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Wavefront shaping correction makes it possible to image fluorescent particles deep inside scattering tissue. This requires
determining a correction mask to be placed in both the excitation and emission paths. Standard approaches select
correction masks by optimizing various image metrics, a process that requires capturing a prohibitively large number
of images. To reduce the acquisition cost, iterative phase conjugation techniques use the observation that the desired
correction mask is an eigenvector of the tissue transmission operator. They then determine this eigenvector via optical
implementations of the power iteration method, which require capturing orders of magnitude fewer images. Existing
iterative phase conjugation techniques assume a linear model for the transmission of light through tissue, and thus only
apply to fully coherent imaging systems. We extend such techniques to the incoherent case. The fact that light emitted
from different sources sums incoherently violates the linear model and makes linear transmission operators inappli-
cable. We show that, surprisingly, the nonlinearity due to incoherent summation results in an order-of-magnitude
acceleration in the convergence of the phase conjugation iteration. © 2022 Optica Publishing Group under the terms of the

Optica Open Access Publishing Agreement
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1. INTRODUCTION

One of the core challenges when performing linear fluorescence

microscopy inside tissue is the fact that biological tissue is highly

scattering at visible wavelengths. This limits the clinical applicabil-

ity of linear fluorescence microscopy techniques to thin superficial

layers, as incoming and outgoing light propagating through the tis-

sue is highly aberrated. In turn, this precludes widespread clinical

use for tasks such as vasculature imaging, laser light therapy, and

tumor detection.

A promising approach to overcome the multiple scattering chal-

lenge is wavefront shaping correction: If one reshapes the incoming

(or outgoing) coherent wavefront, such that its aberration is conju-

gate to the aberration that will happen inside the tissue, then after

propagation the wavefront will focus into a sharp spot inside the

tissue.

Adaptive optics techniques [1–3] were first used to correct mod-

est aberrations, for example, due to imperfect optics or refractive

index variations in the tissue. More recently, wavefront shap-

ing techniques [4,5] have shown that it is possible to focus light

through thick, highly scattering layers [6–9]. Wavefront shaping

ideas have found applications in a wide range of imaging modal-

ities, including sound and light, coherent imaging and OCT, and

incoherent fluorescence imaging using single-photon and multi-

photon excitation. Our interest in this work is wavefront shaping

for linear, single-photon fluorescence feedback.

The practical application of wavefront shaping is hindered by
the difficulty of finding the wavefront correction to apply. This
wavefront correction varies between different tissue layers, and
even between different positions inside the same tissue sample. The
simplest approach for finding the wavefront correction is to use a
so-called guide star [10–19]: In this case, scattering arises from a
strong single point source inside the tissue, and a wavefront sensor
[9,14] directly measures the scattered wavefront.

Finding a wavefront shaping correction in the presence of
multiple sources is more challenging, and typically involves opti-
mization strategies relying on a variety of feedback mechanisms
[6–8,11–13,20–32]. This optimization is tractable when the wave-
front correction can be described by a small number of parameters
(e.g., using Zernike polynomials [33,34]). However, to focus inside
thick highly scattering media, it is desirable to use all the degrees of
freedom of a modern spatial light modulator (SLM), often in the
megapixel range. As a result, this approach poses nontrivial opti-
mization challenges [6,12,30,35]. Even if we can test every such
free parameter only once [32], the very large number of images
captured for optimization limits any real-time applicability.

For fully coherent imaging systems, an alternative class of
techniques estimating the wavefront correction is iterative phase
conjugation. These techniques use the observation that a wave-
front shaping correction focusing on a single point inside tissue is
an eigenvector of the transmission matrix of the scattering sample
[35]. They then find these eigenvectors using an optical implemen-
tation of the power method [36], which iterates between sending
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in a wavefront, measuring the scattered wavefront, and using
the measurement as the successive input. Often this procedure
converges after a very small number of iterations, leading to an
order-of-magnitude acquisition speedup compared to standard
optimization approaches. Iterative phase conjugation has found
successful applications for sound [37,38] and acousto-optics
[39,40], where the propagation is fully coherent. Although not
presented this way, a similar iterative scheme was also applied for
two-photon fluorescent imaging [41].

