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Active nematics can be modeled using phenomenological continuum theories that account for the
dynamics of the nematic director and fluid velocity through partial differential equations (PDEs).
While these models provide a statistical description of the experiments, the relevant terms in
the PDEs and their parameters are usually identified indirectly. We adapt a recently developed
method to automatically identify optimal continuum models for active nematics directly from spatio-
temporal data, via sparse regression of the coarse-grained fields onto generic low order PDEs. After
extensive benchmarking, we apply the method to experiments with microtubule-based active nemat-
ics, finding a surprisingly minimal description of the system. Our approach can be generalized to
gain insights into active gels, microswimmers, and diverse other experimental active matter systems.

Active nematics demonstrate how energy-consuming
motile constituents can self-organize into diverse non-
equilibrium dynamical states [1–3]. They offer a versa-
tile platform to advance our fundamental understanding
of non-equilibrium physics and develop materials with
properties that are thermodynamically forbidden in equi-
librium. These twin goals require theoretical models that
reveal the mechanisms underlying the emergent dynam-
ics, and guide rational design to elicit desired spatio-
temporal dynamics. Here, we combine data-driven model
discovery with experiments and computational modeling
to identify the most parsimonious model for an exper-
imental realization of active nematics. Using the dis-
covered model, we identify the relationship between key
theoretical parameters, such as the magnitude of activity,
and experimental control variables. The described meth-
ods can be applied to diverse active nematics ranging
from shaken rods to motile cells [4–9], and other forms
of active matter.

Our target is a quantitative description of microtubule-
based active nematics. Being reconstituted from tun-
able and well-characterized components, they afford a
unique opportunity to develop continuum theory mod-
els and connect these to the microscopic dynamics [10–
12]. Hydrodynamic theories, built on purely symmetry
considerations, have provided insight into dynamics of
active nematics in general, and the microtubule-based
system specifically. For example, such models have been
used to describe defect dynamics [13–18], induced flows
in the suspending fluid [19–21], and how confinement in
planar [22–24] and curved geometries [25–27] controls de-
fect proliferation and dynamics. These efforts employed
a range of hydrodynamic models that assumed differ-
ent symmetry-allowed terms, and the parameters of the
model were largely undetermined. Thus, the field lacks
a quantitative model and understanding of magnitudes
and sources of error in existing approximations.

Data-driven approaches and machine learning have
been successfully applied to study active matter [28].
However, previous studies for active nematics were lim-
ited to parameter optimization with a pre-assumed model
[16, 29], or machine learning forecasting [30, 31] which,
while successful, does not provide an analytical equation
for the learned dynamics. To overcome these limitations,
we build on the Sparse Identification of Non-linear Dy-
namics (SINDy) framework [32, 33] that was recently ap-
plied to particle-based simulations of active matter [34]
and computational and experimental data of overdamped
polar particles [35]. This method filters out the best
parsimonious fit to the data from a highly generalized
class of potential models. We adapt key improvements of
this method [36–39] to the microtubule-based active ne-
matics system. We then employ extensive birefringence
and fluorescence measurements of microtubule alignment
and PIV measurements of velocities, to identify equa-
tions governing both the orientational dynamics and the
activity-driven flows. This enables direct inference of the
underlying model that is rigorously supported by exper-
imental data. In contrast to the hard-to-interpret deep
neural nets generated by machine learning approaches,
our method yields an optimal analytical model and esti-
mated parameter values.

With the available alignment and velocity measure-
ments, we seek models describing the active nematic as a
single 2D fluid with nematic symmetry [12, 40]. Hence,
there are two fields: the symmetric-traceless nematic ten-
sor order parameter Q = s[n ⊗ n − (1/2)I] and a flow
field u, with n as the local orientation unit vector and s
the scalar order parameter. We assume constant density
and an incompressible fluid: the former is justified since
the scalar order parameter captures density variations
near the defects (see below); the latter is validated by
numerical measurements of the divergence of the veloc-
ity field [41]. Our model then consists of 4 independent
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scalar fields: Qxx, Qxy, ux, uy, and a latent variable P
(pressure).
We begin by postulating the generalized form of the

model. The Q-tensor dynamics takes the form common
to all continuum theories of active nematics:

∂tQij =
∑
k

akijFk(Q,u,∇Q,∇u, . . .) (1)

where the Fk’s are combinations (potentially non-linear)
of Q, u, and their spatial derivatives up to a maximum
order, and the akij ’s are the corresponding phenomenolog-
ical coefficients. For instance, in 2D, a well-known model
for the Q-equation is [12]:

∂tQ+ u · ∇Q− S = DrH (2)

where S = −(Ω ·Q−Q ·Ω) + λE− 2λQ(Q : ∇u) is the
co-rotation term and H = a2Q + a4 Tr

(
Q2

)
Q +K∇2Q

is the negative gradient of the liquid crystal free energy.
Here, Eij = (∂iuj + ∂jui)/2 and Ωij = (∂iuj − ∂jui)/2
are the strain rate and vorticity tensors respectively, λ
is the flow alignment parameter, Dr is the rotational dif-
fusion coefficient, K is the elastic constant, and a2 > 0,
a4 < 0 are phenomenological coefficients corresponding
to the isotropic-nematic transition. (See Supplemental
Material [42], which includes Refs.[30, 43–47], for further
discussion.) We build a library of the terms Fk (n = 246)
that can capture models well beyond Eq. (2). Further,
we make no physics-based simplifying assumptions, e.g.
translational, rotational, and Galilean invariance, for the
alignment equation (Eq. 1). Hence, discovery of a model
which satisfies these conditions is a test of the algorithm
(see Supplemental Material [42]).
For the flow equation, the usual form assumed for

model-discovery is Navier-Stokes-like, with the time-
derivative on the left side and rest of the terms on the
right side [33, 37–39]. However, because the active ne-
matic is in the low Reynolds number regime [15, 20],
the significance of the time-derivative term itself needs
investigation. Indeed, active nematic flows have been
modeled using pure Stokes [30, 48, 49], unsteady Stokes
[20, 50], and full Navier-Stokes [12–14, 19, 22, 51–55] for-
mulations. While these approaches have been compared
numerically [56], there has yet to be a definitive indi-
cation of the contributions of the inertial terms for this
system. Since the viscous forcing is guaranteed to exist
in this regime, we assume a form

∇2u = c0∂tu+
∑
i

ciHi(Q,u,∇Q,∇u, . . .) (3)

with ∇·u = 0, and the time-derivative on the right hand
side so that its contribution can be evaluated. For in-
stance, the lowest order symmetry-allowed ‘active stress’
in the flow equation is the well-known −αQ, with α > 0
being the extensile ‘activity’ [12, 57]. In our model form,
this gives a general flow equation:

