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Abstract. We propose robust methods to identify the underlying Partial Differential Equation
(PDE) from a given single set of noisy time-dependent data. We assume that the governing equation
of the PDE is a linear combination of a few linear and nonlinear differential terms in a prescribed
dictionary. Noisy data make such identification particularly challenging. Our objective is to develop
robust methods against a high level of noise and approximate the underlying noise-free dynamics well.
We first introduce a Successively Denoised Differentiation (SDD) scheme to stabilize the amplified
noise in numerical differentiation. SDD effectively denoises the given data and the corresponding
derivatives. Second, we present two algorithms for PDE identification: Subspace pursuit Time
evolution (ST) error and Subspace pursuit Cross-validation (SC). Our general strategy is to first find
a candidate set using the Subspace Pursuit (SP) greedy algorithm, then choose the best one via time
evolution or cross-validation. ST uses a multishooting numerical time evolution and selects the PDE
which yields the least evolution error. SC evaluates the cross-validation error in the least-squares
fitting and picks the PDE that gives the smallest validation error. We present various numerical
experiments to validate our methods. Both methods are efficient and robust to noise.
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1. Introduction. Partial Differential Equations (PDEs) are used to model var-
ious real-world phenomena in science and engineering. Numerical solvers for PDEs
and analysis of various properties of the solutions have been widely studied in the
literature. In this paper, we focus on the inverse problem: Given a single set of
time-dependent noisy data, how does one identify the underlying PDE?

Let the given noisy time-dependent discrete data set be
(1.1)
D := \{ Un

\bfi \in \BbbR | n = 0, . . . , N ; i = (i1, . . . , id) with ij = 0, . . . ,M  - 1, j = 1, . . . , d\} 
for sufficiently large integers N,M \in \BbbN , where i is a d-dimensional spatial index of a
discretized domain in \BbbR 

d, and n represents the time index at time tn. The objective
is to find an evolutionary PDE of the form

\partial tu = f(u, \partial \bfx u, \partial 
2
\bfx u, . . . , \partial 

k
\bfx u, . . .) ,(1.2)

which represents the dynamics of the given data D. Here t is the time variable,
x = [x1, . . . , xd] \in \BbbR 

d denotes the space variable, and \partial k
\bfx u denotes the set of partial
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derivatives of u with respect to the space variable of order k for k = 0, 1, . . . , i.e.,

\partial k
\bfx u :=

\bigl\{ 
\partial ku

\partial x
k1
1 \partial x

k2
2 \cdot \cdot \cdot \partial x

kd
d

| k1, . . . , kd \in \BbbN ,
\sum d

j=1 kj = k
\bigr\} 
. We assume that f is a

polynomial of its arguments so that the right-hand side of (1.2) is a linear combination
of linear and nonlinear differential terms. The model in (1.2) includes a class of
parametric PDEs where the parameters are the polynomial coefficients in f .

Parameter identification in differential equations and dynamical systems has been
considered by physicists and applied scientists. Earlier works include [1, 2, 3, 4, 28,
29, 30], among which, [2, 28] considered the PDE model as in (1.2). Two important
papers [5, 38] used symbolic regression to recover the underlying physical systems from
experimental data. Recently, sparse regression and L1-minimization were introduced
to promote sparsity in the identification of PDEs or dynamical systems [7, 17, 34, 35].
In [7], Brunton, Proctor, and Kutz considered the discovery of nonlinear dynamical
systems with sparsity-promoting techniques. The underlying dynamical systems are
assumed to be governed by a small number of active terms in a prescribed dictionary,
and sparse regression is used to identify these active terms. The extensions of this
sparse regression approach can be found in [16, 21, 26]. In [35], Schaeffer considered
the problem of PDE identification using the spectral method and focused on the
benefit of using L1-minimization for sparse coefficient recovery. The identification
of dynamical systems with highly corrupted and undersampled data is considered in
[37, 43]. In [34], Rudy et al. proposed identifying PDEs by solving the L0-regularized
regression problem followed by a postprocessing step of thresholding. Sparse Bayesian
regression was considered in [49] for the recovery of dynamical systems. This series
of work focused on the benefit of using L1-minimization to resolve dynamical systems
or PDEs with specific sparse pattern [36]. In Appendix A, we compare some existing
methods in terms of the objectives in minimization. Recent works such as [13, 27]
introduced PDE learning in a weak formulation to ameliorate the errors due to the
instability of numerical differentiation, when the given data are contaminated by
noise. This weak formulation gives rise to a robust recovery, while it requires the
underlying PDE to possess a weak formulation such that all partial derivatives in
the PDE can be transferred to a test function through integration by parts. Another
related problem is to infer the interaction law in a system of agents from the trajectory
data. In [6, 24], nonparametric regression was used to predict the interaction function,
and a theoretical guarantee was established. Another category of methods uses deep
learning [18, 22, 23, 25, 31, 32, 33].

The most closely related work to this paper is [17], where Identifying Differential
Equation with Numerical Time evolution (IDENT) was proposed, also for a single set
of given data. It is based on the convergence principle of numerical PDE schemes.
LASSO is used to find a candidate set efficiently, and the correct PDE is identified by
computing the numerical Time Evolution Error (TEE). Among all the PDEs from the
candidate set, the one whose numerical solution best matches the given data dynamics
is chosen as the identified PDE. When the given data are contaminated by noise, the
authors used a Least-Squares Moving Average method to denoise the data as a pre-
processing step. When the coefficients vary in the spatial domain, a Base Element
Expansion (BEE) technique was proposed to recover the varying coefficients.

Despite the developments of many useful methods, when the given data are noisy,
PDE identification is still challenging. A small amount of noise can make a recovery
unstable, especially for high order PDEs. It was shown in [17] that the noise-to-signal
ratio for LASSO depends on the order of the underlying PDE, and IDENT can handle
a small amount of noise when the PDE contains high order derivatives. A significant
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Fig. 1. The sensitivity of numerical differentiation to noise. (a) Graph of sin(x), 0 \leq x \leq 2\pi 
(black), and its noisy version (red) with Gaussian noise of mean 0 and standard deviation 0.01.
(b) The first order derivatives of the function (black) and the data (red). (c) The second order
derivatives of the function (black) and the data (red). The derivatives of data in (b) and (c) are
computed using the five-point ENO scheme. As the order of derivative increases, the noise gets
amplified. (Figure in color online.)

issue is that the numerical differentiation often magnifies noise, which is illustrated
by an example in Figure 1.

In this paper, we propose two robust PDE identification methods that can handle
a large amount of noise given a single set of time-dependent data. Our contributions
include the following:

1. First, we propose a new denoising procedure, called Successively Denoised
Differentiation (SDD), to stabilize the numerical differentiation applied to
noisy data.

2. Second, we present two recovery algorithms which are robust against noise:
Subspace pursuit Time evolution (ST) and Subspace pursuit Cross-validation
(SC). Both methods utilize the Subspace Pursuit (SP) greedy algorithm [10]
for selecting a candidate set. ST considers a multishooting numerical time
evolution error, and SC evaluates the cross-validation error in the least-
squares fitting. Both methods are efficient and robust against noise.

This paper is organized as follows. In section 2, we introduce the PDE identifi-
cation problem and describe the SDD scheme. Our proposed ST and SC algorithms
are presented in section 3, and systematic numerical experiments are provided in sec-
tion 4. We conclude the paper in section 5, and some details are discussed in the
appendices.

2. Data organization and denoising.

2.1. Data organization and notation. Let the time-space domain be \Omega =
[0, T ] \times [0, X]d for some T > 0 and X > 0. Suppose the noisy data D are given as
(1.1) on a regular grid in \Omega , with time index n = 0, . . . , N , N \in \BbbN , and spatial index
i \in \BbbI , where \BbbI = \{ (i1, . . . , id) | ij = 0, . . . ,M  - 1, j = 1, . . . , d,M \in \BbbN \} . Denote
\Delta t := T/N and \Delta x := X/(M  - 1) as the time and space spacing in the given data,
respectively.

At the time tn and the location x\bfi , the datum is given as

(2.1) Un
\bfi = u(x\bfi , t

n) + \varepsilon n\bfi ,

where tn := n\Delta t \in [0, T ], x\bfi := (i1\Delta x, . . . , id\Delta x) \in [0, X]d, and \varepsilon n\bfi is i.i.d. random
noise with mean 0. For n = 0, 1, . . . , N  - 1, we vectorize the data in all spatial

domains at time tn, and denote it as Un \in \BbbR 
Md

. Concatenating the vectors \{ Un\} N - 1
n=0

vertically gives rise to a long vector U \in \BbbR 
NMd

.
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The underlying function f in (1.2) is assumed to be a finite order polynomial of
its arguments:

f(u, \partial \bfx u, \partial 
2
\bfx u, . . . , \partial 

k
\bfx u, . . .) = c1 + c2\partial x1

u+ \cdot \cdot \cdot + cmu\partial x1
u+ \cdot \cdot \cdot ,(2.2)

where \partial k
\bfx denotes all kth order partial derivatives and \partial xj

denotes the partial derivative
with respect to the jth variable. We refer to each term, such as 1, \partial x1

u, and u\partial x1
u, . . . ,

in (2.2), as a feature. Since f is a finite order polynomial, only a finite number of
features are included. Denote the number of features by K. Under this model, the
function f is expressed in a parametric form as a linear combination of K features.
Our objective is to recover the parameters, or coefficients,

c = [c1 c2 . . . cm . . . cK ]T \in \BbbR 
K ,

where many of the entries may be zero.
From D, we numerically approximate the time and spatial derivatives of u to

obtain the following approximated time derivative vector DtU \in \BbbR 
NMd

and approxi-

mated feature matrix F \in \BbbR 
NMd\times K :

DtU =

\left[ 
       

U1 - U0

\Delta t

U2 - U1

\Delta t

...

UN - UN - 1

\Delta t

\right] 
       
, F =

\left[ 
    

1Md\times 1 U0 \cdot \cdot \cdot U0 \circ Dx1
U0 \cdot \cdot \cdot 

1Md\times 1 U1 \cdot \cdot \cdot U1 \circ Dx1
U1 \cdot \cdot \cdot 

...
...

