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Abstract

Inspired by the geometric properties of seal whiskers, the addition of spanwise undulations on a cylinder
have been shown to lower the mean and oscillatory forces and modify the frequency of flow-induced vibration
when compared to smooth cylinders. Previously, computational fluid dynamics (CFD) has been used to
characterize the hydrodynamic response with respect to specific geometric features. However simulations
are time intensive due to complex three-dimensional meshing and computation time, limiting the number
of geometric perturbations explored. A method is proposed in which the specific geometric features of
this complex topography can be modified during a simulation thereby decreasing the time per geometric
modification and removing the need for manual meshing of the complex structure. The surface of the seal
whisker inspired geometry is parameterized into seven defining parameters, each of which is directly controlled
in order to morph the surface into any realization within the defined parameter space. Once validated, the
algorithm is used to explore the undulation amplitudes in the chord and thickness directions, by varying
each independently from 0 to 0.3 thicknesses in increments of 0.05 at a Reynolds number of 500. The
force and frequency response are examined for this matrix of geometric parameters, yielding detailed force
trends not previously investigated. The impact of the bio-inspired morphing algorithm will allow for further
optimization and development of force-mitigating underwater devices and other engineering applications in
need of vibration suppression, frequency tuning, or force reduction.
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1. Introduction

Inspired by the unique geometry of seal whiskers, this paper computationally investigates the fluid flow
over an undulated cylinder by actively morphing the geometry. Unlike other mammals, seals have bumps
along the span of the whiskers, forming a unique undulated cylindrical geometry [1]. Undulated cylinders
that mimic the flow response of seal whiskers have been shown to reduce drag and vortex-induced vibrations
(VIV) by modifying the coherent wake structures typical of smooth cylinders [2].

The force reduction properties of undulated cylinders create intriguing design options for various engineer-
ing systems, such as hydrodynamic sensors, towing cables, support structures, and aerodynamic components.
However, the fluid flow response of the complete set of undulated topographies has not yet been thoroughly
characterized due to the large number of geometric parameters and potential flow regimes. Testing many ge-
ometric iterations is time-consuming as the spanwise undulations and subsequent variations in cross-section
impose challenges to consistent and high-quality surface rendering and mesh generation for computational
investigations. This research proposes an analytical definition of the bio-inspired undulated cylinder sur-
face geometry and a dynamic meshing routine to actively morph the surface to a sequence of prescribed

topographies during a flow simulation.

U,
O

X

yv 0

(a) Isometric view of a seal whisker inspired undulated cylinder.

(c) Geometric parameters, yz-plane.

(b) Geometric parameters, xz-plane.

Figure 1: Isometric and cross-sectional views of undulated cylinder geometry, as defined by Hanke et al. [2].

Flow is in the positive z-direction.



20

25

30

35

40

45

The first seal whisker model geometry was described by Hanke et al. [2], who used digital photography
measurements of 13 harbor seal whiskers to create seven geometric parameters that describe the spanwise
periodic geometry. The model geometry contains two sets of spanwise undulations out of phase with one
another as shown in Figure 1. Two inclined ellipses, described by their minor and major axes and the
inclinations angles in the = — z plane, form the interior structure of the model along with the half-wavelength
distance M. Using this model in a combination of simulations and experiments, Hanke et al. confirmed that
the the flow over the undulated structure did not display the regular pattern of alternating shed vortices
typical of smooth topographies and the von Karman vortex street was replaced with a higher pressure and
more symmetric wake, effectively eliminating VIV.

The dual undulation geometric model described by Hanke et al.  has been commonly used in fluid
flow studies around the undulated cylinder [3-7] . Building on work by Ginter et al [8] and Murphy [9], an
independent investigation characterized mean geometric parameters from 27 whiskers, including both harbor
and elephant seals [10]. This work presented a wide statistical variability in whisker geometry, confirmed
by morphological analyses showing geometric variation within and between species [1]. There have been
a handful of investigations that explore the influence of geometric variation such as comparing two distinct
wavelengths [3], removing one set of undulations [4], or shifting the phase between two sets of undulations
[11].

Recent work by Lyons et al. redefined the seven geometric parameters of the whisker model with respect
to hydrodynamic relevance and explored a low and high perturbation from each nondimensional parameter
from a baseline geometry [6]. A matrix of 16 geometric parameter combinations was created and a large-
eddy simulation (LES) was used to assess the effect of each parameter on the overall flow response. The
parameters that most significantly affect the flow response were found to be the aspect ratio, the wavelength,
and the two undulation amplitudes.

Each of the previous computational investigations has been limited in the number of distinct models
explored, making it difficult to assess the impacts of individual geometric parameters. Simulations are time
intensive due to the three-dimensional geometry and inherent time-dependent and unsteady flow phenomena
that must be resolved. Computational time is driven by the resolution and small time-step requirements,
but there is also a large time investment for the manual mesh generation of each new three-dimensional
geometry proposed, including debugging for mesh errors and a long transient time to reach steady state
before time-averaged statistics can be collected.