∇2u = c0∂tu+ c1u · ∇u+ c2∇P + c3∇ ·Q+ . . .

with the coefficient c3 as the ratio of the activity to the
viscosity, α/η.
We perform model discovery from the data as follows

[58]. Setting Nx, Ny, and Nt as the number of mea-
surements in the two spatial dimensions and time re-
spectively, we randomly select m of the total NxNyNt

space-time points. At each selected space-time point,
we evaluate a linear system, e.g. for the Qxx equation,
(∂tQxx)m×1 = Fm×n · �an×1. The derivatives are com-
puted numerically, which amplifies noise in the data. To
mitigate noise, we use two different approaches. In the
integral formulation, for each of the m selected space-
time points and n terms, we compute a local average
in space and time in a small window (e.g. 5x5x5 pix-
els) [36]. This approach is effective for model discovery,
but leads to inaccurate parameter estimates for the flow
equation — since pressure is not an observable in the
experiments, we must perform the operation ẑ · ∇× on
the flow equation [33, 37], which adds one more order of
derivatives, amplifying the noise. To obtain more pow-
erful noise mitigation at the cost of additional analytical
effort, we adapt a weak formulation of the PDE regres-
sion problem [38, 39]. Briefly, we fit the data to the weak
form of Eq. (3):∫

Ωk

w · [∇2u = c0∂tu+ c1u · ∇u+ . . .
]

(4)

By choosing an appropriate test function w (s.t. the
boundary terms vanish after integration-by-parts), we
can move the derivatives from the noisy experimental
data to the exact test functions, and also integrate out
latent variables using integration-by-parts (in this case
by making w divergence-free, see Supplemental Material
[42]). The terms included in the library are in Table S1.
Next, we seek optimal fits to these equations with the

minimum number of non-zero terms, thus yielding an in-
terpretable model that accurately describes the data but
avoids overfitting. To this end, we perform Ridge regres-
sion (least-squares gives similar results), starting with
all the terms in the library, and then eliminating the
least important terms one-by-one to obtain a hierarchy
of models [36]. Obtaining the R2 value at each step, we
plot the optimality curve as the logarithm of (1−R2) as
a function of the number of non-zero terms left in the
model. We define the optimal number of terms n∗ as
the n-value at which the second derivative of the curve
is highest, indicating the largest drop in log

(
1−R2

)
.

To demonstrate the validity of our approach, we first
benchmark it against data generated by numerical simu-
lations (Fig. S1, Table S2, which includes Refs.[59, 60]).
We consider two qualitatively different models for flow:
one is purely Stokesian with substrate friction, and the
other is unsteady Stokes flow [20, 50]. After adding syn-
thetic noise to the simulation data, we apply the integral
formulation to the alignment equation and the weak for-
mulation to the flow equation. The framework returns
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the correct equations with very small errors in the iden-
tified coefficients (Fig. S1, S2 and S3 [42]). Thus, we es-
timate important phenomenological parameters directly
from the data, including the activity level α, bending
modulus K, flow alignment coupling λ, and bulk free
energy coefficients a2 and a4. Further benchmarking
against varying window sizes and noise levels (see Supple-
mental Material [42]) indicates that the integral formula-
tion benefits from high resolution, low noise data whereas
the weak formulation benefits from a large amount (in
space and time) of data.
Next, we perform model discovery on experimental

microtubule-based active nematics (Fig. 1a, Supplemen-
tal Material [42] which includes Refs.[61–66]). Coarse-
graining the director, we obtain a Q-tensor field that
contains the spatially varying scalar order parameter and
orientation (Fig. 1b). The low-fluorescence-intensity re-
gions, corresponding to low microtubule density near the
defect cores, are correlated with the low-scalar-order-
parameter regions, thus capturing the density variation
near the defects (Movie S1 [42]). This justifies the con-
stant density assumption. The velocity is obtained from
PIV analysis (Fig. 1c). We varied the ATP concentration,
which determines the motor stepping speed and thus de-
termines the structure and dynamics of active nematics.
We collected the data on a field of view several vortex
diameters wide (Fig. 1c) for long times (> 20 velocity
autocorrelation times, defined below). In addition, we
acquired one more data set with higher resolution but a
smaller field of view, denoted as the ‘HR-SF’ data [67]
(see Fig. S4 [42]). Optimality curves for the alignment
and flow equations respectively (Figs. 1d,e) lead to the
following optimal model:

∂tQ = − u · ∇Q− (Ω ·Q−Q ·Ω)

+E− 2(Q : ∇u)Q+K∇2Q

η∇2u = + α∇ ·Q+∇P. (5)

Note that we added the term K∇2Q because this or an
analogous term with higher order derivatives must be
present for stability, discussed further below.
We arrived at this model as follows. For the align-

ment equation, the HR-SF data set (purple triangles in
Fig. 1d) has a low error (R2 = 0.97) and an abrupt shoul-
der that clearly defines a threshold for the optimal model.
In comparison, the lower resolution data sets have larger
error (see Table S3 [42]) and less distinct thresholds.
Consistent with the benchmarking of numerical data de-
scribed above and in Supplemental Material [42], these
results show that high resolution is more important than
a large field-of-view for determining the alignment equa-
tion. The threshold chosen for each data set is indicated
by the tail of the corresponding arrow in Fig. 1d, and the
resulting model for each data set is given in Table S3 [42].
Table S4 [42] gives the lowest-order terms beyond the
threshold. For all data sets, the optimal model is domi-
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FIG. 1. Discovering active nematic hydrodynamics from ex-
perimental data. (a) A representative fluorescence image of
the microtubule-kinesin active nematic at an ATP concen-
tration of 100 μM (scale bar is 200 μm). (b) The computed
director field and scalar order parameter S, and (c) the flow
field and vorticity ω for the data in (a). (d) Optimality curves,
log

(
1−R2

)
vs. number of non-zero terms, for the Qxx equa-

tion from the indicated data sets. The beginning of each arrow
corresponds to the threshold corresponding to the highest-
order term included in the optimal model. (e) Optimality
curves for the weak-form flow equation. In the cases high-
lighted with the dashed oval, the optimal model contains only
the activity term, ∇ ·Q, consistent with Stokesian dynamics.
In (d,e) the purple triangles correspond to the high-resolution,
small field-of-view (HR-SF) data set, while the blue, orange,
green, and red circles correspond to 25 μM, 50 μM, 100 μM,
and 500 μM ATP respectively. (f) Values of the coefficients
of key flow-coupling terms appearing in the optimal models
for various ATP concentrations. The colors are the same as
in (d,e). (g) The fit coefficient of the activity term, α/η, as
a function of the ATP concentration (green circles). This
quantity closely matches the inverse of the velocity correla-
tion time (blue triangles), suggesting that α/η corresponds to
a relevant timescale in the system.