. . .
... \cdot \cdot \cdot 

1Md\times 1 UN - 1 \cdot \cdot \cdot UN - 1 \circ Dx1
UN - 1 \cdot \cdot \cdot 

\right] 
    .

(2.3)

In this paper, the time derivatives in DtU are approximated by the forward difference
scheme, and the spatial derivatives, such as Dx1

Un for n = 0, 1, . . . , N  - 1 in F ,
are computed using the 5-point essentially nonoscillatory (ENO) scheme [14]. Other
numerical differentiation schemes can be used here. (See [17] for an error estimation.)

The vector 1Md\times 1 \in \BbbR 
Md

denotes the 1-vector of size Md, and the Hadamard product
\circ is the elementwise multiplication between two vectors. Each column of F is referred
to as a feature column. The PDE model in (1.2) suggests that an optimal coefficient
vector c should satisfy the following approximation:

(2.4) DtU \approx Fc .

The objective of this paper is to find the correct set of coefficients in (2.2). Due to
the large size of K, the idea of sparsity becomes useful.

The framework of our methods relies on a prescribed dictionary, and the dictio-
nary should contain all possible terms in the underlying PDE. If we do not have any a
priori knowledge, one strategy is to use the pairwise product of the partial derivatives
of u up to certain order. One can also view the right-hand side of the target PDE
in (1.2) as a functional of u and its partial derivatives up to certain order, and then
approximate the right-hand side by a Taylor polynomial up to certain degree. Our
method is capable of identifying this Taylor polynomial, as an approximation to the
right-hand side of the underlying PDE. Another strategy is to estimate the possible
features from the given data, which is an open problem to be studied in the future.

Throughout this paper, we denote F0 as the true feature matrix whose elements
are the exact derivatives evaluated at the corresponding time and space location as
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those in F . For a vector c, \| c\| p := (
\sum 

j | cj | p)
1
p is the Lp norm of c. In particular,

\| c\| \infty := maxj | cj | . When p = 0, \| c\| 0 := \#\{ cj : cj \not = 0\} represents the L0 seminorm
of c. The support of c is denoted by supp(c) := \{ j : cj \not = 0\} . The vector c is said to
be k-sparse if \| c\| 0 = k for a nonnegative integer k. For any matrix Am\times n and index
sets \scrL 1 \subseteq \{ 1, 2, . . . , n\} , \scrL 2 \subseteq \{ 1, 2, . . . ,m\} , we denote [A]\scrL 1

as the submatrix of A
consisting of the columns indexed by \scrL 1, and [A]\scrL 2 as the submatrix of A consisting of
the rows indexed by \scrL 2. A

T , A\ast , and A\dagger denote the transpose, conjugate transpose,
and Moore--Penrose pseudoinverse of A, respectively. For x \in \BbbR , \lfloor x\rfloor denotes the
largest integer no larger than x.

2.2. Successively Denoised Differentiation (SDD). As shown in Figure 1,
when the given data are contaminated by noise, numerical differentiation amplifies
noise. It introduces a large error in the time derivative vector DtU and the approx-
imated feature matrix F . With random noise, the regularity of the given data is
different from the PDE solution's regularity. Thus, the denoising plays a vital role in
PDE identification.

We introduce a smoothing operator S to process the data. Kernel methods are
good options for S, such as Moving Average [39] and Moving Least Squares (MLS) [19].
In this paper, the smoothing operator S is chosen as the MLS, where data are locally
fit by quadratic polynomials. In MLS, a weighted least-squares problem, in the time
domain or the spatial domain, is solved at each time tn and spatial location x\bfi as
follows:

S(\bfx ) [U ]
n
\bfi = pn\bfi (x\bfi ), with pn\bfi = argmin

p\in P2

\sum 

\bfj \in \BbbI 

(p(x\bfj ) - Un
\bfj )

2 exp

\biggl( 
 - \| x\bfi  - x\bfj \| 2

h2

\biggr) 
,

(2.5)

S(t) [U ]
n
\bfi = pn\bfi (t

n), with pn\bfi = argmin
p\in P2

\sum 

0\leq k\leq N

(p(tk) - Uk
\bfi )

2 exp

\biggl( 
 - \| t

n  - tk\| 2
h2

\biggr) 
.

(2.6)

Here h > 0 is a width parameter of the kernel, and P2 denotes the set of polynomials
of degree no more than 2. It is shown in [46, Theorem 4.1] that, for a fixed time
index n, if the given data \{ Un

\bfi \} \bfi are sampled from a Ck function u(x, tn), and the
(k  - 1)th order polynomials are used in MLS, the output of MLS with a proper
choice of the kernel width h gives a kth order approximation of u(x, tn). This theory
demonstrates that MLS keeps the accuracy of the given data when the data contain
no noise and the solution is sufficiently smooth. In practice, the width parameter h is
found empirically: as the noise level increases, a larger h is used to address the data
variability. In our experiments, we observe that the performance of our method is not
sensitive to the choice of h and we use the same h for different noise levels.

We propose a Successively Denoised Differentiation (SDD) procedure to stabi-
lize the numerical differentiation. For every derivative approximation, smoothing is
applied as described in Table 1.

The main idea of SDD is to smooth the data at each step (before and after)
the numerical differentiation. This simple idea effectively stabilizes numerical differ-
entiation. Figure 2 shows the results of SDD for the same data in Figure 1. The
approximations of the first and second order derivatives of u are greatly improved by
SDD.

When the given data are noiseless and MLS is used in SDD, the following theorem
shows that under appropriate assumptions, the estimated partial derivative S(x)Dx[U ]
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Table 1

Examples of SDD: Each (differential) term is approximated by the spatial and time smoothing
operators S(\bfx ) and S(t) defined in (2.5) and (2.6), respectively. The operator Dt given in (2.3)
represents numerical time differentiation by the forward difference scheme, and Dxj

for j = 1, . . . , d
represents numerical spatial differentiation with respect to xj given by the 5-point ENO scheme [14].

Term Approximation
u \approx S(\bfx )[U ]

u is approximated by spatially MLS denoised data U .
\partial tu \approx S(t)DtS(\bfx )[U ]

Time-domain denoising applied after numerical time differentiation.

\partial \bfk 
\bfx u \approx (S(\bfx )Dx1 )

k1 \cdot \cdot \cdot (S(\bfx )Dxd
)kdS(\bfx )[U ], where k = (k1, . . . , kd)

Spatial denoising applied after every numerical spatial differentiation.

(a) (b) (c)
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Fig. 2. Performance of SDD on the data in Figure 1. (a) Graph of sin(x), 0 \leq x \leq 2\pi (black)
and the denoised data (red) using MLS. (b) First order derivatives of the function (black) and the
denoised data using SDD (red). (c) Second order derivatives of the function (black) and the denoised
data using SDD (red). Derivatives are computed by the five-point ENO scheme, and the smoothing
operator S is MLS. (Figure in color online.)

has the same accuracy as the estimated derivative without SDD.

Theorem 2.1. Let s be a positive integer. Suppose the given data are noiseless
and are sampled from a sufficiently smooth function u(x) with spacing \Delta x, i.e., Ui =
u(xi) with xi = i\Delta x. Assume polynomials of degree s are used in MLS and the width
parameter h is properly chosen. Let Dx be a linear difference scheme satisfying (a) at
every xi, Dxv = dv/dx+ O(\Delta xs) for any sufficiently smooth function v(x); and (b)
Dxv(xi) =

\sum 
 - J\leq j\leq J djv(xi+j) for some positive integer J , where dj depends only on

\Delta x and dj = O(1/\Delta x) \forall j. Then for k = 0, 1, . . . , s, at every xi

(S(x)Dx)
kS(x)[u] = dku/dxk +O(\Delta xs+1 - k) .

Proof. According to [46, Theorem 4.1], at every xi

(2.7) S(x)[v] = v +O(\Delta xs+1)

for any sufficiently smooth function v(x). Therefore, the case k = 0 has been proved.
Note that S(x)[v](xi) =

\sum 
 - I\leq j\leq I ajv(xi+j) for some positive integer I and coefficients

aj . Also from [46, Proof of Theorem 4.1], we can deduce that for any function w(x),
at every xi

(2.8) | S(x)[w](xi)| \leq C max
 - I\leq j\leq I

| w(xi+j)| 

for some constant C. Now assume that at every xi,

(S(x)Dx)
kS(x)[u] = dku/dxk +O(\Delta xs+1 - k)
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for some k \in \{ 0, 1, . . . , s - 1\} . We want to show that at every xi,

(S(x)Dx)
k+1S(x)[u] = dk+1u/dxk+1 +O(\Delta xs - k) .

Decompose the error at every xi as

| (S(x)Dx)
k+1S(x)[u] - dk+1u

dxk+1 | 
\leq | S(x)Dx[(S(x)Dx)

kS(x)[u] - dku
dxk ]| + | S(x)Dx

dku
dxk  - dk+1u

dxk+1 | 
= (A) + (B).

Using the induction assumption and assumption (b) of Dx, we have

\bigm| \bigm| \bigm| \bigm| Dx

\biggl[ 
(S(x)Dx)

kS(x)[u] - 
dku

dxk

\biggr] \bigm| \bigm| \bigm| \bigm| = O(\Delta xs - k) .

Using (2.8), we have (A) = O(\Delta xs - k). Using property (a) of Dx, we have

Dx
dku

dxk
= dk+1u/dxk+1 +O(\Delta xs) .

Combining property (2.8) and (2.7), we have

S(x)Dx
dku

dxk
= dk+1u/dxk+1 +O(\Delta xs) ;

thus (B) = O(\Delta xs). Finally, we conclude that

(S(x)Dx)
k+1S(x)[u] = dk+1u/dxk+1 +O(\Delta xs - k)

and the theorem is proved.

Remark. Suppose v(x) is interpolated by a polynomial p(x) of degree s using
Lagrangian interpolation on s+1 grid points near xi; then dp/dx is a linear difference
scheme and satisfies assumptions (a) and (b) of Theorem 2.1. In particular, the
difference scheme used in this paper is constructed this way.