Furthermore, the nominal model of Hanke et al. [2], widely used in most experimental and numerical
investigations, does not explicitly define the surface geometry for the entire whisker model. As defined, the
end user must interpolate the smooth surface topography between the two defining ellipses at the peak and

trough locations. This ill-defined interpolation process introduces geometric variability from model to model
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and inevitably creates mild discrepancies in the measured flow response across various investigations.

To alleviate the computational limitations and variability among geometric models, the current paper
introduces a morphing whisker defined by the first complete topographic parameterization of the whisker
surface. The analytic surface description is incorporated into a dynamic mesh morphing algorithm such that
the geometric undulations are prescribed by the user throughout a single simulation, and the computational
flow solver responds immediately to the changes in topography.

Using the newly developed method, the two orthogonal undulation amplitudes of the seal whisker model
are modified systematically. Previous work has identified amplitude as an important parameter for drag
reduction response [6, 12], and that the combination of two amplitudes in orthogonal directions is more
beneficial than just one set of undulations [4, 7]. Recent research has also indicated that there may be a
broad range of wavelengths and amplitudes at which the mean and fluctuating forces are reduced, perhaps
beyond the morphological values found in seal whiskers [11]. To explore the amplitude parameter space
in more detail, the undulated geometry is modified with the dynamic surface morphing technique. In the
same manner as Lyons et al. [6], the two undulation amplitudes are recast into a nondimensional and
hydrodynamically relevant chord length amplitude and thickness amplitude, allowing for one amplitude to
be varied independent of another while holding the wavelength and phase-bias parameters constant. The
results produce a matrix of seven chord length amplitudes by seven thickness amplitudes, for a total of
49 distinct undulated cylinder geometries. The flow response in terms of mean and fluctuating forces is
discussed, linking it to the formation of unsteady flow structures and corresponding frequency spectra.

The algorithm and computational details are described in detail in Section 2. Section 3 compares the
newly developed topography with previous results and documents the transient response of the flow to the
mesh morphing process. Finally, the flow response to changes in two orthogonal undulation amplitudes is
presented, highlighting changes to the forces, flow structures, and frequency spectra as a function of each

undulation amplitude.

2. Methods

2.1. Overview of Surface Morphing Strategy

Staten et al. detail the surface morphing process for newly formed three-dimensional shapes encom-
passing a vast variation of geometries and outline the general process as follows: define the final surface
node positions, the curves connecting the nodes, and finally the surface mesh [13]. In a survey of techniques,
Samreh et al. describe the various categories of mesh deformation, summarizing the advantages and disad-
vantages of each approach [14]. The method described in this paper falls under the basis vector approach, in

which an analytical expression for the surface is developed and the changes from the initial to final state are
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prescribed by a sequence of vectors. The basis vector approach for dynamic meshing maintains the underly-
ing structure of the surface mesh, which is beneficial for computational fluid dynamics (CFD) as it satisfies
several requirements for fast simulation and convenient post-processing [15]. These benefits include the
ability to consistently deform the target shape smoothly regardless of the complexity, utilize the minimum
number of geometric variables to describe shape variations, maintain compatibility with existing geometries,
and maintain stability of the solution. An example of the basis vector approach is implemented by Wei et
al., who detail the motion of a structured mesh surface variation of square building corners, accomplished
by moving mesh points in a single direction [16].

Taking a similar approach to Wei et al., the sequence of vectors describing the nodal motion of the
undulated cylinder surface are confined to the radial direction, as illustrated in Figure 2. For simplicity,
the original undeformed geometry is depicted as a smooth cylinder without any undulations in Figure 2a.
However in practice, this initial geometry can be more complex and contain undulations defined by the
prescribed analytical expressions. The underlying structured surface mesh contains N, points across the
span and Ny points around the circumference. A vector, r,, defined from the z-axis, describes the location
of each surface point. For the simple case of a smooth cylinder, the vector r, is a constant radius.

The final undulated cylinder in Figure 2b is defined to be spanwise periodic (along the z-axis) and each
zy-plane maintains its z-coordinate throughout the morphing. Thus, points are constrained to move radially
within the xy-plane throughout the deformation. The vector defining the final location of the deformed mesh
point is given by r¢, and the transformation vector is the difference between the final and initial shape. To
ensure a smooth transition and stability of the fluid flow solver, the deformation is specified by multiple
intermediate shapes by dividing the transformation vector into a sequence of vectors Ar; [17], giving an

expression for the final location as
rf:ro—l—ZAri. (1)
i

Moving the points radially ensures they maintain the same 6 and z position before and after deformation.
Thus, parameterization of the three-dimensional geometry is performed by examining the surface at each
unique 6, as depicted in the zz-plane of Figure 2c. In this view, the surface geometry can be described as

having a radius r, which is a function of z and the fixed parameter 6, or r(z;6).

2.2. Parameterization of the Undulated Cylinder Surface

Hanke et al. first characterized the whisker morphology by seven topographic parameters as shown in
Figure 1: four semi-axes of the two inclined cross-sectional ellipses (a, b, k, 1), two angles that define the ellipse
inclination (a, 8), and one distance parameter between the two ellipses (M) [2]. This definition contains

inclined cross-sectional ellipses within the whisker geometry, only a skeletal structure of the geometry. Thus
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(a) Initial mesh surface (b) Final mesh surface
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(¢) Transition of surface mesh points from initial to final state

Figure 2: Overview of the surface mesh morphing from the initial to the final geometry based on the basis

vector approach in which the surface points are confined to motion in the radial direction.
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a complete analytical expression for the surface remains undefined. In order to morph the surface nodes into
a new undulated geometry, the function r(z; ) connecting the inclined ellipses must be defined with respect
to the seven geometric parameters of the inclined ellipses.