An important assumption underlying the coherent iterative
phase conjugation scheme is that light scatters only once. This
greatly limits its applicability to thin or sparse volumes. Our goal
in this work is to develop an iterative phase conjugation approach
that is applicable to linear (single-photon) fluorescent imaging. As
the emitted light does not excite the tissue or the particles again,
by working with fluorescent sources we can greatly relax the single
scattering assumption, making our approach applicable to much
thicker volumes in a particular tissue.

The primary technical challenge in this setting is that any
uncorrected incident wavefront (such as the wavefronts used dur-
ing the power method) will excite more than one fluorescing point
inside the tissue sample, and the excited points will emit light that
sums incoherently. Consequently, we cannot model the relation
between the input excitation and output fluorescent emission
using a linear transmission operator, as fully coherent iterative
phase conjugation techniques do. To overcome this challenge,
we analyze the incoherent case, and report two findings: First,
we show that the same power method procedure as in the fully
coherent case can be used to recover the correction pattern also in
the incoherent case. Second, we show that, whereas for the fully
coherent case the power method converges at an exponential rate,
for the incoherent case it converges at a doubly exponential rate.
We demonstrate these findings experimentally, focusing light
on fluorescent beads attached at the back of the chicken breast
tissue layers. Our technique achieves wavefront correction after
capturing as few as 10–30 images, compared to thousands of

images captured by existing optimization-based wavefront shaping
strategies for fluorescent imaging [21].

2. PRINCIPLE

Figure 1 shows our imaging setup. A laser beam illuminates a tissue
sample via a microscope objective. A phase SLM at the Fourier
plane of the illumination arm modulates the illumination pattern.
The modulated laser light excites the fluorescent beads at the back
of the sample. The emitted light is collected via the same objective,
and reflected at a dichroic beam splitter. A second phase SLM
at the Fourier plane of the imaging arm modulates the emitted
light. Finally, the modulated light is measured by the front cam-
era, which captures the images used by our algorithm. The setup
includes a second validation camera behind the tissue sample. In
our experiments we attached fluorescent beads at the back of the
tissue layer, so that the validation camera can image them directly.
We emphasize that measurements from this camera are not used
by our algorithm, and that we only use the camera for validation
purposes, to assess the focusing quality and to image an undistorted
reference of the bead layout.

We derive a strategy to efficiently find a wavefront shaping
modulation pattern for the illumination arm, allowing us to focus
all light into a single spot inside the tissue sample. Once we have
found the modulation pattern, we use the same modulation to
also correct the emitted light in the imaging arm. This is pos-
sible because, in our linear fluorescent imaging setting, emission
and excitation wavelengths are relatively close. Our approach
extends to the incoherent imaging case iterative phase conjugation
ideas that were previously used with coherent illumination. We
begin our presentation by reviewing the coherent case, and then
introduce the incoherent one.

A. Coherent Iterative Phase Conjugation

Consider a set of K scattering (nonfluorescent) particles inside a
sample, and denote their positions by o1, . . . , oK . We denote by u
the value of an incoming 2D electric field at the input plane, and

Fig. 1. Our wavefront correction fluorescent microscope setup: A laser beam is exciting fluorescent beads at the back of a tissue layer, and fluorescent
emission is scattered again through the tissue, reflects at a dichroic beam splitter and is collected by a main (front) camera. We place two SLMs in the Fourier
planes of both illumination and imaging arms to allow reshaping these wavefronts. A validation camera views the beads at the back of the tissue directly. This
camera is not actually used by the algorithm, and is only assessing its success. LP, linear polarizer; BS, beam splitter, DBS, dichroic beam splitter; BPF, band-
pass filter; L1 . . . L7, lenses; and Obj, objective.
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by ν a K × 1 vector of the field propagating through the sample at
each of the K scatterers. Although u is a 2D field, we reshape it as a
1D vector and relate ν to u as ν = T

iu, where T i is the incoming
transmission matrix describing coherent light propagation. T i is
specific to the tissue sample being tested. Likewise, we denote by
T

o the back-propagation transmission matrix, describing the light
returning from the particles to the sensor. The propagation of light
to the particles and back to the sensor is then modeled using the
combined transmission matrix