Theorem 2.1 implies that under proper settings, the estimated derivative by SDD
has the same accuracy as the estimated derivative without SDD. Following the proof
of Theorem 2.1, one can easily derive similar results for higher order derivatives in
multidimensions.

In section 4.9, we explore details of SDD when different smoothing operators are
used. We find that MLS has the best performance in terms of preserving the derivative
profiles. Therefore, we set S to be MLS in our numerical experiments.

To simplify the notation, in the rest of this paper we use U to denote the denoised
data S(\bfx )[U ], and DtU as well as Dk

\bfx U to denote the numerical derivatives with SDD
applied as above.

3. Proposed methods: ST and SC. Under the parametric model in (2.2),
the PDE identification problem can be reduced to solving the linear system (2.4) for
a sparse vector c with few nonzero entries. Sparse regression can be formulated as
the following L0-minimization:

(3.1) min \| c\| 0 subject to \| Fc - DtU\| \leq \epsilon 

for some \epsilon > 0. However, the L0-minimization in (3.1) is NP-hard. Its approximate
solutions have been intensively studied in the literature. The most popular surrogate
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for the L0 seminorm is the L1 norm applied in image and signal processing [8, 11].
The L1-regularized minimization is called Least Absolute Shrinkage and Selection
Operator (LASSO) [41], which was used in [17, 34, 35] for PDE identification. The
common strategy in these works is to utilize LASSO to select a candidate set, then
refine the results with other techniques.

In this paper, we utilize a greedy algorithm called Subspace Pursuit (SP) [10] to
select a candidate set. Unlike LASSO, SP takes the sparsity as an input, allowing
direct control of the sparsity of the reconstructed coefficient. Let k be a positive
integer and denote b = DtU . For a fixed sparsity level k, SP(k;F,b) in Algorithm 1
gives rise to a k-sparse vector whose support is selected in a greedy fashion. It was
proved that SP gives rise to a solution of the L0-minimization (3.1) under certain
conditions of the matrix F , such as the restricted isometry property [10].

Algorithm 1: Subspace Pursuit SP(k;F,b).

Input: F \in \BbbR 
NMd\times K , b \in \BbbR 

NMd

and sparsity k \in \BbbN .
Initialization: j = 0;
G\leftarrow column-normalized version of F ;
\scrI 0 = \{ k indices corresponding to the largest magnitude entries in the vector
G\ast b\} ;
b0
res = b - G\scrI 0G\dagger 

\scrI 0b.
while True do

Step 1. \widetilde \scrI j+1 = \scrI j \cup \{ k indices corresponding to the largest magnitude
entries in the vector G\ast bj

res\} ;
Step 2. Set cp = G\dagger 

\widetilde \scrI j+1
b;

Step 3. \scrI j+1 = \{ k indices corresponding to the largest elements of cp\} ;
Step 4. Compute bj+1

res = b - G\scrI j+1G\dagger 

\scrI j+1b;
Step 5. If | bj+1

res \| 2 > \| bj
res\| 2, let \scrI j+1 = \scrI j and terminate the algorithm;

otherwise set j \leftarrow j + 1 and iterate.

Output: \widehat c \in \BbbR 
K satisfying \widehat c\scrI j

= F \dagger 
\scrI j
b and \widehat c(\scrI j)\complement 

= 0.

We propose two new methods based on SP for PDE identification: Subspace
pursuit Time evolution (ST) and Subspace pursuit Cross-validation (SC).

3.1. Subspace pursuit Time evolution (ST). We first propose a method
combining SP and the idea of time evolution. In [17], Time Evolution Error (TEE)
quantifies the mismatch between the solution simulated from a candidate PDE and
the denoised data. Any candidate coefficient vector \widehat c = (\widehat c1,\widehat c2 . . . ) defines a candidate
PDE:

ut = \widehat c1 + \widehat c2\partial x1
u+ \cdot \cdot \cdot + \widehat cmu\partial x1

u+ \cdot \cdot \cdot .
This PDE is numerically evolved from the initial condition U0 with a smaller time step
\widetilde \Delta t \ll \Delta t. Denote \widehat U1, \widehat U2, . . . , \widehat UN as this numerical solution at the same time-space
location as U1, U2, . . . , UN . The TEE of the candidate PDE given by \widehat c is

TEE(\widehat c) = 1

N

N\sum 

n=1

\| \widehat Un  - Un\| 2 ,

where Un is the denoised data at time tn. Figures 3 (a) and (b) illustrate the idea of
TEE. When there are several candidate PDEs, the one with the least TEE is picked
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Fig. 4. Robustness of MTEE over TEE. (a) A noisy initial condition for the evolution of the
Burgers' equation ut =  - uux. By evolving this noisy initial condition according to ut =  - uux,
(b) shows the numerical solution at t = 0.02 and (c) shows the numerial solution at t = 0.03. The
numerical solution blows up at t = 0.032.

lasts for a shorter time, e.g., w\Delta t in our case.
MTEE has two advantages over TEE: (1) MTEE is more robust against noise in

comparison with TEE. If w \ll N , the noise in the initial condition accumulates for a
smaller amount of time in MTEE, which helps to stabilize numerical solvers.

For example, consider identifying the Burgers' equation ut =  - uux from a set
of noisy data generated with T = 0.05,\Delta t = 0.001,\Delta x = 1/256 (see Figure 4). If
one evolves the noisy initial condition in Figure 4 (a), using the correct PDE, i.e.,
ut =  - uux, the numerical solution blows up at t = 0.032. The numerical solutions
at t = 0.02 and t = 0.03 are shown in Figures 4 (b) and (c), respectively. The TEE
at T = 0.05 is \infty even for the correct PDE since the numerical solution blows up at
t = 0.032. On the other hand, MTEE works since we evolve the initial condition for
a shorter amount of time, before the numerical solution blows up, such as t = 0.02
(corresponding to w = 20 in MTEE) in this example.

(2) MTEE is more flexible, and its computation is parallelizable. The flexibility of
MTEE comes from two aspects: (i) The error accumulation time can be controlled by
the parameter w such that the PDE is evolved for a time length of w\Delta t. (ii) One may
assign different weights in the calculation of the evolution errors in different periods.
Since each time evolution in the multishooting is independent, the computation of
MTEE can be parallelized.

The SP algorithm finds a coefficient vector with a specified sparsity, while the
correct sparsity is not known from the given data. Based on SP and MTEE, we
propose ST, which iteratively refines the selection of features. Figure 5 illustrates the
ST iteration: Starting from a large number K (no more than the number of features),
each SP(k) coefficient vector is computed for all k = 0, . . . ,K. Among these, the
k which gives the minimum MTEE is chosen to be K1. This procedure continues
until two consecutive iterations give the same output or only one feature is left. This
process will terminate after at most K  - 1 iterations.

More specifically, as an initial condition, we set K0 = K and \scrA 0 = \{ 1, . . . ,K\} .
Clearly, this K is bounded by the number of dictionary. At the first iteration, all
possible sparsity levels are considered up to K in the SP algorithm. For each k =
1, . . . ,K, we run SP(k;F,DtU) to obtain a coefficient vector \widehat c(k) \in \BbbR 

K such that
\| \widehat c(k)\| 0 = k, which gives rise to the PDE:

(3.3) ut = fSP(k), where fSP(k) := \widehat c(k)1 + \widehat c(k)2 \partial x1
u+ \cdot \cdot \cdot + \widehat c(k)m u\partial x1

u+ \cdot \cdot \cdot .

We then numerically evolve each PDE ut = fSP(k) for k = 1, . . . ,K and calculate
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Algorithm 2: Subspace pursuit Time evolution (ST).

Input: F \in \BbbR 
NMd\times K , DtU \in \BbbR 

NMd

and a positive integer w.
Initialization: j = 0, K0 = K and \scrA 0 = \{ 1, 2, . . . ,K\} .
while \scrA j+1 \not = \scrA j do

Step 1. For k = 1, 2, . . . ,Kj , run SP(k; [F ]\scrA j
, DtU) to obtain a

coefficient vector \widehat c(k) \in \BbbR 
K such that

\widehat c(k)\scrA j
= SP(k; [F ]\scrA j

, DtU) and \widehat c(k)
\scrA \complement 

j

= 0 ,

and the associated PDE ut = fSP(k) given in (3.3).
Step 2. Among all the PDEs ut = fSP(k) for k = 1, . . . ,Kj , select the

one with the minimum MTEE(\widehat c(k);w) and update

Kj+1 = argmin
k=1,2,...,Kj

MTEE(\widehat c(k);w) and \scrA j+1 = supp(\widehat c(kj+1)) .

If \scrA j+1 = \scrA j , terminate the algorithm; otherwise, update j = j + 1.

Output: Recovered coefficient \widehat cKj+1 and the corresponding PDE, denoted
by ST(w).

is applicable: if a correct support is identified, the coefficient vector obtained from
the data in \scrT 1 should be compatible with the data in \scrT 2.

We introduce our SC algorithm where cross-validation is incorporated into the
SP algorithm. SC consists of the following three steps:

Step 1. For each sparsity level k = 1, 2, . . . ,K, use SP to select a set of active
features:

\scrA k = supp(SP(k;F,DtU)) .

Step 2. Use the data in \scrT 1 to compute the estimator for the coefficient vector,
\widehat c(k) \in \BbbR 

K , by the following least-squares problem:

\widehat c(k) = argmin
\bfc \in \BbbR Ksuch that \bfc 

\scrA \complement 
k

=0

\| [F ]\scrT 1

\scrA k
c\scrA k
 - [DtU ]\scrT 1\| 22 ,

and then use the data in \scrT 2 to compute a Cross-validation Estimation Error (CEE)

CEE(\scrA k;\alpha , \scrT 1, \scrT 2) = \| [DtU ]\scrT 2  - [F ]\scrT 2\widehat c(k)\| 2 .(3.4)

Step 3. Set kmin = argmink CEE(\scrA k;\alpha , \scrT 1, \scrT 2) and the estimated coefficient
vector is given as

\widehat c = argmin
\bfc \in \BbbR Ksuch that \bfc 

\scrA \complement 
k

=0

\| [F ]\scrT 1

\scrA kmin

c\scrA kmin
 - [DtU ]\scrT 1\| 22 .