The parameterized function for r(z;0) is a two-part piecewise cosine function that intersects the geometry
defining ellipses at points R; and Ry, as shown in Figure 3. As the geometry is rotated about the z-axis

(thus changing the parameter ), the radial and spanwise location of R; and Rs move, but they remain the

extrema of the function r(z;6) by definition.
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Figure 3: Schematic of the surface parameterization.

The radii R; and Ry are calculated as

R abcos o @)
! V/(acosasin)? + (bcos )2
kl cos
Ry = i 3)

\/(kcos Bsin 0)2 + (I cos )2
using the original ellipse parameters with a detailed derivation in Appendix Appendix A.l. The wavelengths

of the cosine functions, A, and Ay, are similarly computed for each 6 position as

A, = M — Ry cosftana + Ry cosftan 3 (4)

Ay = M + Ry cosftana — Rg cosftan 8 (5)

and are a function of R; and Rs, as well as the original ellipse parameters. Finally, the piecewise surface

characterization function is expressed as
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where

21,n = —Rjcosftana + 2nM

Zo.n = —Rocosftan 5 + M + 2nM

us  and n € N.

Therefore, the surface vector r is expressed as r(r(z;6),6,z). The derivation above completes the ana-
lytical expression of the undulated whisker surface geometry based on the seven parameters that define the
skeleton.

To morph between an initial and final geometry, a transformation vector is defined as r =ry —r,. Over
a prescribed transformation time period, the surface experiences a smooth transition from the initial shape
to the final shape using a time-dependent sigmoid function (), scaled so that the transformation completes

within the user-defined prescribed time period yielding
ry =1, +s(t)r where 0<g(t) <1 (7)

The smooth and gradual transition from the initial to the final shape described by Equation (7) is illustrated

120 in Figure 4.

X
Y

(a) The initial cylinder; ¢ =0 (b) An intermediate topography (c) The final cylinder; ¢ =1

Figure 4: Transformation process using a time-dependent sigmoid function.

2.8. Computational Details

The computational scheme utilizes the OpenFOAM finite volume libraries [18] to compute the flow field
and the mesh motion resulting from the the morphing whisker geometry. The governing equations for the

fluid flow are the incompressible Navier-Stokes equations,

0 1 5
&u_—;Vp—(V-u)u+VV u (8)

V-u=0 (9)
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where u is the velocity vector, p is the density, p is the pressure, and v is the kinematic viscosity. The
surface morphing described in Section 2.2 initiates the mesh motion of all computational cells in the domain.
To account for the mesh motion of each cell, an additional equation is solved at every timestep to update the
mesh nodal displacement field, x,, at every point in the computational domain. The nodal displacement is

governed by the mesh motion equation

OV - [uVXm] + V- [1(Vxm) T — VX — Tt1(Vxpm))] = 0, (10)

which is known as the solid body rotation (SBR) stress equation [19]. Once the mesh has been updated,

the fluid solver updates the velocity and pressure based on the new mesh coordinates and the volume flux
imposed by the mesh motion. The variable p represents a diffusivity in the mesh motion and is inversely
proportional to the distance from the mesh node to the cylinder surface. This setup ensures that the motion
of the cells is spread out over the entire domain and not contained to the local deformation of the surface.
Consequently, the mesh resolution near the surface, and thus within the boundary layer, does not change
drastically as the cylinder evolves from one undulated topography to the next.

The dynamic mesh motion is driven through the boundary conditions at the surface of the cylinder, which
are prescribed according to the equations presented in Section 2.2. As shown in Figure 5, the outer boundary
is prescribed zero motion and remains stationary. During the morphing process, the mean thickness, T, of
the cylinder remains constant, and is subsequently used as a reference length. The computational domain
is circular in the zy-plane with a radius of 757 and extends two wavelengths in the spanwise direction,
L,. Inlet flow boundary conditions are prescribed for & < 0, whereas outlet flow conditions are prescribed
for z > 0, and periodic boundary conditions are applied across the span. A second-order finite volume
method is utilized within OpenFOAM with a standard pressure-implicit split-operators (PISO) solver, and

a second-order backward scheme is used to advance time.
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Figure 5: Schematic of the initial 3D computational domain with a smooth cylinder at center.