T
a ≡ T

o · T i . (1)

Note that Eq. (1) offers a simplistic description of light propa-
gation, assuming there is not much light backscattered from other
structures in the medium apart of the listed particles o1, . . . , oK ,
and multiple scattering between the particles is negligible.

Under fully coherent illumination, the input illumination and
the measured speckle intensity are related as

I = |T au|2. (2)

Our goal is to find an illumination pattern u that will focus on
one of the particles, so that ν is a one-hot vector—nonzero only at a
single point ok for some k value. We note that focusing at any of the
particles is sufficient for our setting; below, we show that once we
focus at one point, we can use the memory effect to focus at nearby
ones.

To find a wavefront modulation we need access to T
i , but in

practice we can only measure T a. The wave conjugation principle
states that the returning transmission matrix is the transpose of the

incoming one, T o = T
i⊤ [42]. With this assumption, consider

an illumination field u that, after propagating through the tissue
sample, generates a one-hot ν vector. If we focus all light at one
particle, then by the wave conjugation principle the returning field
is proportional to the incoming one. Therefore, we can express the
returning intensity in Eq. (2) as

I = s |u|2 = |T au|2, (3)

where s is a scale factor; that is, a focusing wavefront is
an eigenvector of the combined transmission matrix T

a.
Consequently, if we can compute eigenvectors efficiently, we
can find a wavefront that focuses all the light in a single spot.

A common class of numerical algorithms for computing matrix
eigenvectors follows the power method [36]. This algorithm
relies on the fact that the sequence u, T au, (T a)2u, (T a)3u . . .

converges exponentially fast to the largest eigenvector of T
a.

Iterative phase conjugation algorithms [37–40] do not acquire
the full transmission matrix T

a, but instead directly meas-
ure its optical operation on wavefronts of interest. They begin
by illuminating the sample with a random wavefront u0, then
iteratively measure the resulting output wavefront, and use its
conjugate as a successive illumination pattern. That is, at the t-th
iteration, the incident wavefront is u(t) = (T au(t−1))∗, where ∗

denotes complex conjugation. When measuring intensity images
I = |T au(t)|2, computing u(t+1) also requires estimating the phase
of the measured intensity pattern.

Using the exponential convergence property of the power
method, it can be shown [36], and we review the derivation in
Supplement 1 that the energy focused on the k-th particle at the
t-th iteration follows a geometric sequence of the form

|ν
(t)
k | =

1

Nt
λt

k · ck, (4)

for constants λk, ck and a normalization factor N(t) that we derive
in Supplement 1. Equation (4) implies that the energy at the k-th
particle scales exponentially with the iteration number t . Thus,
each iteration increases the gap in energy between the strongest and
second strongest particles, and the sequence quickly converges to a
one-hot ν vector.

B. Incoherent Phase Conjugation

The main limitation of coherent iterative phase conjugation is that
to describe the propagation using the model of Eq. (1) one neglects
multiple scattering between the particles, as well as backscatter-
ing from any other tissue components. This in turn limits the
applicability of the technique to thin or sparse volumes. By using
fluorescent emission, we remove this restriction, because even in
thick tissue it is reasonable to assume that the emitted light does
not excite the tissue or the other beads again. Moreover, we show
that the incoherent summation of fluorescent emission results in
largely accelerated convergence. However, an adaptation of the
power method to the incoherent case is not straightforward due to
the nonlinearity imposed by incoherent emission.