The identified PDE by SC is denoted as SC(\alpha ).
CEE in (3.4) is an effective measure for consistency. If the estimated coefficient

vector's support matches that of the true one, CEE is guaranteed to be small provided
there is sufficiently high resolution in time and space.

Theorem 3.1. Assume that DtU \rightarrow ut and F \rightarrow F0 pointwise as \Delta t,\Delta x \rightarrow 0.
Let \scrA 0 = supp(c0), where c0 is the coefficient vector of the true PDE. For any set of
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Algorithm 3: Subspace pursuit Cross-validation (SC) algorithm.

Input: F \in \BbbR 
NMd\times K and DtU \in \BbbR 

NMd

; 0 < \alpha < 1 ratio of the training
data.

Step 1. For k = 1, 2, . . . ,K, run SP(k;F,DtU) to obtain the support of the
candidate coefficients

\scrA k = supp(SP(k;F,DtU)) .

Step 2. For each k, compute the averaged cross-validation error

CEE(\scrA k, \alpha ) =
1

2
(CEE(\scrA k;\alpha , \scrT 1, \scrT 2) + CEE(\scrA k; 1 - \alpha , \scrT 2, \scrT 1)) .

Step 3. Choose the k which gives the smallest cross-validation error and
denote it by kmin,

kmin = argmin
k

CEE(\scrA k, \alpha ) .

Estimate the coefficients by least squares as

\widehat c = argmin
\bfc \in \BbbR Ksuch that \bfc 

\scrA \complement 
k

=0

\| [F ]\scrT 1

\scrA kmin

c\scrA kmin
 - [DtU ]\scrT 1\| 22 .

Output: Recovered coefficient \widehat c and the identified PDE denoted by SC(\alpha ).

support \scrA , we have

CEE(\scrA ;\alpha , \scrT 1, \scrT 2) \leq 
\bigm\| \bigm\| \bigm\| 
\Bigl( 
[F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger  - [F0]
\scrT 2

\scrA 

\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \Bigr) 
[ut]

\scrT 1

\bigm\| \bigm\| \bigm\| 
2
+ g(\scrA ;\alpha , \scrT 1, \scrT 2) ,

where g > 0 is a sum of residual terms of approximating the partial derivatives and
feature matrix using data (see (B.1)), which is independent of \scrA 0, such that g \rightarrow 0 as
\Delta t,\Delta x\rightarrow 0.

Proof. See Appendix B for the proof.

In (3.4), the data in \scrT 1 serve as the training set, and the data in \scrT 2 act as
the validation set. One can also use the data in \scrT 2 for training and the data in \scrT 1
for validation, which gives rise to the cross-validation estimation error CEE(\scrA k; 1  - 
\alpha , \scrT 2, \scrT 1). To improve the robustness of SC, we replace (3.4) with the following
averaged cross-validation error:

CEE(\scrA k, \alpha ) =
1

2
(CEE(\scrA k;\alpha , \scrT 1, \scrT 2) + CEE(\scrA k; 1 - \alpha , \scrT 2, \scrT 1)) .

In general, one can randomly pick part of the data as the training set and use the
rest as the validation set. Our numerical experiments in subsection 4.8 demonstrate
that the splitting strategy does not affect the results. For simplicity, we split the data
according to the row index in this paper.

The proposed SC algorithm is summarized in Algorithm 3. In comparison with
ST, SC does not involve any numerical evolution of the candidate PDE, so the com-
putation of SC is faster.

4. Numerical experiments. In this section, we perform a systematic numerical
study to demonstrate the effectiveness of ST and SC and compare them to IDENT
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[17]. To measure the identification error, we use the following relative coefficient error
ec and grid-dependent residual error er:
(4.1)

ec =
\| \widehat c - c\| 1
\| c\| 1

, er =

\Biggl\{ \surd 
\Delta x\Delta t\| F (\widehat c - c)\| 2 for one-dimensional (1D) PDE,\surd 
\Delta x\Delta y\Delta t\| F (\widehat c - c)\| 2 for two-dimensional (2D) PDE.

The relative coefficient error ec measures the accuracy in the recovery of PDE co-
efficients, while the residual error er measures the difference between the learned
dynamics and the denoised one by SDD. Since each feature vector in F may have dif-
ferent scales, er can be different from ec in some cases. When the given data contain
noise, the features containing higher order derivatives have greater magnitude than
the features containing lower order derivatives. In this case, a small coefficient error
in the high order terms may lead to a large er. We use both ec and er to quantify
the PDE identification error. To measure how well the solution of the identified PDE
matches the dynamics of the correct PDE, we also use the following evolution error:

ee = \Delta x\Delta t

\Biggl( 
\sum 

n

\sum 

\bfi 

| u(x\bfi , t
n) - \^u(x\bfi , t

n)| 
\Biggr) 
,(4.2)

where u and \^u denote the solution of the exact and identified PDE from the same
initial condition, respectively.

To generate data, we first solve the underlying PDE by forward Euler scheme
using time and space step \delta t and \delta x (and \delta y), respectively, then downsample the data
with time and space step \Delta t and \Delta x (and \Delta y). In the noisy case, we add Gaussian
noise with standard deviation \sigma to the clean data. We say that the noise is p\% by

setting \sigma = p
100

\sqrt{} 
1

NMd

\sum 
n

\sum 
\bfi (u(x\bfi , tn))2. In the computation of DtU and the feature

matrix F , we always use SDD with MLS with h = 0.04 as the smoother. When MLS
is used to denoise the data of 2D PDEs, one can either fit 2D polynomials or fit 1D
polynomials in each dimension. In this work, we use the second approach. In ST,
without specification, \widetilde \Delta t = \Delta t/5 is used.

We first consider PDEs containing partial derivatives up to the second order. Let
the governing equation f be a polynomial with degree up to 2. There are 10 fea-
tures: 1, u, u2, ux, u

2
x, uux, uxx, u

2
xx, uuxx, uxuxx in the dictionary for 1D PDEs. For

2D PDEs, there are 28 features, which contain 1, u, ux, uy, uxx, yxy, uyy and their pair-
wise products. In the following examples, without specification, the spatial domain
[0, 1] is used for 1D PDEs and [0, 1]2 is used for 2D PDEs. For both cases, the zero
Dirichlet boundary condition is used for all examples.

4.1. Transport equation. Our first experiment is a transport equation with
zero Dirichlet boundary condition:

(4.3) ut =  - ux ,

with an initial condition of

u(x, 0) =

\Biggl\{ 
sin2(2\pi x/(1 - T )) cos(2\pi x/(1 - T )) for 0 \leq x \leq 1 - T,

0 otherwise

for 0 < t \leq T and x \in [0, 1]. The clean data D is generated by explicitly solving
(4.3) with \delta x = \Delta x = 1/256, \delta t = \Delta t = 10 - 3, and T = 0.05. In theory, for the
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transport equation, the zero boundary condition should only be applied to the inflow
boundary. We design our initial condition and choose the evolution time T that the
solution value is 0 at the outflow boundary during the evolution. The same setup is
considered in the rest of this section.

Table 2

Identification of the transport equation (4.3) with different noise levels. In the noise-free case,
applying SDD does not introduce a strong bias. The identification results (second column) by ST
and SC are stable even with 30\% noise. Here w = 20 for ST, and \alpha = 1/200 for SC.

Method 0\% noise without SDD ec er

ST ut =  - 0.9994ux 6.20\times 10 - 4 4.89\times 10 - 4

SC ut =  - 0.9993ux  - 0.0010uxx 1.65\times 10 - 3 1.11\times 10 - 2

0\% noise with SDD ec er

ST ut =  - 0.9997ux 3.36\times 10 - 4 2.64\times 10 - 4

SC ut =  - 0.9997ux  - 0.0010uxx 1.34\times 10 - 3 1.11\times 10 - 2

10\% noise without SDD ec er

ST ut =  - 3.028\times 10 - 4uxx 1.00 5.55
SC ut = 9.4224u - 2.9992uxx 1.04\times 10 5.62

10\% noise with SDD ec er

ST, SC ut =  - 1.0357ux 3.57\times 10 - 2 2.67\times 10 - 2

30\% noise without SDD ec er

ST ut = 8.0587\times 10u - 2.6316\times 10 - 4uxx 8.16\times 10 1.88\times 10
SC ut = 8.2488\times 10u 8.25\times 10 1.86\times 10

30\% noise with SDD ec er

ST, SC ut =  - 0.9421ux 5.79\times 10 - 2 4.31\times 10 - 2

Table 2 shows the results of ST(20) and SC(1/200) with various noise levels. In
practice, we have no a priori knowledge of whether the given data contain noise, so we
conduct two experiments with and without SDD to check the effect of SDD on clean
data. We observe that SDD makes a small difference in the noise-free case. With
clean data, SC identifies an additional uxx term with a small coefficient, while ST can
rule out all wrong terms. The corresponding ec and er are both small. For 10\% or
30\% noise, the results by ST and SC with and without SDD are also shown. With
SDD, both ST and SC identify the correct PDE with small ec and er values. SDD
significantly improves the results.

To further demonstrate the significance of SDD and the effectiveness of ST and
SC, we display the noisy data with 10\% and 30\% noise, the denoised data, and the
recovered dynamics in Figure 6. Even though the given data contain a large amount of
noise, the recovered dynamics are close to the clean data. In the rest of the examples,
SDD is always used for ST, SC, and IDENT on noisy data.

Figure 7 shows how ec, er, and ee change when the noise level varies. Each
experiment is repeated 50 times and the error is averaged. We test IDENT, ST(20),
and SC(1/200). Figure 7 (a) shows that ec of ST or SC is much smaller than that of
IDENT when the noise level is larger than 20\%. Figures 7 (b) and (c) show er and
ee versus noise, respectively. The coefficient error ec by ST and SC is significantly
smaller than that of IDENT.