2.4. Simulation Parameters and Workflow

Fluid flow simulations are performed at an angle of attack of zero degrees such that the flow aligns with
the z-axis, perpendicular to the cylinder thickness. The Reynolds number of the simulations is Rep = 500,
nondimensionalized by the mean thickness, T. As shown by Figure 6, the amplitude of the undulations are
defined by A¢, the amplitude in the chord or streamwise direction, and A, the amplitude in the thickness
or transverse direction. Both amplitudes are normalized by the mean thickness, T'. Defining the amplitudes
in this manner allows for each amplitude to be varied independently of one another while holding other
hydrodynamically relevant parameters constant, such as the wavelength and aspect ratio. Changing the
amplitudes Ap and A¢ requires modification of six of the original geometric parameters, as Ar = |b —I|/T
and Ac = |acosa — kcosB|/T. A thorough explanation of the relationship between the amplitude-based
geometric parameters of Figure 6 and the ellipse-based geometric parameters of Figure 1 can be found in

Lyons et al. [6].
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Figure 6: Geometric definitions of the amplitude in the chord length A¢, amplitude in the thickness Ap, the

wavelength A, aspect ratio v, and the asymmetry parameters ¢ and ¢.
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The wavelength A\, nondimensionalized by thickness T, is 3.43, and the aspect ratio -y, the ratio of the
mean chord length to mean thickness, is 1.92. The remaining two nondimensional quantities that introduce
asymmetry into the model’s undulations as seen in whisker specimens are also held constant at € = 0.342 and
¢ = 0.015. These values match the geometric parameters in the nominal model by Hanke et al [2], and are
similar to values utilized in previous studies [3, 4, 6, 7]. To investigate the effect that changes in amplitude
have on the flow response, each of the two nondimensional amplitudes is varied independently from 0 to 0.3
in increments of 0.05 while all other geometric parameters remain constant.

After each variation in geometry, the flow is allowed time to adjust to steady state conditions after which
the flow response is averaged to compute the mean drag coefficient Cp, the root-mean-square (RMS) value of
the lift oscillations Cr, gars, and the frequency spectra from the lift oscillations. The drag and lift coeflicients

Cp, Cy, are computed as

2Fp

Cp = TTL (11)
2F,

Cr = L. (12)

where Uy, is the freestream velocity, L, is the span length in the z-direction, and p is the fluid density. The
drag and lift forces, Fp and FJ,, are normalized by the averaged frontal and planform areas T'L, and CL,,
respectively. The frequency of the oscillating lift f is nondimensionalized as

_IT

I (13)

The dominant peak in the lift spectrum is reported as the Strouhal number, St. Each new geometric
perturbation is allotted 10 convective time units (CTU) for the transition, 150 CTU for the transient flow
response once the shape has been formed and another 450 CTU for the steady state to collect the values of
response variables.

Figure 7 compares the proposed mesh morphing workflow (red) and a standard manual meshing workflow
(blue) while iterating through multiple geometric models. The major advantage of the proposed mesh
morphing workflow is the human input is removed from the iteration process, converting the manual hours
of mesh generation and debugging to CPU hours. Thus, dynamic mesh morphing can be implemented during
an active simulation to transform the model from one topography into the next without user intervention.
The proposed method also decreases simulation time due to the faster transient regimes, as transitioning from
one geometry with fully-developed flow to another geometry with fully developed flow is computationally
faster than transitioning from an initial condition of uniform flow at all cells. Finally, the initial input of the
user can be a very simple mesh, in this case a two-dimensional (extruded) circular cylinder, which is easy to

create, refine, and validate.

11
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Figure 7: Comparison between a traditional mesh-solve-repeat process for iterating through multiple geo-

metric configurations (top, in blue) and the proposed mesh morphing workflow (bottom, in red).

2.5. Mesh Resolution

While the current work investigates a range of amplitude values, mesh independence verification is per-

formed for the widely investigated model geometry presented by Hanke et al. [2], hereafter referred to as
the nominal model. For this model, Ac = 0.23 and A7 = 0.09. The mesh resolution study is performed
by creating four smooth cylinder meshes of various resolutions as the initial shape, each morphed into the
nominal whisker model geometry. The four initial mesh resolutions are described in Table 1 in terms of the
nodes in the radial, circumferential, and spanwise directions. Mesh points are clustered around the surface of
the cylinder in the radial direction for resolution of the boundary layer (BL), clustered around the cylinder

wake in the circumferential direction, and evenly spaced in the spanwise direction.

12
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Table 1: Resolution and mesh attributes of the underlying cylinder (initial configuration).

Number of total mesh nodes N 2.57TM 1.92M 1.39M  0.718M
N, 110 100 90 68
Ny 216 196 176 160
N, 110 100 90 68
Mesh points in BL at 6 = 90° 17 16 15 12
Abmin 0.009561 0.01129 0.01331 0.01550
Abmax/AOmin 3.137 2.678 2.254 1.935

Each simulation progresses to a fully developed flow over the initial circular cylinder geometry before
initiating the surface morphing algorithm. The hydrodynamic forces (Cp,CL rms) resulting from each of
the four different mesh resolutions in Table 1 are compared with one another and with those of previous
investigations in Table 2. As the resolution is increased, the mean drag slowly decreases to where there is only
a 0.9% difference at the added expense of 0.65 million cells between the two most refined meshes, whereas
the RMS lift force fluctuates between 0.0099 and 0.0122. The four mesh resolutions have comparable results
with the previous studies at Rep = 390 — 500 despite the small changes in undulated geometry that exist
from model to model, due to no common surface definition. These changes are demonstrated in more detail

in Section 3.1. Based on these results, and to best conserve the computational time, the mesh resolution of

1.92M is selected to carry out the current simulations.