To study the incoherent case, we need to adjust the model above
in two ways. First, we now mark by o1, . . . , oK the positions of
the fluorescent particles rather than all scatterers in the volume.
We use T

i to describe propagation at the excitation wavelength
λi , andT

o to describe propagation at the emission wavelength λo .
Despite the small difference between the emission and excitation

wavelengths, we still assume that T o ≈ T
i⊤. Note that T i, T o

describe multiple scattering events by other tissue components
apart from the listed fluorescent particles o1, . . . , oK .

Second, whereas in the coherent case the output wavefront is
a linear function of the input T au(t), this linear model no longer
holds when incoherently summing light from different emitters.
To derive an image formation model for this case, we again use
ν = T

iu to denote the field arriving at the fluorescent emitters.
Fluorescent emission is proportional to the intensity of ν, and the
recorded intensity equals an incoherent summation

I =
∑

k

|T o
:,k |

2|νk |
2, (5)

whereT o
:,k is the k-th column ofT o.

If we manage to focus and ν is a one-hot vector, then there is
only a single nonzero term in the summation of Eq. (5). Denoting
the index of this nonzero entry by ko , we can express the intensity in
Eq. (5) as

I = |T o
:,ko

|2|νko |
2 = |T o

:,ko
νko |

2 = |T o
ν|2

= |T o
T

iu|2 = |T au|2. (6)

Therefore, when focusing is achieved, Eq. (5) effectively reduces
to Eq. (2), and the measured intensity is equivalent to |T au|2.
Then, in the incoherent case, a focusing wavefront is still an
eigenvector of the transmission operatorT a = T

o · T i .
Motivated by this observation, we apply iterative phase conju-

gation as in the coherent case. As we measure only the intensity of
the emitted light, to recover the phase of the wavefront, we use a
phase diversity acquisition scheme [43]. We place J = 5 known
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modulation patterns H j on the phase SLM of the imaging arm. At
the t-th iteration, we measure speckle intensity images

I (t, j ) =
∑

k

|h j ⋆ T o
:,k |

2|ν
(t)
k |2, (7)

where ⋆ is a convolution, h j is the Fourier transform of the pattern
we placed on the SLM, and |ν t

k |
2 is the intensity arriving at the k-th

particle in the t-th iteration. We use gradient descent optimization
to find a complex wavefront u(t+1) minimizing

∑

j

∣

∣I (t, j ) − |h j ⋆ u(t+1)|2
∣

∣

2
. (8)

We then use the conjugate of the estimated wavefront as the
excitation of the next iteration, and display it on the SLM of the
illumination arm.

When the intensity image is an incoherent summation from
multiple sources, there is typically no wavefront minimizing
Eq. (8) with zero error. Despite this, we show in the supplement
that the resulting wavefront is approximately equal to a weighted
linear combination of the wavefronts T o

:,k generated by the indi-
vidual sources. Sources with a stronger emission receive a higher
weight in the reconstruction, which further increases their weight
in the next iteration of the algorithm.

In the supplement, we analyze the differences between the
coherent and incoherent models, and we show that the incoherent
summation results in an asymptotically faster convergence rate. In
particular, we prove the following claim:

Claim 1. The convergence of the power iterations in the incoherent
case follows a doubly exponential sequence of the form

|ν
(t)
k |2 =

1

N(t)
(λk)

2t
· ck (9)

for scalars λk, ck derived in Supplement 1.
To understand the difference, we note that in the coherent case

of Eq. (4), the energy at the different particles scales as λt
k . In the

incoherent case, we get another exponential factor, and energy

scales as (λk)
2t

. Intuitively, this is because the fluorescent emission
is proportional to the intensity of the field |ν(t)|2 arriving at the par-
ticles, rather than to the field ν

(t) itself. As ν
(t) is squared in every

iteration, the squaring is accumulated into another exponential
term.