In Figure 8, we explore the robustness of SC with respect to the choice of \alpha . We
present ec and er versus 1/\alpha in (a) and (b), respectively, with 1\%, 5\%, 10\%, 20\% noise.
Each experiment is repeated 50 times and the error is averaged. The result shows
that SC, in this case, is not sensitive to \alpha , and there is a wide range of choices of \alpha 
that give rise to a small error.
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Fig. 6. Noisy and denoised data of the transport equation (4.3), as well as simulations of
the recovered PDE. (a) The clean data, (b) data with 10\% noise, (c) the denoised data S\bfx [U ], (d)
simulation of the PDE identified by ST and SC (identical). (e) Data with 30\% noise, (f) the denoised
data S(\bfx )[U ], and (g) simulation of the PDE identified by ST and SC (identical).
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Fig. 7. The average error ec, er, and ee over 50 experiments for the transport equation (4.3)
with respect to various noise levels. (a) The curve represents the average ec for IDENT [17] (Green),
ST (Red), and SC (Blue), and the standard deviation is represented by vertical bars. (b) The average
and variation of er for IDENT (Green), ST (Red), and SC (Blue). (c) The average and variation
of ee for IDENT (Green), ST (Red), and SC (Blue). The coefficient error ec by ST and SC is
significantly smaller than that of IDENT. (Figure is in color online.)

We next test ST and SC on data generated from the transport equation with a
discontinuous initial condition. We set the initial condition as
(4.4)

u(x, 0) =

\left\{ 
    
    

sin2(2\pi x/(1 - T )) cos(2\pi x/(1 - T )) for 0 \leq x < (1 - T )/3,

 - cos2(2\pi x/(1 - T )) + 0.5 for (1 - T )/3 \leq x < 2(1 - T )/3,

sin2(2\pi x/(1 - T )) for 2(1 - T )/3 \leq x \leq (1 - T ),

0 otherwise.

The clean data is generated by explicitly solving (4.3) with \delta x = \Delta x = 1/256, \delta t =
\Delta t = 10 - 3, and T = 0.05. After adding i.i.d. Gaussian noise, we have the noisy data.
We show the clean data and the noisy data in Figure 9. The identification results are
shown in Table 3. Even with the existence of discontinuities, ST and SC are stable
and can identify the correct PDE with up to 30\% noise.

D
o
w

n
lo

ad
ed

 0
2
/2

7
/2

3
 t

o
 1

4
3
.2

1
5
.1

6
.6

8
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST IDENT A1161

(a) (b)

10
0

10
1

10
2

10
3

10
4

1/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
c

1% noise

5% noise

10% noise

20% noise

10
0

10
1

10
2

10
3

10
4

1/

0

0.02

0.04

0.06

0.08

e
r

1% noise

5% noise

10% noise

20% noise

Fig. 8. Robustness of SC to the choice of \alpha for the recovery of the transport equation (4.3). (a)
and (b) display ec and er versus 1/\alpha , respectively, with 1\% (blue), 5\% (red), 10\% (orange), 20\%
(purple) noise. Each experiment is repeated 50 times, and the errors are averaged. We observe that
SC is not sensitive to \alpha , and there is a wide range of values for \alpha that give rise to a small error.
(Figure is in color online.)
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Fig. 9. Clean and noisy data of the transport equation (4.3) with the discontinuous initial
condition (4.4). (a) Clean data. (b) Noisy data with 10\% noise. (c) Noisy data with 30\% noise.

Table 3

Identification of the transport equation (4.3) with the discontinuous initial condition (4.4) and
different noise levels. In the noise-free case, applying SDD does not introduce strong bias. The
identification results (second column) by ST and SC are stable even with 30\% noise. Here w = 20
for ST and \alpha = 1/200 for SC.

Method 0\% noise without SDD ec er

ST ut =  - 1.0091ux + 9.65\times 10 - 4uxx 1.01\times 10 - 2 1.64\times 10 - 1

SC ut =  - 1.0511ux 5.11\times 10 - 2 4.43\times 10 - 2

0\% noise with SDD ec er

ST, SC ut =  - 1.0274ux 2.74\times 10 - 2 1.95\times 10 - 2

10\% noise ec er

ST, SC ut =  - 0.9913ux 8.72\times 10 - 3 5.90\times 10 - 3

30\% noise ec er

ST, SC ut =  - 0.9239ux 7.61\times 10 - 2 5.36\times 10 - 2

4.2. Burgers' equation. In the second example, we test our methods on the
Burgers' equation, which is a first order nonlinear PDE:

(4.5) ut =  - uux
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for 0 < t \leq T . We use the initial condition

u(x, 0) = sin(4\pi x) cos(\pi x)(4.6)

and zero Dirichlet boundary condition. Our data is generated by solving (4.5) with
\delta x = \Delta x = 1/256, \delta t = \Delta t = 10 - 3, and T = 0.05.

Table 4

Identification of the Burgers' equation (4.5) with initial condition (4.6) and different noise
levels. The identification results (second column) by ST and SC are good with small ec and er for
a noise level up to 40\%. Here w = 20 for ST and \alpha = 1/500 for SC.

Method 0\% noise without SDD ec er

ST ut =  - 1.0023uux  - 2.38\times 10 - 5uxuxx 2.35\times 10 - 3 5.07\times 10 - 3

SC ut =  - 0.9960uux 4.01\times 10 - 3 2.58\times 10 - 3

0\% noise with SDD ec er

ST ut =  - 1.0079uux  - 0.0001uxuxx 7.97\times 10 - 3 1.43\times 10 - 2

SC ut =  - 0.9888uux 1.12\times 10 - 2 7.20\times 10 - 3

10\% noise ec er

ST, SC ut =  - 1.0246uux 2.46\times 10 - 2 1.52\times 10 - 2

40\% noise ec er

ST, SC ut =  - 0.7366uux 2.63\times 10 - 1 1.64\times 10 - 1

Table 4 shows the results of ST(20) and SC(1/500) with various noise levels. With
clean data, ST identifies an additional term, but its coefficient is very small, and the
corresponding ec and er are small. SC works very well on clean data. With 10\% and
40\% noise, both methods identify the same PDE with small ec and er.

Figure 10 shows how ec, er, and ee change when the noise level varies. Each
experiment is repeated 50 times and the errors are averaged. We test IDENT, ST(20),
and SC(1/500). The results in Figure 10 show that ST and SC perform better than
IDENT.
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Fig. 10. The average error ec, er, and ee over 50 experiments for the Burgers' equation (4.5)
with respect to various noise levels, where the initial condition is (4.6). (a) The curve represents
the average ec for IDENT [17] (green), ST (red), and SC (blue), and the standard deviations are
represented by vertical bars. (b) The average and variation of er for IDENT (green), ST (red), and
SC (blue). (c) The average and variation of ee for IDENT (green), ST (red), and SC (blue). The
ec, er, and ee of ST and SC are much smaller than those of IDENT. (Figure in color online.)

In Table 5, we compare SC, ST from this paper with IDENT in [17], the methods
proposed in [34, 35]. The method from [35] uses the spectral method to compute the
spatial derivatives, which requires periodic boundary conditions. For a fair compari-
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son, we use the initial condition

u(x, 0) = sin(4\pi x) cos(2\pi x)(4.7)

and the periodic boundary condition (in which the boundary values are always 0).
Our data is generated by solving (4.5) with \delta x = \Delta x = 1/256, \delta t = \Delta t = 10 - 3, and
T = 0.05. We set w = 20 for ST, and \alpha = 1/500 for SC. For IDENT, we use SDD
to denoise the data and compute the partial derivatives, which improves the original
IDENT in [17]. For the method in [35], we use the denoising method specified in
[35, Example 3.9]. The identification results are shown in Table 5. Table 5 shows that
ST, SC, and IDENT are more robust than the method in [35] at various noise levels.
The errors given by ST, SC, and IDENT are also smaller. The results by the method
in [34] are similar to those of ST and SC when the noise level is low. For a large level
of noise, for example 40\%, ST and SC are more robust than the method in [34]. ST
and SC can still identify the correct PDE with 40\% noise.

Table 5

Comparison of ST, SC with IDENT in [17] and the methods in [35] and [34] for the identifica-
tion of the Burgers' equation (4.5) with the initial condition (4.7), and various noise levels. In this
table, we only include the reconstructed terms with the coefficient magnitudes above 10 - 2. ST and
SC are very stable compared to IDENT and the methods in [35] and [34]. The coefficient error ec
(4.1) and the time evolution error ee (4.2) are presented. With large noise, the errors given by ST,
SC are smaller than the errors by other methods.

Method 0\% noise ec ee

[35] ut =  - 0.01u - 0.95uux 6.49\times 10 - 2 1.56\times 10 - 4

[34] ut =  - 0.99uux 1.0\times 10 - 2 3.46\times 10 - 5

ST, SC, IDENT ut =  - 0.97uux 2.75\times 10 - 2 8.01\times 10 - 5

1\% noise ec e2

[35]
ut = - 0.14u+ 0.01u2

 - 0.89uux

2.82\times 10 - 1 3.42\times 10 - 4

[34] ut =  - 0.99uux 1.0\times 10 - 2 3.46\times 10 - 5

ST, SC, IDENT ut =  - 0.98uux 1.87\times 10 - 2 5.50\times 10 - 5

10\% noise ec ee

[35]
ut = - 0.07 + 0.4u

+ 0.44u2  - 0.15uux

1.76 2.59\times 10 - 3

[34] ut =  - 0.94uux 6.0\times 10 - 2 1.77\times 10 - 4

IDENT ut = 0.03ux  - 1.00uux 3.0\times 10 - 2 2.25\times 10 - 4

ST, SC ut =  - 1.00uux 1.74\times 10 - 3 2.88\times 10 - 5

40\% noise ec ee

[35]
ut = - 1 + 10.67u

+ 1.84u2  - 0.02uux

13.59 7.16\times 10 - 3

[34] ut =  - 0.93u - 0.38uux 1.56 1.84\times 10 - 3

ST, SC, IDENT ut =  - 1.02uux 2.39\times 10 - 2 8.27\times 10 - 5

4.3. Burgers' equation with diffusion. Our third example is the Burgers'
equation with diffusion, which is a second order nonlinear PDE:

(4.8) ut =  - uux + 0.1uxx .