nated by flow-coupling terms, such as the convective and
rotational derivatives and flow alignment. Eq. (5) cor-
responds to the optimal model for the HR-SF data set,
and with the exception of the higher-order flow-alignment
term 2(Q : ∇u)Q, two of the low-resolution data sets.
For other data sets, there is some variability in the terms
near the threshold (Tables S3 and S4), but the terms in
Eq. (5) are all present near the threshold, and other near-
threshold terms can be eliminated because they violate
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known symmetry or conservation criteria for the system.
We include the higher-order flow coupling term because
the HR-SF data set has the highest statistical accuracy
and because it is expected theoretically for stability of the
nematic order parameter. We attribute the variability in
the near-threshold terms for the low-resolution data sets
to statistical inaccuracies arising from the limited exper-
imental data and the small contributions of these terms,
rather than different physics being present at different
ATP concentrations. These results highlight the impor-
tance of the amount and resolution of data for accurately
determining the alignment equation.

The alignment equation recovers Galilean invariance
from the data: the convective and co-rotational deriva-
tives have coefficients of ∼ 1 (Fig. 1f). Furthermore, the
flow alignment parameter, λ ∼ 1 (Fig. 1f), is consistent
with the theoretical result for the high aspect ratio a � 1
of the microtubules, λ = (a2 − 1)/(a2 + 1) → 1 [68].
Importantly, the bulk liquid crystal free energy terms
that stabilize nematic order (with coefficients a2 > 0 and
a4 < 0, see Eq. (2)) are not present in the discovered
model for any data set [69]. This finding supports a pre-
vious model [54] which argued that active flow alignment
acts as an effective free energy that drives nematic order.
These results indicate that the alignment dynamics are
dominated by flow-coupling. In comparison, contribu-
tions from the free energy dissipation to the dynamics are
negligible. Elastic distortion energy terms [70, 71] only
appear above the threshold (see Table S4 [42]). However,
a term of the form K∇2Q, which contains the elastic
terms in the single constant approximation, is required
for numerical stability. Moreover, the elastic terms play a
key role in determining the structure of a nematic in the
vicinity of defects. To understand this apparent contra-
diction, we compare the contributions of the distortion
energy with flow coupling terms as a function of space
(Movie S2 [42]). This shows that the elastic terms are
small everywhere except near defects. When combined
with the fact that the majority of the experimental data
is far from defects due to their small core size and finite
density, this is the likely reason for the absence of elastic
terms in the discovered model (Fig S5).

The optimality curves for the flow equation are almost
flat (Fig. 1e), showing that the active force α/η∇ · Q
alone balances the viscous force. Noting that this is a
fit to the weak form of the equation, we test the strong
form of the discovered equation by comparing the spa-
tial dependence of ∇×∇2u with α/η∇×∇ ·Q and find
good agreement (Movies S3 and S4 [42]). The inertial
terms are absent (not appearing until n ∼ 5), indicating
that the Stokes flow approximation accurately describes
the experimental active nematic. Finally, the absence of
the substrate friction term Γu indicates that the screen-
ing length

√
η/Γ is larger than the typical vortex size of

the flows. This result likely depends on the active ne-
matic system and experimental conditions; for example,

FIG. 2. Comparisons of results from simulations using the dis-
covered optimal model against the experimental data. (a) In-
verse lifetime of +1/2 defects plotted as a function of α/η for
experiments at different ATP concentrations (green circles)
and simulations using the optimal model performed with dif-
ferent values of α/η (blue squares). For the experiments, the
value of α/η is obtained from the discovered optimal model
at each ATP concentration. The height of the errorbars is
twice the standard error of mean. (b) Defect density plotted
against α/η from experiments (green circles) and simulations
using the optimal model (blue squares). The density in the
simulations is scaled by a constant. The height of the error-
bars is twice the standard deviation.

changing the substrate depth affects the effective friction
coefficient [72]. However, the framework presented here
can be applied directly to other conditions or materials.

The discovered flow equation provides a direct esti-
mate of the scaled activity parameter α/η, an intrin-
sic ‘active time scale’ [73], as a function of the ATP
concentration (Fig. 1g) [74]. Determining the relation-
ship between activity and experimental control parame-
ters has been a significant challenge [21]. The molec-
ular motors that generate activity also act as passive
cross-linkers between steps [75], and in a dense ac-
tive nematic, forces generated by different motors are
largely non-cooperative [76]. To test the estimate of α
against an independent observable, we compare the ac-
tive time scale to the velocity autocorrelation time τ , de-
fined as C̄v(τ) = 1/e, with the autocorrelation function
C̄v(t) = 〈〈u(r, t′ + t) · u(r, t′)〉t′ / 〈u(r, t′) · u(r, t′)〉t′〉r.
These observables closely agree at all ATP concentra-
tions (Fig. 1g).

Finally, we test the optimal model by performing sim-
ulations of Eq. (5). For numerical stability, we include
the K∇2Q term in the Q equation with K = 1 in di-
mensionless simulation units. We compare the mean de-
fect lifetime and defect density [77, 78] as a function of
α/η (Fig. 2). Remarkably, the defect lifetimes for experi-
ments and simulations align well without any fit parame-
ters (Fig. 2a). The defect densities from experiment and
simulation also match, up to a constant scaling factor
[79] (Fig. 2b). The latter cannot be specified — because
the terms in the discovered alignment equation all have
dimensionless coefficients, we cannot directly estimate a
length scale [80].
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In summary, we have applied a data-driven method
to identify equations governing both the orientational
dynamics and the activity-driven flows of microtubule-
based active liquid crystals. The optimal model is sur-
prisingly minimal. It demonstrates that: (1) flow cou-
pling dominates the orientational dynamics, and (2) the
lowest-order active stress, proportional to the local ori-
entational order, together with the vanishing Reynolds
number limit describe the flow. This model is not only
consistent with previous theoretical arguments [54], but
is also less complex than most models considered in the
literature. Our results also show that statistical uncer-
tainty arising from limited experimental data impedes
unequivocal identification of near-threshold terms, but
suggest strategies to mitigate these effects. For example,
acquiring a combination of high-resolution small field-
of-view and low-resolution large field-of-view data sets
would enable more accurate discovery of the alignment
and flow equations respectively. Further, acquiring more
data in the vicinity of defects and/or additional analysis
that preferentially weights data in the vicinity of defects
may identify elastic energy terms.