To visualize the faster convergence, in Fig. 2 we simu-
lated coherent and incoherent power iterations on a random
transmission matrix sampled as described in Supplement 1.

In practice, in the hardware implementation described below,
our algorithm converged within about 2–6 iterations. Accounting
for the five images used for phase acquisition at each step, our
approach can find a wavefront correction pattern using about
10–30 image measurements. This provides orders of magnitude
speedup compared to recent optimization-based approaches
recovering a wavefront shaping correction pattern using a single-
photon fluorescent feedback, which requires capturing thousands
of images [21].

3. RESULTS

In our experimental implementation, we use fluorescent micro-
spheres each with a diameter of 200 nm (FluoSpheres (dark red),
ThermoFisher), excited and imaged with N A = 0.5 objectives
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Fig. 2. Simulating coherent and incoherent convergence: We plot

the power of scatterers |ν
(t)
k |2, for different iterations of the iterative

phase conjugation algorithm. As predicted by theory, the incoherent case
converges into a one-hot vector within a smaller number of iterations
(compare four incoherent iterations to 15 coherent ones). The x axis of
our plot corresponds to scatterer index k, where for ease of visualization
we sort these in decreasing order of power.

so that the particles are slightly smaller than the diffraction limit.
For excitation, we use a 637 nm laser, and to measure the emission
we use a bandpass filter with a center wavelength of 680 nm and
a bandwidth of 10 nm. In the main paper, we use chicken breast
tissue slices with thicknesses of 200–400 µm as scattering sam-
ples. In Supplement 1, we also show results using other scattering
phantoms, including parafilm and polystyrene beads dispersed in
agarose. For all examples, significant scattering is present, and a
standard microscope cannot image the actual source pattern. The
beads are attached at the back of the tissue layer, separated only
by a 150 µm microscope cover glass. We use two SLMs (Pluto,
HOLOEYE Photonics), and a prime BSI sCMOS sensor for
imaging fluorescent emission.

Figure 3 visualizes the power iterations of our algorithm from
both the main camera and the validation camera. In the beginning,
the main camera sees a wide speckle pattern, and from the vali-
dation camera we can see that a wide speckle pattern reaches the
back of the tissue. We also use a bandpass filter on the validation
camera to image the beads excited by each modulation pattern.
The validation camera confirms that as the algorithm proceeds the
illumination reaching the back of the tissue converges into a single
spot. Even if we manage to excite a single bead, the emitted light
can scatter on its way to the main camera and generate a speckle
pattern. In Fig. 3, we first visualize this scattering by showing the
views of the main camera when modulation is used in the illumi-
nation SLM to focus the excitation, but with no modulation at
the imaging arm. In addition, we show what happens if the modu-
lation pattern of each iteration is also placed on the SLM of the
imaging arm. As the iterations proceed and the modulation pattern
improves, the imaging SLM refocuses the light emitted from the
excited bead into a single sensor spot.

When multiple fluorescing particles are present in the field
of view, the algorithm typically converges to the strongest one.
However, the particle at which the algorithm converges may
vary due to multiple reasons such as imaging noise, fluorescence
bleaching or local minima of the phase diversity optimization.
Convergence can also change if the optimization is initialized with
a different speckle pattern.

In Fig. 4, we demonstrate the final iteration of our algorithm on
a few additional examples. In Fig. 4(c), we also visualize the actual
scattering of the tissue layer. To this end, we place the correction
mask on the illumination SLM only, bringing all light to excite a
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Fig. 3. Algorithm convergence: We show the iterations of our power algorithm on two different tissue samples. We demonstrate views via the main
camera seeing the front of the tissue with and without the modulation correction, and the validation camera observing fluorescent beads directly. To better
appreciate the focusing we used, the validation camera to capture both the excitation and emission wavelengths. In the first iteration, we see a speckle image,
but as power iterations proceed the illumination wavefront converges and focuses on a single bead. When the same modulation pattern is placed at the
imaging arm, imaging aberrations are corrected and one can see a sharp image of the excited bead. Note that images in different iterations have very different
ranges and, for better visualization, each image was normalized to its own maximum.

single bead. We use no correction on the imaging arm, allowing us

to visualize the speckles from this source. This image corresponds

to a column of the transmission matrixT o.