We use the initial condition u(x, 0) = sin(3\pi x) cos(\pi x) and zero Dirichlet boundary
condition. We first solve (4.8) with \delta x = 1/256, \delta t = 10 - 5, and T = 0.05. The
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Table 6

Identification of the Burgers' equation with diffusion (4.8) with different noise levels. The
identification results (second column) by ST and SC are good with small ec and er for a noise level
up to 5\%. Here w = 20 for ST and \alpha = 1/10 for SC.

Method 0\% noise without SDD ec er

ST, SC ut =  - 1.0018uux + 0.1001uxx 1.67\times 10 - 3 8.14\times 10 - 4

0\% noise with SDD ec er

ST, SC ut =  - 0.9994uux + 0.1009uxx 1.36\times 10 - 3 7.68\times 10 - 3

1\% noise ec er

ST, SC ut =  - 0.9901uux + 0.1013uxx 1.02\times 10 - 2 1.19\times 10 - 2

5\% noise ec er

ST, SC ut =  - 1.0170uux + 0.0976uxx 1.77\times 10 - 2 2.21\times 10 - 2

given data is downsampled from the numerical solution such that \Delta x = 1/64 and
\Delta t = 10 - 4.

Table 6 shows the results of ST(20) and SC(1/10) with various noise levels. With
clean data, 1\% and 5\% noise, both methods identify the PDE with small ec and er.

Figure 11 shows how ec, er, and ee change when the noise level varies from 0.1\%
to 10\%. Each experiment is repeated 50 times, and the error is averaged. We test
IDENT, ST(20), and SC(1/10). Among the three methods, ST is the best. SC
does not perform as well as ST and IDENT when the noise level is large. For high
order PDEs, the high order derivatives are heavily contaminated by noise, even with
SDD, which affects the accuracy of cross-validation. While ST and IDENT use time
evolution, it is easier to pick correct features. In general, ST performs better than SC
for high order PDEs when the given data contain heavy noise.
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Fig. 11. The average error ec, er and ee over 50 experiments of the Burgers' equation with
diffusion (4.8) with respect to various noise levels. (a) The curve represents the average ec for
IDENT [17] (green), ST (red), and SC (blue), and the standard deviations are represented by vertical
bars. (b) The average and variation of er for IDENT (green), ST (red), and SC (blue). (c) The
average and variation of ee for IDENT (green), ST (red), and SC (blue). Among the three methods,
ST gives the best result. (Figure in color online.)

In Figure 12, we explore the effect of \alpha in SC on the Burgers' equation with
diffusion. Figures 12 (a) and (b) show ec and er versus 1/\alpha , respectively, with 0.5\%,
1\%, 3\%, and 5\% noise. When the noise level is low, such as 0.5\% and 1\%, we have a
wide range of good choices of \alpha which give rise to a smaller error. As the noise level
increases, the range of the optimal \alpha becomes narrow.
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Fig. 12. Robustness of SC to the choice of \alpha for the recovery of the Burgers' equation with
diffusion (4.8). (a) and (b) display ec and er versus 1/\alpha , respectively, with 0.5\% (blue), 1\% (red),
3\% (orange), 5\% (purple) noise. Each experiment is repeated 50 times, and the errors are averaged.
When the noise level is low, such as 0.5\% and 1\%, there is a wide range of values for \alpha , which give
a small error. As the noise level increases, the range of the optimal \alpha becomes narrow.

4.4. The KdV equation. We test our algorithms on the KdV equation

ut + 6uux + uxxx = 0(4.9)

on the spatial domain [ - 10, 10] and the time domain 0 \leq t \leq T with T = 0.4. We use
the initial condition u(x, 0) = 5 sech2(1.2x) and zero Dirichlet boundary condition.
The data is generated with \delta x = \Delta x = 0.1, \delta t = 10 - 5. Data are downsampled in the
time domain with \Delta t = 10 - 3. Our dictionary contains 1, u, ux, uxx, and uxxx and
their pairwise products. There are 15 terms in the dictionary. The identified PDE by
ST and SC from clean data is shown in Table 7. In this example, w = 20, \widetilde \Delta t = \Delta t/100
is used in ST, and \alpha = 1/1000 is used in SC. Our results show that both ST and SC
can identify the correct PDE.

Table 7

Identification of the KdV equation (4.9). Both ST and SC can identify the correct PDE.

Method Identified PDE ec er

ST, SC ut =  - 6.135uux  - 1.0580uxxx 2.77\times 10 - 2 1.21

4.5. A larger dictionary. The examples above involve a dictionary which
consists of the leading terms in the Taylor expansion of the governing equation
f(u, \partial \bfx u, \partial 

2
\bfx u). Our method is general and can be applied to other dictionaries.

We next test ST and SC on a larger dictionary, which includes 1, u, ux, uxx and
sin(2\pi u), cos(2\pi u) and their pairwise products. Since sin2(2\pi u) + cos2(2\pi u) = 1, we
exclude the term cos2(2\pi u) to guarantee a set of linearly independent features. This
dictionary contains 20 features. We consider the following PDE:

ut = u - 0.1ux sin(2\pi u)(4.10)

with the initial condition u(x, 0) = 0.8 sin(3\pi x) cos(\pi x) and zero Dirichlet boundary
condition. The data are generated by solving (4.10) with \delta x = \Delta x = 1/256, \delta t = \Delta t =
4\times 10 - 3, and T = 0.2. The identified PDEs by ST and SC with various noise levels
are shown in Table 8. On the clean data without SDD, ST identifies an additional
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term whose coefficient is very small. The corresponding ec and er are very small.
With up to 10\% noise, both ST and SC identify the correct PDE with a small ec and
er.

Table 8

Identification of the (4.10) with different noise levels. The results (second column) by ST and
SC are good with small ec and er for up to 5\% noise. Here w = 20 for ST and \alpha = 1/500 for SC.

Method 0\% noise without SDD ec er

ST
ut =0.9994u - 0.0995 sin(2\pi u)ux

 - 2.90\times 10 - 5 cos(2\pi u)uxx

1.01\times 10 - 3 1.73\times 10 - 3

SC ut = 0.9987u - 0.0992 sin(2\pi u)ux 1.88\times 10 - 3 1.13\times 10 - 3

0\% noise with SDD ec er

ST, SC ut = 0.9903u - 0.0895 sin(2\pi u)ux 1.83\times 10 - 2 1.49\times 10 - 2

5\% noise ec er

ST, SC ut = 0.9909u - 0.0887 sin(2\pi u)ux 1.85\times 10 - 2 1.56\times 10 - 2

10\% noise ec er

ST, SC ut = 1.0646u - 0.1026 sin(2\pi u)ux 6.11\times 10 - 2 1.33\times 10 - 2

4.6. Two-dimensional PDEs. We next apply our methods to identify PDEs
in a 2D space. The PDEs are solved with \delta x = \delta y = 0.02 and \delta t = 8 \times 10 - 4. Data
are downsampled from the numerical solution with \Delta x = 0.04 and \Delta t = 8 \times 10 - 3.
We fix w = 10 for ST and \alpha = 3/200 for SC.

The identification of 2D PDEs is more challenging and more sensitive to noise.
There are more features in two dimensions, and the directional variation of the data
adds complexity to the problem. We will show that both ST and SC are robust
against noise.

We first consider the following PDE:

\Biggl\{ 
ut = 0.02uxx  - uuy for (x, y, t) \in [0, 1]2 \times [0, 0.1],

u(x, y, 0) = sin2( 3\pi x0.9 ) sin
2( 2\pi x0.9 ) when (x, y) \in [0, 0.9]2 and 0 otherwise,

(4.11)

which has different dynamics along the x and y directions. Table 9 shows the iden-
tification results of ST(10) and SC(3/200) with noise level 0\%, 5\%, and 10\%. Both
methods identify the same features with small ec and er.

Table 9

Identification of the PDE (4.11) with different noise levels. The results (second column) by ST
and SC have small ec and er for up to 10\% noise. Here w = 10 for ST, and \alpha = 3/200 for SC.

Method 0\% noise ec er

ST, SC ut = 0.0189uxx  - 0.9525uuy 4.75\times 10 - 2 2.48\times 10 - 2

5\% noise ec er

ST, SC ut = 0.0178uxx  - 0.9362uuy 8.43\times 10 - 2 7.45\times 10 - 2

10\% noise ec er

ST, SC ut = 0.0134uxx  - 0.8674uuy 1.33\times 10 - 1 1.79\times 10 - 1

4.7. Identifiability based on the given data. For the PDE identification,
especially in high dimensions, the given data U plays an important role. When the
initial condition has sufficient variations in each dimension, the correct PDE can be
identified. Otherwise, there may be multiple PDEs which generate the same dynamics.
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For example, we consider the following transport equation:
\Biggl\{ 
ut =  - 0.5ux + 0.5uy, (x, y) \in [0, 1]\times [0, 1], t \in [0, 0.1],

u(x, y, 0) = f(x, y), (x, y) \in [0, 1]\times [0, 1],
(4.12)

where f denotes the initial condition.
We first choose the initial condition f(x, y) = sin(2\pi x/0.9)2 sin(2\pi y/0.9)2 for

(x, y) \in [0, 0.9] \times [0, 0.9] and 0 otherwise. The noise-free data are generated with
\delta x = \delta y = 0.02 and \delta t = 7\times 10 - 4, and downsampled in space by a factor of 2 and in
time by a factor of 10. The identified PDE by SC(1/200) is

ut =  - 0.5001ux + 0.4800uy ,

where the recovered coefficients are very close to the true coefficients. The same result
is identified by using ST(20).

We next choose f(x, y) = sin(2\pi x/0.9)2 for (x, y) \in [0, 0.9] \times \BbbR and 0 otherwise.
Our methods SC(1/200) and ST(20) both identify

(4.13) ut =  - 0.4992ux .

