal that multiple enhancers form a
nested, multilayer architecture that is important to maintain robust gene expression. Enhancers that are far away (more
than 1 million bases) cooperate in three-dimensional space and act as synergistic regulators of gene expression when
being perturbed. Their long distance reduces co-mutagenesis and confers a mechanism of robustness. The authors
built a model to predict enhancer variants that synergistically control disease-relevant genes, which better links multiple
noncoding elements to disease risk prediction beyond genome-wide association studies. —DJ
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