In Fig. 5, we visualize the phase diversity acquisition results at

the first and last iterations of the algorithm. Figure 5(a) shows the

image from the main camera in both iterations when the imaging
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Fig. 4. Analyzing focusing inside a tissue: Each row visualizes a different experiment on a different tissue slice. (a) Main camera when SLMs are blank,
demonstrating initial speckles. (b) Validation camera when illumination SLM is blank, demonstrating the enlightened bead layout at the emission wave-
length. (c) Speckles from one bead (imaging SLM is blank and illumination SLM is corrected), demonstrating the amount of aberration. (d) Validation
camera when illumination is corrected, demonstrating that most light gets into a single spot (excitation wavelength). (e) Main camera when both SLMs are
corrected, demonstrating focusing in a single spot.
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Fig. 5. Phase reconstruction: (a) Speckle image captured by the main
camera in the first and last iteration of the algorithm. (b) Intensity of the
recovered aberration correction in the sensor plane. In the first iteration,
when multiple incoherent beads are excited, we cannot fully explain the
image as a single coherent wavefront. However, as the algorithm converges
to excite a single bead, the recovered wavefront better matches with the
captured image. (c) Phase of the recovered aberration correction in the
Fourier plane, which is the mask presented on the SLM.

SLM applies no correction. Figure 5(b) shows the intensity of the
recovered wavefront at the plane of the camera sensor, which is
set conjugate to the plane of the fluorescent sources. The phase
diversity optimization attempts to explain the images in Fig. 5(a).
However, in the first iteration, the captured speckle image is an
incoherent summation from multiple particles, which the opti-
mization objective of Eq. (8) attempts to explain with a single
coherent wavefront; thus, the result is imperfect. In the last iter-
ation, the algorithm excites a single particle, and the estimated

wavefront better explains the captured intensity. Finally, Fig. 5(c)
shows the retrieved phase in the frequency domain, which is essen-
tially the pattern displayed on the SLM. We note that because we
use a phase-only SLM we effectively correct only the phase of the
wavefront and neglect its amplitude.

A. Imaging a Wide Field of View

The recovered modulation pattern is designed to focus at a single
particle inside the tissue sample. However, due to the memory
effect, the corrections of nearby spots are similar. We demonstrate
this experimentally in the second row of Fig. 6: We place a random
pattern on the illumination arm, which results in exciting multiple
fluorescing particles. We then place the correction pattern recov-
ered to focus on one of the fluorescing particles on the imaging
arm. We observe that, thanks to the memory effect, the camera can
image a small neighborhood of particles around the focus points,
and not just the single particle the correction pattern corresponds
to. To further improve on this, we use the tilt-shift memory effect
[44,45] and shift the modulation mask in the Fourier plane. As we
explain in the supplement, this shift allows us to focus at nearby
regions using the same correction pattern. In the third row of Fig. 6,
we image a wider range of particles behind the tissue sample, by
scanning 21 × 21 such shifts. We acknowledge that by placing the
SLM at a plane conjugate to the sample itself [44,46] rather than
in the Fourier plane, we can probably expand the region corrected
by a single modulation and reduce the number of required shifts.
Even after exploiting the tilt-shift, the extent of the memory effect
is limited, and beads at the periphery of the images of the last row
in Fig. 6 are either not recovered or strongly aberrated. Imaging
beyond this region would require the application of another set
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Fig. 6. Imaging a wide area of fluorescent sources, behind four different tissue slices. Top: Reference image from the validation camera. Second row:
Imaging fluorescent sources within a small region behind the tissue using a simplified memory effect. We use the correction mask on the imaging arm, and
use wide illumination to excite multiple beads. Third row: Using the tilt-shift memory effect to image a wider area, by shifting the imaging mask in the
Fourier plane.

of power iterations to calibrate a different wavefront modula-
tion, amplifying the importance of the faster convergence of our
proposed procedure.