With this initial condition, the PDE in (4.12) has the exact solution:

u(x, y, t) =

\Biggl\{ 
sin( 2\pi (x - 0.5t)

0.9 )2, x \in [0.5t, 0.9 + 0.5t], (x, y) \in \BbbR \times [0, 1], t \in [0, 0.1],

0 otherwise,

which also satisfies ut =  - 0.5ux. The identified PDE in (4.13) approximates this
simpler equation. Since the given data only vary along the x direction, the columns
in the feature matrix related to y, e.g., uy, uxuy, and uyy, are mostly 0. This explains
why our method identifies the PDE in (4.13), instead of (4.12).

In this problem, the original PDE can be identified if the initial condition has
sufficient variations. The identifiability of a PDE for a given dictionary under spar-
sity constraints can be defined as follows: Suppose the original PDE is associated
with the coefficient vector c0 with sparsity S. This PDE is identifiable if there is a
unique coefficient vector with sparsity no more than S, such that the evolution of
the PDE associated with this coefficient vector, starting from the given initial con-
dition, matches the given data. We believe it is an open question to investigate the
theoretical conditions under which the PDE is identifiable. Roughly speaking, the
PDE problem is identifiable if the PDE solution with a given initial condition gives
rise to the feature matrix F , which has a small pairwise coherence, in the sense that
any two columns of F have a small correlation. We refer to [17, Theorem 1] for an
identifiability condition in LASSO.

4.8. SC comparison. Our SC strategy is two-fold: In the first fold, we first
choose the \alpha fraction of the rows for training and the rest for testing. In the second
fold, we choose the last alpha fraction of rows for training and the rest for testing.
Then we take the average of the two testing errors. We next compare the identification
results using our current strategy, the random selection, K-fold cross-validation, and
Monte-Carlo cross-validation:

\bullet SC (our current strategy): Without changing the time order of the data, for
a fixed 0 < \alpha < 1, we select the PDE by minimizing the average testing error
of two types. (1) Head: use the first \alpha of the data for training and the rest
for testing. (2) Tail: use the last \alpha of the data for training and the rest for
testing.
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Table 10

The PDE identification of (4.14) by SC with different sampling strategies.

With 0.5\% noise
Sampling strategy Identified PDE
SC: \alpha = 1/400 ut =  - 0.5000uux + 0.5002uuy

RSC: \alpha = 1/400 ut =  - 0.5000uux + 0.5002uuy

K-CV: K = 400 ut =  - 0.5000uux + 0.5002uuy

MC-CV: N = 100, \alpha = 1/400 ut =  - 0.5000uux + 0.5002uuy

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 13. The coefficient errors ec for different sampling strategies for the identification of the
PDE in (4.14) as the parameter \alpha varies. This shows that, in general, different sampling strategies
in SC lead to similar identification results.

\bullet Random SC (RSC): Randomly permute the data in time, then the remaining
procedure is the same as SC.

\bullet K-fold cross-validation (K-CV): Randomly permute the data in time, then
uniformly split the data into K groups. The error for a candidate PDE is
evaluated by taking the average of K testing errors: for k = 1, 2, . . . ,K, while
the kth group data is used for training, and the rest is for testing.

\bullet Monte-Carlo cross-validation (MC-CV): Fix the number of simulation N and
a coefficient 0 < \alpha < 1. For n = 1, . . . , N , randomly permute the data and
use the first \alpha of the data for training, and the rest for testing.

We consider the following underlying PDE:

ut =  - 0.5uux + 0.5uuy(4.14)

with the initial condition f(x, y) = sin(2\pi (x + y)) filtered by the Tukey window to
comply with our zero-boundary requirement. We add 0.5\% noise to the data set. The
methods above identify the same correct model, as shown in Table 10. Moreover, the
effective ranges for \alpha (or, equivalently, 1/K) for these sampling schemes are similar.
This is demonstrated in Figure 13, where we vary \alpha and record the coefficient errors
ec of the identified PDEs, respectively.

4.9. Choice of smoother in SDD. In this paper, we use Moving Least Squares
(MLS) as the denoising in SDD. To numerically justify this choice among Moving
Average (MA) [40], cubic spline interpolation [9], and diffusion smoothing [47], we
present the SDD results with these smoothers in Figure 14. We first solve the PDE

(4.15) ut =  - 0.4uux  - 0.2uuy, (x, y) \in [0, 1]\times [0, 1], t \in [0, 0.15] ,
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with \Delta t = 0.005 and \Delta x = \Delta y = 0.01, where the initial condition is u(x, y, 0) =
sin(3\pi x) sin(5\pi y). Then 5\% Gaussian noise is added to the numerical solution. Given
the noisy data, we perform SDD denoising with different smoothers to obtain various
partial derivatives. In MLS, we take the bandwidth h = 0.04. For MA, the window
size for averaging is fixed to be 3. For cubic spline (CS), we use the MATLAB
function csaps with p = 0.5. For the diffusion (DF) denoising, we evolve the noisy
surface following the heat equation ut = uxx + uyy with a time step size (\Delta x)2/4
for 5 iterations. Figure 14 shows the SDD results of u, ux, uyy, uux at t = 0.15 when
different smoothers are used in SDD. All of them recover U (the first row), while MLS
preserves the underlying dynamics the best, i.e., the first and second order derivatives.

u ux uyy uux

0\% -1

-0.5

0

0.5

1

-30

-20

-10

0

10

-1000

-500

0

500

1000

-10

-5

0

5

10

5\%

MA

CS

DF

MLS

Fig. 14. SDD results with different smoothers. The first row is the numerical solution of (4.15)
at t = 0.15 (0\% noise) with the initial condition u0(x, y) = sin(3\pi x) sin(5\pi y) and its various partial
derivatives. The second row shows the noisy data and its numerical derivatives when 5\% Gaussian
noise is added to the clean data. The bottom four rows are the SDD results at t = 0.15 using
MA, CS, DF, and MLS in order. While all methods recover U (the first row), the dynamics of the
derivatives, especially in the third and fourth rows, are best preserved by MLS.
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5. Conclusion. This paper developed two robust methods for PDE identifica-
tion from a single set of noisy data. First, we proposed a Successively Denoised
Differentiation (SDD) procedure to stabilize numerical differentiation, which signif-
icantly improves the accuracy in the computation of the feature matrix from noisy
data. We then proposed two new robust PDE identification algorithms called ST
and SC. These algorithms utilize the Subspace Pursuit (SP) greedy algorithm to se-
lect a candidate set and then refine the results by time evolution or cross-validation.
We presented various numerical experiments to demonstrate the effectiveness of both
methods. SC is more computationally efficient, while ST performs better for PDEs
with high order derivatives.

Appendix A. Objectives of minimization. We discuss the error representa-
tion to compare different objectives of PDE identification approaches. We consider
two ways to measure errors in PDE identification. The first one is the error be-
tween the identified numerical solution \widehat U and the exact solution u, which is given by
e(u) := \widehat U  - u. The second error is e(ut) := Dt

\widehat U  - ut, which measures the difference

between the numerical time derivative of \widehat U and the ground truth ut. These two er-
rors, e(u) and e(ut), are closely related, which relations are shown below (after Table
11).

Many existing methods for the identification of PDEs or dynamical systems in-
volve a minimization of e(u) or e(ut). Consider the following decomposition of e(u):

e(u) = \widehat U  - U\underbrace{}  \underbrace{}  
Data fidelity

+ U  - u\underbrace{}  \underbrace{}  
Measurement error

,(A.1)

where U is the given data. In (A.1), the Data fidelity \widehat U  - U represents the accuracy
of the identified PDE in comparison with the given data U . In literature, a class
of dynamic-fitting approaches such as [1, 4, 28, 38] focus on controlling the data
fidelity error in order to ensure whether the numerical prediction is consistent with the
evolution of the given data. TheMeasurement error U - u comes from data acquisition
where the given data are contaminated by noise. Denoising is an important step to
reduce the measurement error.

Table 11

Comparison of the objectives of PDE identification. For parameter estimation problems (Type
I), the feature variables of the underlying PDEs are known. For model identification problems (Type
II), such active set is unknown; hence sparsity is often imposed or neural network is designed.

Problems Objectives in minimization Methods

Type I
Data fidelity [1, 4, 28, 29, 38, 42]

Regression error [2, 3, 20, 30, 44]
Regression error, Data fidelity [48]

Type II

Data fidelity [23]
Regression error [34, 35]

Regression error, Data fidelity ST (section 3.1) [17]
Regression error, Coefficient error SC (section 3.2)

The second error e(ut) can be expressed as

e(ut) = Dt
\widehat U  - DtU\underbrace{}  \underbrace{}  

Response error

+ DtU  - F\widehat c\underbrace{}  \underbrace{}  
Regression error

+ F (\widehat c - c0)\underbrace{}  \underbrace{}  
Coefficient error

+(F  - F0)c0\underbrace{}  \underbrace{}  
System error

,(A.2)

where \widehat c is the estimated coefficient. The first term Dt
\widehat U  - DtU is called the Response

error, which is the difference between the numerical derivatives of the identified PDE
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and the given data. The L2 norm of the Regression error DtU  - F\widehat c is the most fre-
quently used objective function in PDE identification for the regression-based methods
[2, 3, 20, 30, 44]. In addition, one can introduce various types of regularization, such
as the L1 regularization [17, 34, 35] to induce sparsity. The coefficient error F (\widehat c - c0)
compares \widehat c and c0. This term vanishes when \widehat c - c0 lies in the null space of F , which
can occur even when \widehat c \not = c0. If the initial condition of the PDE is too simple, the null
space of F is very large, which makes the PDE identification problem ill-posed; see
(4.12) and (4.13) for an example. In order to guarantee a successful identification, the
initial condition should have sufficient variations so that F satisfies an incoherence or
null space property [12]. The final term (F - F0)c0 represents the System error, which
is due to the numerical differentiation in the computation of F . Our SDD denoising
technique can effectively reduce the system error.

We summarize the objectives considered by many existing methods in the liter-
ature in Table 11. These methods are categorized according to which error term(s)
they aim at minimizing. As for our proposed methods, ST minimizes the data fidelity,
and SC focuses on the coefficient error and the regression error.