The identified equations enable mapping between key
model parameters and experimental control variables, in-
cluding the elusive relationship between the magnitude
of activity and ATP concentration. Thus, our results
are the first to assess the quantitative variation of phe-
nomenological theory parameters as a function of ex-
perimental control knobs in active nematics, while also
providing evidence for the validity of the underlying
model. Through comparison of several noise reduction
approaches and extensive benchmarking, we have iden-
tified an approach to model discovery which is highly
robust against experimental noise. This approach can be
extended to study recently developed 3D active nematic
materials [49, 81, 82], complementing existing theoretical
and numerical efforts [48, 52, 83–87]. It can be applied to
a wide variety of active matter systems, or more broadly,
to any system for which observations of dynamics can be
projected onto continuous fields. This process can shed
light on relationships between physical quantities or even
identify new physical mechanisms.

In the final stages of this project, we learned of a com-
plementary, concurrent work that uses symbolic regres-
sion, whose findings are generally consistent with those
of our work [88].
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CONTINUUM THEORY OF ACTIVE NEMATICS

The theory of active nematic suspensions builds on
equilibrium nematic hydrodynamics [1, 2] and extends it
to include non-equilibrium ‘active stresses’ in the fluid
[3–13]. The most generic models of active nematics
have considered the dynamics of not only the orien-
tation and the velocity, but also of the concentration
[5, 14, 15] and/or density [16]. In this work, we assume
uniform density and concentration everywhere. This
is a reasonable assumption for dense 2D bulk systems,
and we expect that allowing density/concentration vari-
ations would only improve our results. We characterize
the orientational order using the tensor order parameter
Q = S[n⊗ n− (1/2)I]. This definition has the n → −n
nematic symmetry built-in, and also provides a scalar
order parameter S(r, t) that represents the magnitude of
the orientational order at the given location. For equilib-
rium systems, the free energy near the isotropic-nematic
transition takes the form

F =
a2
2
Q2 +

a4
4
Q4 +

K

2
(∇Q)2 (1)

with a2 = (1 − ρ) and a4 = (ρ + 1)/ρ2. The density ρ
controls the transition from the isotropic (ρ < 1) to the
nematic (ρ > 1) state. If ρ = ρ0 > 1, the minimum
of the free energy is in an ordered state, with Seqm =√−2a2/a4. K is the elastic modulus of the nematic,
where we have assumed equal moduli for splay and bend
deformations. For the alignment tensor, the dynamical
equations of motion are:

DQ

Dt
= ∂tQ+u ·∇Q+(Ω ·Q−Q ·Ω) = λE+DrH (2)

The left hand side corresponds to the co-moving co-
rotational derivative of the Q-tensor, with Ω = 1/2(∇u−
(∇u)T ) and E = 1/2(∇u + (∇u)T ). λ is the flow align-
ment parameter, with λE being the lowest order con-
tribution to the flow alignment. The next leading order
term −2λ(Q : E)Q [17] is also often included [18]. Lastly,
H = −δF/δQ and Dr is the coefficient of rotational dif-
fusion. H gives the free energy contribution, while all
other terms come from coupling of the orientation to the
underlying flow.

The corresponding fluid flow can be described by the
incompressible Navier-Stokes (NS) equations. These are
augmented with the (passive) back-flow σp due to the
coupling to the nematic. In addition, the lowest or-
der non-equilibrium nematic stress takes the form −αQ,
where α indicates the strength of the active forces, or
“activity”. Adding this contribution in, we get the ac-
tive nematic fluid equation:

ρ(∂tu+ u · ∇u) = η∇2u−∇P +∇ · (σp − αQ) (3)

with ρ being the density and η being the viscosity.

For thin 2D samples such as the ones considered in this
Letter, Eq. (3) needs to be integrated along the height h
of the confinement to obtain a quasi-2D equation. Inte-
grating the viscous term gives an effective linear friction
−Γu, with Γ ∼ η/h2 [10].

Since the flows are in the low-Reynolds number regime,
it is common to neglect the non-linear convection term
[5, 15], and often the entire inertia term [19–21]. This is
the Stokes limit. The theoretical consequences of varying
the advective inertia and substrate friction have been the
subject of numerical studies [7, 22].

Additionally, a higher order active stress∇(Q·∇·Q) in
3D can give rise to a non-equilibrium active force Q·∇·Q
in 2D, which can be expected to have a similar magnitude
as the primary active force −α∇ ·Q [10].

This brief sketch of active nematics models shows the
wealth of information that a data-driven method like
SINDy could uncover when applied to experimental sys-
tems.

For the models that we use for benchmarking calcula-
tions by numerically simulating PDEs in this Letter, we
consider both the Stokes limit described above as well as
the ‘unsteady Stokes’ limit (which retains ∂tu). Further,
we set σp = 0 as it has been observed numerically that
active stresses dominate the passive stresses [18, 23]. We
include the substrate friction as it adds another degree of
freedom that our framework has to identify. With this,
we obtain the dynamical equation for the fluid:

0 = η∇2u− Γu−∇P −∇ · (αQ) (Stokes)

ρ∂tu = η∇2u−∇P −∇ · (αQ) (Unsteady Stokes)

∇ · u = 0 (4)
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The Q-tensor equation is unaltered by activity in these
models because the active stresses arise solely due to flow
coupling.

LIBRARY CREATION AND BENCHMARKING

The codes used for this work are available under
https://github.com/joshichaitanya3/actnempy. Each
data-set is pre-processed such that the fields Qxx, Qxy,
ux and uy lie on the same Nx ×Ny grid. With Nt such
measurements in time, we get Nx × Ny × Nt values for
each of the field.

Integral Formulation. We begin by creating a
database of terms containing the fields and their deriva-
tives. We compute the time and space derivatives numer-
ically using a central difference scheme. (Since ∇ · u =
∂xux + ∂yuy = 0, we discard ∂yuy from our database.)
To form the library, we then make all multiplicative com-
binations of these terms with a total functional order up
to f and a total gradient order up to d. We put further
limits on the function and gradient order of u appear-
ing in the terms. Thus, we specify two pairs, (ft , dt)
for the overall constraint, and (fu, du) for further con-
straint on the terms involving velocity. This allows us
to make the computation more tractable. Motivated by
theoretical models discussed in earlier sections, we use
(ft = 3, dt = 2) and (fu = 1, du = 1) for the Q tensor
equation (Main Text Eq. (1)) and (ft = 2, dt = 2) for
the flow equation (Main Text Eq. (3)). In this approach,
we do not make any simplifying assumptions about the
terms: all terms appear in an “unfolded” form, with the
derivatives and inner products expanded out.