13
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Table 2: Mesh configurations of the undulated cylinder model compared with previous literature. Reynolds

number from previous literature converted to be based on mean thickness, T, for consistency.

N Rer Cp CrLrus

0.718M 0.718M 500 0.741 0.0157
1.39M 1.39M 500 0.714 0.0129
1.92M 1.92M 500 0.708 0.0099
2.5TM 2.5T™M 500 0.701 0.0122
Lyons et al. [6] 1.92M 500 0.717  0.0111

Lyons et al. [6] 0.718M 500 0.715  0.0163
Witte et al. [3] 8M 390 0.769  0.0173
Hans et al. [4] N/A 390 N/A 0.011

Kim and Yoon [20] 3.5M 390 0.741  0.0167

3. Results

3.1. Validation of Surface and Mesh Morphing

The method described in Section 2.2 is, to the best of the authors’ knowledge, the first analytical param-
eterization of the entire seal whisker surface. The parameterization utilizes and maintains the definitions of
the inclined cross-sectional ellipses first proposed by Hanke et al. [2] and commonly used by researchers,
and it also completely describes the periodic surface geometry between the ellipses. To assess the difference
between the proposed analytical surface and surfaces created by other techniques, a comparison is performed
with the topography in Lyons et al. [6]. In Lyons et al, the model is formed from two sets of inclined ellipses
(for two wavelengths) and the whisker surface is created with the computer-aided-design (CAD) software
Solidworks using a sequence of splines. Both models have the same nominal value of parameters a, b, k, [, M, «
and (3, although the interpolation between the inclined ellipses is performed differently.

To perform the comparison, the surface mesh from Lyons et al. is used as an initial configuration and the
mesh morphing algorithm is subsequently applied. Thus, any radial motion of the mesh points will indicate
differences between the new surface parameterization and the CAD generated surface. Figure 8a illustrates
the distribution of the radial difference between each mesh point. The comparison shows that 96.6% of
the mesh points are within 2% thickness difference with the original location. The maximum difference is

4.07% of the whisker thickness T' and the mean and median difference are 0.59% and 0.41%, respectively.

14
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Figure 8b highlights the locations of larger radial coordinate differences across the two wavelengths. The
largest differences can be observed near (x,y,z) = (-1, 0, 0.6) as well as (1, 0, 6.868) which is hidden due
to the orientation in Figure 8b. The differences in Figure 8b also highlight that although the underlying
ellipses form a periodic scaffold in the CAD implementation, this periodicity is not automatically applied
in the Solidworks spline surface generation, leading to imperfect surface periodicity. The analytic function

proposed in this paper alleviates this problem by mathematically describing the entire periodic surface.
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% Thickness (b) Mesh points of the newly generated surface compared
(a) Distribution of coordinate difference in the with previous surface generation in Lyons et al. [6]. Colors
radial direction. indicate coordinate displacement in radial direction.

Figure 8: Tllustration of (a) distribution and (b) locations of radial coordinate differences between a whisker

surface generated by Lyons et al. [6] and by the newly proposed algorithm.

The novelty of the proposed algorithm is in the analytical formation and surface morphing of the seal
whisker topology. However, changes in the the surface geometry drive the motion of the entire nodal field
in the domain as defined per Equation (10). Thus, Figure 9 displays the mesh properties in the vicinity of
the body throughout the morphing from a smooth cylinder into the nominal whisker model. Two spanwise
locations are examined on the peak and trough of the thickness undulation. The structured mesh remains
structured throughout the evolution of the mesh deformation and the aspect ratio remains relatively stable.
The equiangle skewness angle, or the deviation from orthogonal element angles, has a maximum of 0.17 in
the original cylinder mesh, increasing to 0.37 along the trough cross-section, both of which are well below
the recommended maximum value of 0.5-0.9. Whereas Figure 9 demonstrates typical mesh properties of the
results found in this paper, the mesh properties can be further tuned and improved by generating a custom
distribution of mesh cells in the initial cylinder geometry, or by modifying the governing mesh deformation
equation (Equation (10)) and/or its diffusivity parameter pu.

Finally, the hysteresis of the surface morphing and resulting mesh motion is investigated by morphing a

smooth cylinder to a nominal seal whisker model and then back to a smooth cylinder. By examining the
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(a) The cell aspect ratio remains similar at both spanwise cross-sections as the mesh changes

from a circular cylinder to the nominal seal whisker model.
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(b) The equiangle skewness is increased from a maximum value of 0.17 to 0.37 in the seal

whisker model.

Figure 9: The cell aspect ratio and equiangle skewness mesh metrics are displayed at the thickness peak and
trough locations at select times during the morphing. From left to right: circular cylinder mesh, halfway

morphed, nominal seal whisker geometry.
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displacement of each node in the field at the final timestep, the maximum displacement between the initial and
final cylinder mesh is on the order of 1 x 1071, which is an order of magnitude smaller than the prescribed
tolerance of 1 x 1079 on the mesh motion solver. This confirms that neither the analytical equations
prescribing the motion of the surface mesh nor the resulting mesh motion of the interior computational
domain have hysteresis effects. Thus, moving from one intermediate geometry to another will elucidate the

same geometric response regardless of the number and path of prescribed morphing iterations.