If the numerical scheme for the computation ofDt
\widehat U is consistent, then \| e(u)\| \infty \rightarrow 

0 and \| e(ut)\| \infty \rightarrow 0 are equivalent as \Delta t,\Delta x \rightarrow 0. For n = 0, 1, . . . , N , we denote
e(u)n and e(ut)

n as the values of e(u) and e(ut) that occurred at time n\Delta t, respec-
tively. For j = 1, 2, . . . , N , we have

e(u)j  - e(u)j - 1

\Delta t
=

\widehat U j  - \widehat U j - 1

\Delta t
 - uj - 1

t + r\prime 

= e(ut)
j - 1 +

\Biggl( 
\widehat U j  - \widehat U j - 1

\Delta t
 - [Dt

\widehat U ]j - 1

\Biggr) 
+ r\prime ,

where \| r\prime \| \infty = O(\Delta t). By induction, we obtain the following connection between
e(u) and e(ut):

e(u)n = e(u)0 +

n - 1\sum 

j=0

e(ut)
j\Delta t+

n - 1\sum 

j=0

\Biggl( 
\widehat U j+1  - \widehat U j

\Delta t
 - [Dt

\widehat U ]j

\Biggr) 
\Delta t+ nr ,(A.3)

where the remainder \| r\| \infty = O(\Delta t2). Equation (A.3) suggests that if the approxi-

mation Dt
\widehat U is consistent and \| e(u)0\| \infty converges to 0 as \Delta x \rightarrow 0 , \| e(u)\| \infty \rightarrow 0

is equivalent to \| e(ut)\| \infty \rightarrow 0. Therefore, the PDE identification methods with the
goal of having \| e(u)\| \infty or \| e(ut)\| \infty approach 0 are equivalent.

It is often practical to consider a grid-dependent L2-norm of the errors, i.e.,
\| \cdot \| 2,\Delta = \| \cdot \| 2

\surd 
\Delta x\Delta t, where \| \cdot \| 2 denotes the ordinary L2 vector norm. We provide

an upper bound for \| e(u)\| 2,\Delta .

Theorem A.1. Suppose Dt
\widehat U is computed using the forward difference. Then

\| e(u)\| 22,\Delta \leq XdT 3\| e(ut)\| 2\infty +O(\| e(ut)\| \infty +\Delta t) +O(\Delta t) .(A.4)

Proof. Recall that U \in \BbbR 
MdN is the vectorization of the data. By the definition

of the grid-dependent norm, \| U\| 22,\Delta = \Delta xd\Delta t\| U\| 22 = XdT
MdN

\| U\| 22. Using (A.3), we
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have

\| e(u)\| 22 = \| e(u)0\| 22 +
N\sum 

n=1

\| e(u)n\| 22

\leq \| e(u)0\| 22 +
N\sum 

n=1

\left( 
 

n - 1\sum 

j=0

\| e(ut)
j\| 2

\right) 
 

2

\Delta t2 +Md
N\sum 

n=1

n2O(\Delta t4)

+
N\sum 

n=1

\| e(u)0\| 2
n - 1\sum 

j=0

\| e(ut)
j\| 2\Delta t+Md/2

N\sum 

n=1

\| e(u)0\| 2nO(\Delta t2)

+Md/2
N\sum 

n=1

n - 1\sum 

j=0

\| e(ut)
j\| 2nO(\Delta t3)

\leq \| e(u)0\| 22 +
N\sum 

n=1

\left( 
 

n - 1\sum 

j=0

\| e(ut)
j\| 2

\right) 
 

2

\Delta t2 +MdO(T 3\Delta t)

+ \| e(u)0\| 2
N\sum 

n=1

n - 1\sum 

j=0

\| e(ut)
j\| 2\Delta t+Md/2\| e(u)0\| 2O(T 2)

+Md/2
N\sum 

n=1

n - 1\sum 

j=0

\| e(ut)
j\| 2nO(\Delta t3) .

Since \| e(ut)
j\| 2 \leq Md/2\| e(ut)\| \infty , we can simplify the expression above as

\| e(u)\| 22 \leq \| e(u)0\| 22 +MdT 2N\| e(ut)\| 2\infty +MdO(T 3\Delta t)

+ TMd/2N\| e(u)0\| 2\| e(ut)\| \infty +Md/2\| e(u)0\| 2O(T 2) +Md\| e(ut)\| \infty O(T 3) .

Thus

\| e(u)\| 22,\Delta = \Delta xd\Delta t\| e(u)\| 22
\leq \Delta t\| e(u)0\| 22 +XdT 3\| e(ut)\| 2\infty +O(XdT 3\Delta t2)

(\| e(ut)\| \infty +\Delta t)\| e(u)0\| 2O(T 2Xd/2) +Xd\| e(ut)\| \infty O(T 3\Delta t) .

The upper bound expressed in (A.4) depends on several properties of the compu-
tational domain \Omega and the sampling grid: the resolution \Delta t and the domain size X,T .
To derive useful information from Theorem A.1, we assume that \| e(ut)\| \infty = O(\Delta t).
This condition holds, for example, when we use first order forward difference and the
underlying data is noiseless.

Corollary A.2. When the time-space domain is fixed, i.e., T > 0 and X > 0,
if | | e(ut)| | \infty = O(\Delta t), we have

\| e(u)\| 2,\Delta \rightarrow 0 , \Delta t,\Delta x\rightarrow 0 .(A.5)

This result suggests that, with the assumptions satisfied, increasing both the
time and space resolutions is a sufficient condition for controlling \| e(u)\| 2,\Delta \rightarrow 0. The
convergence of \| e(u)\| 2,\Delta as \Delta t,\Delta x\rightarrow 0 guarantees the success of the methods which
minimize the data fidelity term, e.g., ST and IDENT in [17].
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Appendix B. Proof of Proposition 3.1.

Proof. The proof is as follows:

[DtU ]\scrT 2  - [F ]\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
[DtU ]\scrT 1

= [DtU ]\scrT 2  - [ut]
\scrT 2 + [ut]

\scrT 2  - [F ]\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
[DtU ]\scrT 1

= [DtU ]\scrT 2  - [ut]
\scrT 2

\underbrace{}  \underbrace{}  
E1

+[ut]
\scrT 2  - [F ]\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
[ut]

\scrT 1  - [F ]\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
([DtU ]\scrT 1  - [ut]

\scrT 1)
\underbrace{}  \underbrace{}  

E2

= [ut]
\scrT 2  - ([F0]

\scrT 2

\scrA + [F ]\scrT 2

\scrA  - [F0]
\scrT 2

\scrA )
\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
[ut]

\scrT 1 + E1 + E2

= [ut]
\scrT 2  - [F0]

\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
[ut]

\scrT 1  - ([F ]\scrT 2

\scrA  - [F0]
\scrT 2

\scrA )
\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger 
[ut]

\scrT 1

\underbrace{}  \underbrace{}  
E3

+E1 + E2

= [ut]
\scrT 2  - [F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger 
[ut]

\scrT 1

\underbrace{}  \underbrace{}  
=0

+
\bigl( 
[F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger  - [F0]
\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger \bigr) 
[ut]

\scrT 1

+ E1 + E2 + E3

=
\bigl( 
[F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger  - [F0]
\scrT 2

\scrA 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger \bigr) 
[ut]

\scrT 1 + E1 + E2 + E3

=
\bigl( 
[F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger  - [F0]
\scrT 2

\scrA 

\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \bigr) 
[ut]

\scrT 1

 - [F0]
\scrT 2

\scrA 

\bigl( \bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger  - 
\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \bigr) 
[ut]

\scrT 1

\underbrace{}  \underbrace{}  
E4

+E1 + E2 + E3

=
\bigl( 
[F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger  - [F0]
\scrT 2

\scrA 

\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \bigr) 
[ut]

\scrT 1 + E1 + E2 + E3 + E4 .

Then we have

CEE(\scrA k;\alpha , \scrT 1, \scrT 2) \leq \| 
\bigl( 
[F0]

\scrT 2

\scrA 0

\bigl( 
[F0]

\scrT 1

\scrA 0

\bigr) \dagger  - [F0]
\scrT 2

\scrA 

\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \bigr) 
[ut]

\scrT 1\| 2
+ \| [DtU ]\scrT 2  - [ut]

\scrT 2\| 2 + \| 
\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger \| 2
\bigl( 
\| [F ]\scrT 2

\scrA \| 2 \| [DtU ]\scrT 1  - [ut]
\scrT 1\| 2

+ \| [F ]\scrT 2

\scrA  - [F0]
\scrT 2

\scrA \| 2 \| [ut]
\scrT 1\| 2

\bigr) 

+ \| [F0]
\scrT 2

\scrA \| 2 \| 
\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger \| 2 \| 
\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \| 2 \| [F ]\scrT 1

\scrA  - [F0]
\scrT 1

\scrA \| 2 \| [ut]
\scrT 1\| 2 .

In the last term on the right-hand side of the inequality, we applied the norm bound
in Theorem 4.1 of [45]. Then by setting

g(\scrA ;\alpha , \scrT 1, \scrT 2) = \| [DtU ]\scrT 2  - [ut]
\scrT 2\| 2 + \| 

\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger \| 2
\bigl( 
\| [F ]\scrT 2

\scrA \| 2 \| [DtU ]\scrT 1  - [ut]
\scrT 1\| 2

+ \| [F ]\scrT 2

\scrA  - [F0]
\scrT 2

\scrA \| 2 \| [ut]
\scrT 1\| 2

\bigr) 

+ \| [F0]
\scrT 2

\scrA \| 2 \| 
\bigl( 
[F ]\scrT 1

\scrA 

\bigr) \dagger \| 2 \| 
\bigl( 
[F0]

\scrT 1

\scrA 

\bigr) \dagger \| 2 \| [F ]\scrT 1

\scrA  - [F0]
\scrT 1

\scrA \| 2 \| [ut]
\scrT 1\| 2,(B.1)

we prove the theorem.
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