Since our data has two spatial and one time dimen-
sions, we have a large number of data-points. Hence, we
compute the library terms only on a sub-sample of the
data [24]: we randomly select m = 5000 points from the
Nx ×Ny ×Nt grid and compute the local average of the
terms near the points using a small (e.g. 5x5x5 pixels)
averaging window [25].

Weak Formulation. As described in the main text,
the weak formulation provides better noise mitigation
than the integral formulation for the fluid flow equation
due to the high-order derivatives. For the fluid flow, we
assume a generalized flow equation

∫
Ωk

w · [∇2u = c0∂tu+ c1u · ∇u+ . . .
]

Using a similar “unfolded” form for this library as for
the orientation equation would generate a lot of terms,
and it is not feasible to perform the integration-by-parts
(IBP) required for the weak formulation for all of them.
Hence, for this calculation, we create the library by hand
with a judicious choice of terms, listed in Table S1. Here,
w is a vector test function and the integration domain

Number Term

1 ∂tu
2 u · ∇u
3 ∇ ·Q
4 Q · ∇ ·Q
5 u
6 Q · u
7 Tr

(
Q2

)
u

TABLE S1. Terms appearing in the library for the flow equa-
tion.

Ωk is a rectangular box of size 2Hx × 2Hy × 2Ht, cen-
tered at (xk, yk, tk) [26]. This test function needs to sat-
isfy the following criteria: (1) the boundary terms in the
integration-by-parts, containing derivatives of w, must
vanish identically and (2) The 2D divergence of w needs
to be zero everywhere for the pressure term to vanish.
Condition (1) can be met by ensuring that w and its
derivatives up to a certain order vanish at the boundary;
condition (2) can be met by choosing w to be a curl of
a scalar field. Following [26], we meet both these condi-
tions by using

w = ∇× (ψẑ), (5)

with

ψ = sin(πt
¯
)(x
¯
2 − 1)p(y

¯

2 − 1)p (6)

and p = 6, where the underbar represents the rescaled
variables x

¯
= (x−xk)/Hx, x

¯
= (y−yk)/Hy and x

¯
= (t−

tk)/Ht. Eq. (5) implies that ∇ ·w = 0, which facilitates
the elimination of pressure (see below). The functional
form of Eq. (6) guarantees that w and its derivatives
vanish at the domain boundaries given a sufficiently large
value of p. This is useful for the integration by parts:

uk
0 =

∫
Ωk

w · ∇2u dΩ =

∫
Ωk

u · ∇2w dΩ (7)

uk
1 =

∫
Ωk

w · ∂tu dΩ = −
∫
Ωk

u · ∂tw dΩ (8)

uk
2 =

∫
Ωk

w · (u · ∇u) dΩ = −
∫
Ωk

u · (u · ∇)w dΩ (9)

The activity term integrates as

uk
3 =

∫
Ωk

w · (∇ ·Q) dΩ = −
∫
Ωk

Q : (∇w) dΩ (10)

while the pressure term integrates out to zero:

∫
Ωk

w · ∇P dΩ = −
∫
Ωk

P∇ ·w dΩ = 0 (11)

The above indicates we need p ≥ 3. While we use p = 6,
values between 4-10 give similar results.
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Algorithm 1: Hierarchical Ridge Regression
(HRidge)

Result: A, r2s = HRidge(F, Ẋ, λ2)
m = size(F)[2] ; // Total number of terms

Fn = norm(F) ; // Column-wise norm

F0 = F/Fn ; // Normalize the terms for

comparison

A ← Vector(size: m×m) ; // Store optimal model

at all hierarchies

r2s ← Vector(size: m) ; // Store model accuracies

at all hierarchies

a = argmin�a

(
‖Ẋ− F0 · a‖2 + λ2‖a‖2

)
; // Initial

guess using Ridge

A[:,m] = a/Fn ; // Store un-normalized

coefficients

r2s[m] = rsquared(F0, Ẋ,a)
while len(a) > 1 do
j0 = argminj |aj | ; // Find the position of the

smallest coefficient

a = a \ {aj0} ; // Remove smallest coefficient

F0 = F0 \ F0[:, j0] ; // Remove vector

corresponding to it

a = argmin�a

(
‖Ẋ− F0 · a‖2 + λ2‖a‖2

)
;

k = len(a);
A[:, k] = a/Fn;

r2s[k] = rsquared(F0, Ẋ,a);

(a) Alignment Equation

(b) Stokes Equation (c) Unsteady Stokes Equation

FIG. S1. Benchmarking the model discovery framework from
continuum simulation data. Optimality curves: log

(
1−R2

)
as a function of number of non-zero terms in the model for (a)
the Qxx component of Eq. (2) of the Main text, (b) the Stokes
equation, and (c) the unsteady Stokes equation. (a): Starting
with the full library, the least important term is eliminated
one-by-one to obtain a hierarchy of models. The R2 value de-
teriorates when terms used in the computational model begin
to be eliminated. (b), (c): Same as (a) for the flow equation,
Eq. (4) of the Main text, excluding the pressure.

The derivative on Q in term 4 in Table S1 cannot be
fully transferred to w because of the non-linearity, so
we integrate that term directly. Similarly, terms 5–7 are
integrated directly as they do not contain any derivatives.

In each case, we perform sparse regression on the re-
sulting linear system using our algorithm that we call
‘Heirarchical Ridgre Regression (HRidge)’ (see Algo-
rithm 1). Briefly, we perform Ridge (or least-squares)
regression on the normalized system and remove the
term with the smallest coefficient one-by-one. We use
λ2 = 10−5 for the Ridge regression, whereas λ2 = 0 yields
the least square result. See Fig. S1 for the result on the
numerical data.

We benchmark these methods against varying noise
levels as well as varying window sizes. To find the ap-
propriate window size, we benchmark with a numerical
data set of size 512 × 512 × 500 with 5% added noise.
We measure the R2 value of the fit as well as the aver-
age % error in the coefficients in the optimal model (if
found correctly) as a function of the integration window
size (Fig. S3). For the integral formulation (Fig. S3 left),
we find that a small window size is sufficient to miti-
gate the noise. For the experimental dataset results in
Main Text Fig. 1, we use a window size of 25 × 25 × 25
pixels, or 73μm×73 μm×12 s. In the weak formulation,
larger window sizes are needed to better sample the test
function [26, 27]. We find that a window that is almost
as large as the field of view in space, and ∼ 5 times
the velocity correlation time in the time dimension [27]
works well. We perform a similar analysis with the ex-
perimental data-sets to choose the window size. To avoid
self-selection, we use the largest of the correlation times
from the data-sets to set the window size. In Main Text
Fig. 1, we use a window size of 205×205×605 pixels, or
∼ 600 μm×600 μm×300 s. As this window size is large,
we take m = 50 measurements for the weak form.