3.2. Transient Response of the Flow

Although the mesh motion does not create hysteresis, the flow solver and the physical response of the flow
take some time to adjust to the modified surface geometry. To investigate the transient flow response, the
drag coefficient is examined through the morphing from a steady state cylinder flow to the nominal whisker
model and the reverse morphing back into a cylinder. Figure 10 displays the forces for each of these regimes,
color coded for steady state (blue), active morphing (red), and transient flow (green). From this data, it is
confirmed that the mean steady state forces in the final cylinder flow matches with that of the initial cylinder
flow. The transition period is chosen conservatively to be 150 CTUs, however could likely be reduced further
based on this data. The morphing is performed over 10 CTUs, which is also chosen conservatively. The drag
coefficient from different rates of morphing is shown in the inset of Figure 10, demonstrating that a slower
rate (50 CTUs) and a faster rate (5 CTUs) both converge to the same mean drag force before the end of the
transient regime.

In a second demonstration of the morphing algorithm, a geometric transformation is performed with
four undulated cylinder models where A7 = 0 and A¢ increases through the values A¢c = 0.0, 0.1, 0.2, and
0.3, as shown in Figure 11. The hydrodynamic forces are recorded throughout the process, with the same
morphing rate (10 CTUs) and transition time (150 CTUs) as Figure 10. From the response seen in both the
drag and lift of Figure 11, the flow quickly adapts to new geometries and achieves a new steady state. The
steady state regime (shown in blue) is where the time-averaged force statistics are computed.

In a rough estimate of the time savings for this four geometry simulation (using the values in Figure 7) the
manual meshing and debugging process is reduced from 24 hours to 2 hours. This savings would only grow
if more modifications are added, as there is no additional time cost for remeshing. Both methods take an
equal amount of CPU time for four geometries, however the mesh-morphing becomes slightly more efficient
as the number of geometries increase. This savings could be improved with less conservative transient flow

times, which may be suitable for various applications.

3.3. Influence of Amplitude on Forces

To explore the effects of geometric modifications to a whisker inspired undulated cylinder, the two am-

plitude parameters are varied independently between 0 and 0.3 while holding the remaining geometric pa-
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Figure 10: The plot of drag force with respect to time illustrates the same force response for a circular
cylinder before and after morphing to the nominal seal whisker model. Blue: steady state regime; Red: active
morphing, Green: transient flow. The inset displays three rates of morphing of 50 (slow), 10 (moderate), or

5 (fast) convective time units.
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Figure 11: Results from a single simulation including mesh-morphing transitions between four models are
shown. Models have a fixed value of Ar = 0 with Ac = 0, 0.1, 0.2, and 0.3. Plots of drag coefficient (top)
and lift coefficient (bottom) show smooth mesh morphing transitions between each of the four geometric

models.
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rameters constant, forming a matrix of 49 undulated cylinder geometries. The dynamic mesh morphing
algorithm is utilized to reduce the 49 geometries to eight simulations, as shown in Figure 12, with each

simulation containing six or seven unique topographies.
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Figure 12: Parameter space of A¢c and Ar variation. Each solid line denotes one simulation with multi-step

transformations using the mesh morphing algorithm.

The hydrodynamic response for each of the 49 whisker geometries is quantified by Cp and Cf, gas with
results shown in Figure 13. Both Cp and Cr,rms show similar trends with respect to Ac and Ar, with
maximum values in the lower left corner where Ay and A¢ are zero, indicating the smooth elliptical cylinder
topography. When Ar = 0, the drag and oscillating lift coefficients decrease slightly as A¢ increases from 0
to 0.1. However, a larger drop is seen during the transition from an A¢ of 0.1 to 0.2. Similarly when A¢ = 0,
Cp and C 1,rRMms decrease as Ar increases from 0 to 0.3. However, the forces are reduced more quickly with
the introduction of Ap than Ac. The response suggests the potential for a limiting threshold value for A
and A7 if oscillating lift and drag reduction is desirable.

At low to moderate Ay values, Ay = 0.05 and 0.1, Cp, ras continues the previous pattern of reduction
with increasing Ac. The drag initially decreases as A¢ increases with local minima at (A¢, A7) = (0.05,0.1)
and (0.15,0.05) then begins to increase again at larger A values but remains lower than the absolute
maximum at (0,0). These local Cp minima do not align with C r,rvs minima. Therefore, careful selection
of geometric parameters should be made in order to achieve the desired response based on application. When
Ap > 0.15, Cp generally monotonically increases with larger Ac values; however, the Cr,rMms Tesponse is
more complex. For Ar > 0.1, the local minima occur when Ac = 0.05 — 0.1. Finally when Ay = 0.3,

Cr rms is consistently low from Ac = 0 — 0.15, giving a wider region of low lift oscillations in the top left
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Figure 13: Flow response in terms of Cp (left) and Cr gas (right) for the 49 geometric variations of

amplitudes.

corner, and a global minimum at (A¢, Ar) = (0.05,0.25).