4. DISCUSSION

We extended iterative phase conjugation algorithms to apply
to incoherent fluorescent imaging. Even though the incoherent
contribution of different sources alters the linear transmission
model from which these algorithms are derived, we show that the
nonlinear incoherent model accelerates convergence rate, from
exponential to doubly exponential. To find a wavefront correction
pattern, we need to excite the tissue with a very small number of
trial patterns and measure the resulting excitation. The number of
measurements is orders of magnitude smaller than that of previous
optimization-based techniques.

We used the recovered modulation pattern to image fluores-
cent particles placed behind a tissue sample. However, wavefront
correction in thick tissue is spatially varying, and each modulation
pattern is only usable for imaging a limited region, with size deter-
mined by the memory effect. To image a wider region behind the
tissue sample, we have to apply the modulation recovery algorithm
multiple times in different subregions. This makes it even more
important to have fast wavefront shaping algorithms. One way to

further reduce the number of acquired images is to use a tilt-shift
adaptation of the aberration correction estimated in one region,
and initialize with it the power iteration in neighboring subregions.

Our current results apply only on a sparse set of fluorescent par-
ticles. Increasing the density of the sources is challenging because
as speckle contrast decays [47], it is harder for the phase diversity
acquisition scheme to recover phase. To alleviate this problem,
we could adopt other phase acquisition schemes, such as using a
Shack–Hartmann sensor [48].

Another issue that may challenge the convergence with a dense
continuous fluorescent object is two nearby spots emitting similar
power. This is due to the fact that when a transmission matrix
contains multiple eigenvectors with the same eigenvalue, power
iterations may not separate them, and can converge to a linear
combination of the two eigenvectors. We note, however, that the
incoherent convergence rate as analyzed in Supplement 1, Eq. (26),
depends not only on the actual eigenvalues, but also on the initial
excitation T

i
k,:u

(0). As this excitation is usually a highly varying
speckle pattern, there is a better chance to separate between nearby
illuminators of similar power. Our approach also relies on the
assumption that the excitation and emission wavelength are close
enough so that the excitation and emission transmission matrices
are sufficiently similar. As the emitted light contains multiple
wavelengths, these also can produce somewhat different speckle
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patterns. There is evidence in the literature that speckle patterns
produced by nearby wavelengths are correlated [49], but this simi-
larity degrades as the tissue sample thickness increases [50]. In our
experimental implementation, there is a 40 nm gap between the
emission and excitation wavelengths. In linear fluorescence imag-
ing, the gap between excitation to emission can be made lower than
that, leading to even stronger correlation between the wavefronts.

A. Relationship to Memory-Effect Techniques

Our work is orthogonal to approaches for imaging fluorescent
sources through tissue using speckle statistics and, in particular, the
memory effect [47,51,52]. Recently, such approaches were suc-
cessful in imaging a sparse set of fluorescent particles inside tissue,
using hundreds [22,53] or even just dozens [54] of images. While
the field of view of a wavefront shaping modulation is constrained
by the extent of the memory effect, as demonstrated in Fig. 6,
approaches based on the memory effect can recover full-frame pat-
terns with much wider fields of view. By contrast, memory effect
correlations only exist in thin tissue layers, while approaches based
on phase conjugation can theoretically achieve larger penetration
depths. However, in practice, the penetration depth is greatly
constrained by the very weak SNR of the fluorescent emission.
Approaches based on phase conjugation make it possible to not
only image through scattering, but also focus light inside scattering
tissue, a capability that memory effect approaches lack. Focusing
inside tissue is important for applications such as laser treatment
therapy, confocal microscopy, and STED microscopy. Finally, a
modulation recovered from fluorescent sources also can be used to
image adjacent nonfluorescent tissue structures.
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