We now investigate the same two parameters, namely
the R2 and the error in coefficients, but with varying
noise levels (Fig. S4). We find that the error increases
much faster with noise for the flow equation in the inte-
gral formulation, but stays low for the weak formulation.
The error for the orientation equation also grows, but re-
mains small for reasonable noise levels (5̃%). These two
analyses, and our results in Main Text Fig. 1 indicate
that the integral formulation is sufficient for the Q-tensor
equation, while the weak formulation works adequately
for the flow equation.

APPENDIX C: CONTINUUM SIMULATIONS

For the Q-tensor, we use the simple form (in non-
dimensionalized units)

∂tQ+∇ · (uQ) + (Ω ·Q−Q ·Ω) = λE+H (12)
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with

Ωij =
1

2
(∂iuj − ∂jui)

Eij =
1

2
(∂iuj + ∂jui)

Hij = (−a2 − a4QklQlk)Qij +K∂k∂kQij

where λ is the flow alignment parameter, K is the elastic
modulus and a2 < 0, a4 > 0 drive the system to the
nematic phase. The two different flow equations used
are

η∇2u = ∇P + Γu+ α∇ ·Q (Stokes) (13)

ρ∂tu = η∇2u−∇P − α∇ ·Q (Unsteady Stokes)
(14)

∇ · u = 0 (15)

Here, η is the viscosity, α is the activity and Γ is the
substrate friction. We set ρ = 1 for the unsteady Stokes
equation.
For the Stokes equation Eq. (13), we use a semi-implicit

finite difference time stepping scheme based on a convex
splitting of the nematic free energy [21, 28]. To solve the
Stokes equation with incompressibility, we implement a
Vanka type box smoothing algorithm on a staggered grid
[21, 29]. The solution at each time-step is found using
Gauss-Seidel relaxation iterations, and the rate of conver-
gence to the solution is accelerated by using a multigrid
method [21]. The simulation codes are all in-house and
are written in C. We solve the equations in a square do-
main of size 200×200 (in simulation units) with periodic
boundary conditions. We sample the evolution at a time
step of 1 (in simulation units) on a rectangular grid with
dx ∼ 0.4. For the Unsteady Stokes, the equations are
solved using an explicit Adams-Bashforth method. we
sample the data at a time-step of 0.02 on a rectangular
grid with dx ∼ 0.2. The parameters used in both cases
are documented in Table S2.
The equation for Qxx has 10 terms:

∂tQxx =− ux∂xQxx − uy∂yQxx −Qxy∂xuy +Qxy∂yux

+ λ∂xux − a2Qxx − 2a4Q
3
xx − 2a4Q

2
xyQxx

+K∂2
xQxx +K∂2

yQxx (16)

The flow equations in the integral formulation are used
for Fig. S4, and have the form of vorticity equations (ob-
tained by taking the curl of Eq. (13) and Eq. (14)):

η∇2ω = Γω + α∂2
xQxy − 2α∂x∂yQxx − α∂2

yQxy

η∇2ω = ∂tω + α∂2
xQxy − 2α∂x∂yQxx − α∂2

yQxy

However, for the weak formulation, we obtain two terms
each, after the pressure is eliminated as described earlier:

η

∫
Ωk

w · ∇2u = α

∫
Ωk

w · ∇ ·Q+ Γ

∫
Ωk

w · u

η

∫
Ωk

w · ∇2u = α

∫
Ωk

w · ∇ ·Q+

∫
Ωk

w · ∂tu

Parameter Stokes Unsteady Stokes

η 1 1
K 1 1
α 0.3 4.0
Γ 0.03 N.A.
a2 -0.3 -16
a4 1.36 32

TABLE S2. Parameters used for the Stokes and Unsteady
Stokes simulations.

APPENDIX D: EXPERIMENTAL METHODS

The active nematic samples were assembled following
previously established methods [30, 31]. The active mix
consisted of microtubules, kinesin motor clusters, deplet-
ing agent, and an ATP regeneration system. Tubulin was
purified from bovine brain, labeled with Alexa 647 dye,
and polymerized in the presence of GMPCPP [32, 33].
The final concentration of polymerized microtubules in
the active sample was 1.31 mg/ml. A truncated and bi-
otinylated version of Kinesin-1 (K401-BCCP-HIS) was
expressed in E. Coli and purified using immobilized
metal affinity chromatography [34]. Motor clusters were
formed by incubating 11 μL of the biotinylated kinesin
(8.2 μM) with 5 μL of streptavidin (2.1 μM) on ice for
30 min in the presence of DTT (170 μM). In the active
sample, this mixture was diluted to a final concentra-
tion of 140 nM kinesin and 70 nM streptavidin. Polyethy-
lene glycol (35000 kDa, 1%) was used to induce micro-
tubule bundling. A biochemical regeneration system con-
sisting of adenosine triphosphate (ATP, 25μM-1.4mM),
phosphoenol pyruvate (PEP, 26mM), and pyruvate ki-
nase/lactic dehydrogenase (PK/LDH) kept ATP con-
centration constant. Lastly, an oxygen scavenging sys-
tem consisting of glucose (0.67 mg/ml), glucose oxidase
(0.08 mg/ml), catalase (0.4 mg/ml), DTT (5.6mM), and
Trolox (2mM) was used to minimize sample bleaching.
The components of the active mix were combined in M2B
buffer (80mM PIPES, 1mM EGTA, 2mM MgCl2, pH
6.8).

Flow chambers were created with Parafilm sandwiched
between a glass slide and a coverslip. The glass slide was
made hydrophobic with a Rain-X coating, and the cov-
erslip was passivated with acrylamide coating [35]. To
assemble an active nematic, the chamber was first filled
with HFE oil containing fluoro-surfactant (0.5% w/w,
RAN Biotech), followed by the active mixture. The sam-
ple was sealed with UV glue (Norland optical adhesive).
The active nematic sedimented to the oil-water interface
and reached a steady state after about an hour, and was
then imaged on a spinning disk confocal microscope us-
ing an Hamamatsu Orca-Fusion BT CMOS camera and
20× magnification. For each sample, a sequence of 10000
images was acquired at 2 frames/sec, except for the 25
μM ATP samples, for which 1000 frames were acquired
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at 0.1 frames/sec.