Although it is clear that small changes in Ar and A¢ affect the flow, the dominant effects are examined
by looking at flow features from the extreme values, (Ac, Ar) = (0,0.3), (0.3,0) and (0.3,0.3). Given the
changes in spanwise undulations across the models, notable differences can be seen in the spanwise velocity
component, U,. Figure 14a displays the spanwise velocity of the these three cases within two yz-planes, one
near the leading edge and another just before the trailing edge of the geometry. In the (0,0.3) case, there
are large undulations in thickness and thus the freestream flow is quickly redirected into the positive and
negative z-direction to overcome the change in thickness, displaying strong (10% of freestream) spanwise
velocity immediately at the leading edge. Flow also continues to accelerate in the streamwise direction as
shown by the streamlines in Figure 14b. The early onset of the spanwise velocity component gives way to
alternate bands of transverse vorticity forming at the leading edge and continuing to grow along the surface
before being transported into the wake as seen in Figure 14c. Interestingly, the spanwise velocity is lower
at the trailing edge than the leading edge. Of the three cases demonstrated, this has the lowest mean drag
and the lowest RMS lift.

In the second column is (A¢, Ar) = (0.3,0), corresponding to a large amplitude in the chord and no

undulations in thickness. In contrast to the first model, the (0.3,0) geometry produces a minimal amount
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of spanwise velocity at its leading edge. Spanwise flow develops as it travels over the surface, and has
increased substantially by the trailing edge, revealing large regions of alternating positive and negative flow
with U,> 0.1U. This later development of spanwise velocity is a consequence of the spanwise pressure
gradient induced by the change in local chord length. As flow moves over the shorter chord length cross-
sections, a larger adverse pressure gradient is created than for the more streamlined (long chord length)
cross-sections. Thus, the flow shifts towards the low pressure region near the long chord length trailing
edge as can be visualized by the streamlines in Figure 14b which seem to accumulate around the locations
of highest amplitude at the trailing edge. In contrast to the high thickness amplitude model, this process
develops very little transverse vorticity along the surface.

In the third column of Figure 14, (A¢, Ar) = (0.3,0.3) demonstrates a super-positioning of two large
amplitudes in both chord and thickness. The initial spanwise velocity is muted due to the presence of the
chord length amplitude, and the tendency of the streamlines to gather at the highest chord amplitude is
diminished with the introduction of the thickness amplitude. Nevertheless, the (0.3,0.3) model develops
transverse vorticity early and then appears to sustain the layers further downstream as the spanwise flow
feeds into them at the trailing edge. This most extreme combination of amplitudes still has a moderate drag
reduction compared to other models tested, matching that of the (0.3,0) model, and a low to moderate RMS

lift reduction, performing better than (0.3, 0).

3.4. Influence of Amplitude on Lift Force Frequency

Introduction of three-dimensional vorticity as shown in Figure 14c can help prevent a dominant two-
dimensional spanwise shear layer roll-up, a phenomenon previously noted by others [11, 12]. In addition
to decreasing the amplitude of the lift response, the changes in vortical shedding patterns directly affect
the frequency distribution of the lift signal. An analysis of the lift spectrum provides insight into the flow
characteristics of each topography. A single St value may characterize the dominant frequency of some flow
patterns. However, comparing the full frequency spectra allows for a better understanding of the subtle flow
differences among these models. The lift spectra for select models are shown in Figure 15. Each spectrum
plot is paired with isosurfaces of (Q-criterion, which visualizes the strength of vortices in the wake and
demonstrates the variation in these vortical structures.

The baseline smooth elliptical cylinder, (A¢, Ar) = (0,0), is shown in the lower left and displays a
strong peak in the frequency domain at a reduced frequency of f* = 0.22. This sharp peak is associated
with a mostly two-dimensional shedding of alternating sign vorticity typical of smooth cylinders. Moving
upwards from the lower left in Figure 15, the dominant amplitude at approximately 0.22 shifts to a slightly
lower frequency in (A¢, A7) = (0,0.1) before forming lower and broader peaks in (0,0.2) and (0,0.3). This
dramatic change is associated with a breakup of the spanwise coherent structures shown in the baseline

model and consistent with a large decrease in forces shown in Figure 13. The spectrum at (0,0.3) has a
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Figure 14: Comparison among simulated cases with extreme amplitudes, (A¢, A7) = (0,0.3), (0.3,0), and

(0.3,0.3), shows the variation in induced spanwise flow and subsequent transverse vorticity development.
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Figure 15: Shedding frequency spectra for a range of cases Ac = 0, 0.1, 0.2, 0.3 and A = 0, 0.1, 0.2, 0.3.
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diminished peak at f* = 0.16 with an amplitude approximately two orders of magnitude lower than the
dominant peak in the baseline model.