High-resolution small field of view (HR-SF) data

An additional dataset was taken using a combination
of LC-PolScope microscopy and dilute-labeled fluorescent
MTs (see Fig. S2). With LC-PolScope microscopy, the
orientation field is obtained from birefringence informa-
tion of polarized light passing through the MT filaments
that make up the nematic layer [31, 36]. This allows
the orientation field to be measured on MTs that are
not fluorescent. However, a small fraction of MTs in
the sample were fluorescently labeled, and wide-field epi-
fluorescence images were acquired simultaneously with
the birefringence data. We believe that with wide-field
microscopy, PIV on dilute-labeled MTs is more accurate
than on fully-labeled MTs, due to the difficulty of detect-
ing velocity in the direction of the elongated MT bundles.
Using the integral formulation with a window size of

5× 5× 5 pixels, we obtain the equation

∂tQxx =− (1.07 ux∂x + 1.08 uy∂y) Qxx

− (1.03∂xuy − 1.04∂yux) Qxy

+ 0.99∂xux

− 2Qxx{2.01Qxx∂xux

+Qxy(1.00∂xuy + 1.05∂yux)}

with a high R2 value of 0.97. This provides further strong
evidence for the discovered model. The flow analysis also
yields a model similar to Main Text Eq. (5), but with a
low R2, due to the limitation on the window size due to
the small field of view (see Fig. S3).

APPENDIX E: ANALYSIS

Orientation and velocity fields

The orientation and velocity fields were computed si-
multaneously on the fluorescent images obtained from
spinning disk confocal microscopy. The orientation fields
were measured using an in-house structure-tensor-based
code (written in MATLAB) on the fluorescence images.
The molecular tensor (nn − 1/2I) was computed from
the orientation data, and was then coarse-grained with
a Gaussian smoothing filter with σ = 10 pixels to ob-
tain the Q-tensor. The velocity fields were measured
using particle-image velocimetry implemented by the
MATLAB-based PIVLab software. The fields computed
by PIVLab were post-processed using a Direct Cosine
Transform - Penalized Least Squares (DCT-PLS) ap-
proach that validates the raw data, replaces the spurious
and missing vectors and does some smoothing. [37]. The
orientation fields were computed on a high resolution grid

of 1152× 1152 pixels, while the velocity fields were on a
coarser grid of 71×71 pixels. Therefore, both fields were
interpolated on an intermediate grid of 256× 256 pixels.

Defect detection and tracking

To locate the defects, we compute a map of the signed
winding number w = 1/(2π)

∮ ∇θ · d�s at every point in
space [11, 38] with an integration ring of radius of 5 pix-
els. The winding number is zero everywhere except at the
defect locations [31, 39]. To eliminate spurious defects,
we filter out regions with a non-zero winding number that
are smaller than 60 squared pixels in area.
Once the locations of the defects are obtained, the

+1/2 defects are tracked using the open source software
Trackpy [40] using a search range value of 20 pixels.
The trajectories thus obtained are further filtered with a
threshold of minimum three frames of survival.

Elastic terms

To investigate the elastic terms, we consider the HR-
SF data set. For this data, the term K0∂

2
xQxx appears

at n = n∗ +1, with K0 ∼ 2 μm2 s−1. However, the coun-
terpart ∂2

yQxx does not appear even at n ∼ 30, which
suggests the estimate of this coefficient is highly unreli-
able. As a test, we compare the contribution of contribu-
tion of the term K0∇2Qxx to ∂tQxx with flow-coupling
terms (see Fig. S5 left for the average trend vs time and
Movie S2 for a spatial plot of the same). We find that the
magnitude of K0∇2Qxx is up to an order of magnitude
smaller than the other terms. However, the elastic terms
are known to play an important role in determining the
structure of defects or low order regions. Therefore, we
specifically compare the averaged values in regions with
S < 0.75 (see Fig. S5 right). This measurement shows
that the while the dynamics near the defect is dominated
by convection alone, likely due to the self-propulsion of
the +1/2 defects, the contribution of K0∇2Qxx is now
comparable to the other flow-coupling terms. However,
the inset of Fig. S5 right shows that such low order re-
gions only comprise � 5% of the total data. This sug-
gests that to reliably identify the elastic terms, it will be
important to aquire extra data near defects.

MOVIE DESCRIPTIONS

Movie S1 Comparison of the fluorescence intensity
and the scalar order parameter. Top left Normalized
fluorescence intensity, proportional to the microtubule
density. Top right Computed scalar order parameter S.
Color goes from 0 (black) to 1 (white). The orange square
in each of these two panels shows the region which is
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FIG. S2. A representative snapshot of the high-resolution small field of view (HR-SF) PolScope dataset. (left) Retardance
image of the sample, with the orientation obtained using PolScope microscopy overlaid in red. (middle) The computed director
field and scalar order parameter S, and (right) the flow field and vorticity ω for the frame. The lengths indicated in the right
two figures are in μM.

FIG. S3. Performance on simulation data as a function of window size. (1−R2) (blue circles) and average % error in coefficients
(orange triangles) for the (left) Q-tensor equation using the integral formulation and (right) the flow equation using the weak
formulation. The window sizes are listed in pixels, while the simulation data used had a domain size of 512× 512× 500 pixels.

zoomed-in in the corresponding middle panel. Mid left
Zoomed-in region showing the fluorescence signal, thresh-
olded with a cutoff of 0.5 (black indicating less than 0.5
and white indicating more than 0.5). Middle right Same
as middle left for S. Bottom Spatial correlation of the
thresholded intensity and thresholded S quantifying how
well S captures the low density variations near the de-
fects.

Movie S2 Spatial map of various terms in the Qxx

equation for the HR-SF dataset, compared to the elas-
tic term K0∇2Qxx, with K0 found from the model at
n = n∗ + 1. The displayed terms are: ∂tQxx, u · ∇Qxx

(convection), (ΩQ −QΩ)xx (rotation), Exx (flow align-
ment), (Q : ∇u)Qxx (higher order flow alignment) and
K∇2Qxx. The colorbar is same for all the terms, show-

ing that the elastic term is small everywhere except near
defects.

Movie S3 Direct comparison of terms arising in the
Stokes equation, for the 100 μM ATP data set. Top
left Spatial map of α/η∇ × ∇ · Q computed using the
smoothed Q-tensor and the α/η value obtained from our
framework. Top right Spatial map of ∇×∇2u computed
using the smoothed velocity field. Bottom The spatial
correlation of the two as a function of time. In both
cases, the smoothing is performed using a Gaussian filter
with a width of 10 pixels for each component of the fields.
This additional smoothing reduces the noise arising from
taking multiple derivatives of the experimental data.