When Ar is held constant and A increases (moving from left to right), the peak gradually reduces in
amplitude and slightly decreases its frequency. This is most clearly demonstrated in the bottom two rows.
At (Ac, A1) = (0,0.1) a similar response to the smooth cylinder exists. However it has been replaced with
a very broad peak from f* = 0.17 — 0.21 at (0.2,0.1), and only a small peak at f* = 0.17 remains when
(Ac, A7) = (0.3,0.1). The isosurfaces are each unique and show decreasing levels of spanwise coherence
with smaller spectral amplitudes and frequency shift. The lowest levels of drag and RMS lift are represented
across the top left side of Figure 15, where the amplitude of the signal drops off quickly for any frequencies
above the peak at f* = 0.17. At the highest Ay amplitude of 0.3 moving from left to right along the top
row, there are fewer changes in the spectra as the dominant frequency is f* = 0.16, shifting to f* = 0.15
when A = 0.3. In this row there is a notable increase in amplitude of the higher frequencies with increasing

A, which is not likely to be visible in the isosurfaces displayed.

4. Conclusion

A new surface morphing technique is introduced that is able to modify features of the seal whisker model
geometry during CFD simulations, creating a faster and simpler mechanism for exploring geometric varia-
tions. Using the base geometric scaffold previously defined by two inclined ellipses [2], the complete surface
topography is parameterized, which eliminates small changes in surface rendering between various imple-
mentations of seal whisker models. To implement the algorithm, a simple two-dimensional extruded cylinder
flow can be used as an initial condition, eliminating the many hours of manual meshing and debugging for
complex three-dimensional geometries. Despite the time savings in manual meshing, the mesh morphing
algorithm does not increase the overall CPU time.

Next, the mesh morphing algorithm is used to explore the two amplitudes of the seal whisker model, one
in the chord direction (A¢) and one in the thickness direction (Ar). Large values of both A and A (up
to 30% of the thickness) are shown to increase spanwise transport although through different mechanisms.
The creation of spanwise velocity near the leading edge results in the development of transverse vorticity,
giving large A7 geometries a slight advantage in force reduction compared with large Ac geometries. The
combination of extreme values of Ac and Ar does not provide any further reduction in drag or lift forces.
At smaller amplitudes, combinations of undulations work together to increase flow three-dimensionality
producing local minima such as the model (A¢, Ar) = (0.1,0.1). Accordingly, the lift force frequency
spectra show broader dominant peaks at lower frequencies for cases with considerable breakup of spanwise
flow structures.

The results of the 49 model geometries offer much more detail into the force and flow response as a
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function of undulation amplitude but are consistent with data presented in previous work. The effects of the
presence of both undulations were assessed in the computational work by Yoon et al. where, building on the
work of Hans et al., seven whisker inspired models were simulated and compared with a smooth elliptical
cylinder [4, 7]. Yoon et al. concluded that non-zero values of both Ac and Ar are required for maximum
reduction of drag and oscillating lift. They also noted that the introduction of Ac had a larger impact
on the force reduction than the introduction of A [7]. Within the range of Ac and Ar values simulated,
Ac ~ 0.23 and Ar = 0.09, the results presented here support both of these conclusions. A wider range of
amplitude values was investigated by Lui et al., although both amplitude parameters were modified together
to maintain a constant local aspect ratio rather than varying A and Ar independently [11]. Their results
showed consistent low values of Cp and Cr.rms across the range of amplitude values simulated. Lyons et
al. simulated only two A¢ and two Ar values and reported Ac to have a more significant effect on Cp [6].
However in this more detailed exploration, both amplitudes are shown to reduce Cp when compared to a
smooth elliptical cylinder, albeit through different mechanisms.

This newly proposed mesh transformation algorithm can further enable feature variation within the seal
whisker inspired geometries as they apply to various engineering applications in drag reduction, vibration
suppression, or hydrodynamic sensing. Although not explored here, future work could include active flow

control techniques enabled through the mesh morphing algorithm.
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pendix A. Appendix

Appendiz A.1. Deriwation of Ry and Ry

An ellipse with radii a and b, can be expressed with the equation

+-=1 (A1)

in the coordinate system z’,y’ that has an angle o with respect to the z-axis.

In order to complete calculations parallel and perpendicular to the fluid flow, the coordinate system can be

rotated about the y-axis using the transform

28


http://arxiv.org/abs/https://doi.org/10.2514/2.1391
https://doi.org/10.2514/2.1391
https://doi.org/10.2514/2.1391
https://doi.org/10.2514/2.1391
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.102724
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.102724
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.102724
https://doi.org/10.1016/j.jweia.2014.01.008
https://doi.org/https://doi.org/10.1016/j.ijsrc.2019.12.007
https://doi.org/https://doi.org/10.1016/j.ijsrc.2019.12.007
https://doi.org/https://doi.org/10.1016/j.ijsrc.2019.12.007
https://doi.org/10.1063/1.168744
https://doi.org/10.2514/6.2009-341
https://doi.org/10.1063/1.5008658
https://doi.org/10.1063/1.5008658
https://doi.org/10.1063/1.5008658

—_ + = =1. A4
a? cos? o + b2 (A4)

Next, substituting y = x tan 6, and solving for x, the ellipse equation can be rewritten in terms of 6 as

ab cos

— . A.5
v V/b% + (acos artan 6)2 (&.5)

Then, R; is defined by

b
Ry = /7322—1-342: ab cos a (A6)

V/(acosasinB)? + (bcos )2

Using the same procedure, Ry can be also derived as

B klcos 8
o = V/(kcos Bsin )2 + (I cos 0)2 (A7)
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