Movie S4 Same as Movie S3 for the 500μMATP data
set.



7

25 μM 50 μM 100 μM 200 μM 500 μM HR-SF Physical origin

n∗ = 4 n∗ = 6 n∗ = 6 n∗ = 7 n∗ = 6 n∗ = 8

R2 = 0.88 R2 = 0.84 R2 = 0.88 R2 = 0.72 R2 = 0.75 R2 = 0.97

∂tQxx = ∂tQxx = ∂tQxx = ∂tQxx = ∂tQxx = ∂tQxx =

− (0.97)ux∂xQxx

− (1.00)uy∂yQxx

− (0.95)ux∂xQxx

− (1.01)uy∂yQxx

− (0.89)ux∂xQxx

− (0.95)uy∂yQxx

− (0.87)ux∂xQxx

− (0.90)uy∂yQxx

− (0.74)ux∂xQxx

− (0.80)uy∂yQxx

− (1.07)ux∂xQxx

− (1.08)uy∂yQxx
Convection

− (0.95)Qxy∂xuy

+ (0.93)Qxy∂yux

− (0.98)Qxy∂xuy

+ (1.01)Qxy∂yux

− (1.01)Qxy∂xuy

+ (1.12)Qxy∂yux

− (0.91)Qxy∂xuy

+ (0.91)Qxy∂yux

− (0.88)Qxy∂xuy

+ (0.96)Qxy∂yux

− (1.03)Qxy∂xuy

+ (1.04)Qxy∂yux
Rotation

- + (0.66)∂xux + (0.98)∂xux - + (0.63)∂xux + (0.99)∂xux Flow alignment

- - − (5.33)Q
2
xx∂xux + (4.63)Q

2
xy∂xux -

− (4.02)Q
2
xx∂xux

− (2.0)QxxQxy∂xuy

− (2.10)QxxQxy∂yux

Higher order

flow alignment

- − (0.03)Qxx -
− (0.05)Qxx

+ (0.29)Q
3
xx

− (0.16)Qxx -
Bulk

free energy

TABLE S3. Optimal model for Qxx for various data sets. The rows show different data sets and the columns show the values
of the number of terms n∗ in the optimal model, the corresponding R2 value, and the terms appearing in the model, organized
by physical origin. We omit the 1000 μM data set for which R2 < 0.5.

25 μM 50 μM 100 μM 200 μM 500 μM HR-SF Physical origin

n† = 8 n† = 11 n† = 11 n† = 9 n† = 8 n† = 14

R2 = 0.96 R2 = 0.88 R2 = 0.96 R2 = 0.76 R2 = 0.81 R2 = 0.98

∂tQxx = ∂tQxx = ∂tQxx = ∂tQxx = ∂tQxx = ∂tQxx =

− (0.94)ux∂xQxx

− (1.07)uy∂yQxx

− (0.97)ux∂xQxx

− (1.00)uy∂yQxx

− (0.97)ux∂xQxx

− (0.97)uy∂yQxx

− (0.90)ux∂xQxx

− (0.90)uy∂yQxx

− (0.81)ux∂xQxx

− (0.87)uy∂yQxx

− (1.09)ux∂xQxx

− (1.07)uy∂yQxx
Convection

− (1.10)Qxy∂xuy

+ (1.00)Qxy∂yux

− (0.90)Qxy∂xuy

+ (1.03)Qxy∂yux

− (0.93)Qxy∂xuy

+ (1.01)Qxy∂yux

− (0.78)Qxy∂xuy

+ (0.83)Qxy∂yux

− (0.80)Qxy∂xuy

+ (0.86)Qxy∂yux

− (1.00)Qxy∂xuy

+ (1.03)Qxy∂yux
Rotation

-
+ (0.37)∂xux

+ (0.05)∂yux
+ (0.93)∂xux - + (0.60)∂xux + (0.96)∂xux Flow alignment

+ (4.25)Q
2
xy∂xux

− (2.10)QxxQxy∂xuy

− (2.22)QxxQxy∂yux

+ (2.62)Q
2
xy∂xux

− (3.83)Q
2
xx∂xux

− (1.97)QxxQxy∂xuy

− (1.96)QxxQxy∂yux

+ (4.40)Q
2
xy∂xux -

− (3.98)Q
2
xx∂xux

− (2.07)QxxQxy∂xuy

− (2.16)QxxQxy∂yux

Higher order

flow alignment

-
− (0.04)Qxx

+ (0.12)Q
3
xx

-
− (0.05)Qxx

+ (0.29)Q
3
xx

− (0.16)Qxx

+ (0.007)Qxx

− (0.027)Q
2
xxQxx

− (0.026)Q
2
xyQxx

Bulk

free energy

− (0.93)Qxy∂
2
yQxy

− (21.49)(∂xQxy)
2

+ (18.05)(∂yQxy)
2

− (17.24)(∂xQxy)
2

+ (16.27)(∂yQxy)
2

+ (29.52)∂yQxx∂xQxy

− (30.43)(∂xQxy)
2

+ (28.13)(∂yQxy)
2

− (84.98)(∂xQxy)
2

+ (86.29)(∂yQxy)
2

+ (6.39)∂
2
xQxx

− (17.97)Q
2
xx∂

2
xQxx

− (29.05)Q
2
xy∂

2
xQxx

Distortion

free energy

TABLE S4. Model for Qxx at secondary shoulders for various data sets. The rows show different data sets and the columns
show the values of the number of terms n† for the secondary shoulders, the corresponding R2 value, and the terms appearing
in the model, organized by physical origin. We omit the 1000 μM data set for which R2 < 0.5.
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FIG. S5. Average magnitudes of various contributions to the alignment equation for the HR-SF data-set with magnitudes
averaged over (left, solid lines) all space and (right, dashed lines) regions with low order (S < 0.75) . The value of K is
obtained from the fit at n = n∗ + 1. All quantities are rolling averages over a window of 20 seconds. (inset in right) fraction
(%) of data coming from low order regions. The x axis is same as the main figure. We note that while the average magnitude
of K∇2Qxx (black lines with circles) is much smaller than the other terms, it is comparable to flow-coupling terms near regions
of distortion/low order (identified here as regions with S < 0.75, see right), but the fraction of data coming from these low
order regions is � 5% (see right inset), suggesting why the algorithm is not able to robustly identify the elastic term.


