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Abstract

Learning from rationales seeks to augment

model prediction accuracy using human-

annotated rationales (i.e. subsets of input to-

kens) that justify their chosen labels, often in

the form of intermediate or multitask supervi-

sion. While intuitive, this idea has proven elu-

sive in practice. We make two observations

about human rationales via empirical analy-

ses: 1) maximizing rationale supervision ac-

curacy is not necessarily the optimal objective

for improving model accuracy; 2) human ratio-

nales vary in whether they provide sufficient

information for the model to exploit for pre-

diction. Building on these insights, we pro-

pose several novel loss functions and learn-

ing strategies, and evaluate their effectiveness

on three datasets with human rationales. Our

results demonstrate consistent improvements

over baselines in both label and rationale ac-

curacy, including a 3% accuracy improvement

on MultiRC. Our work highlights the impor-

tance of understanding properties of human ex-

planations and exploiting them accordingly in

model training.

1 Introduction

In the past several years, explainability has become

a prominent issue in machine learning, addressing

concerns about the safety and ethics of using large,

opaque models for decision-making. As interest

has grown in explanations for understanding model

behavior, so has interest grown in soliciting gold-

standard explanations from human annotators and

using them to inject useful inductive biases into

models (Hase and Bansal, 2021). Many such ex-

planation datasets have become available recently

(Wiegreffe and Marasović, 2021).

A common format for explanations in NLP is the

rationale, a subset of input tokens that are relevant

to the decision. A popular architecture for gen-

erating such explanations is the rationale model,

(A) Unsupervised rationale

[CLS] susan wanted to have a birthday party . she called

all of her friends . she has five friends . her mom said that

susan can invite them all to the party . her first friend could

not go to the party because she was sick . her second friend

was going out of town . her third friend was not so sure if

her parents would let her . the fourth friend said maybe .

the fifth friend could go to the party for sure . susan was a

little sad . on the day of the party , all five friends showed

up . each friend had a present for susan . susan was happy

and sent each friend a thank you card the next week . [SEP]

how many people did susan call ? | | 5 [SEP]

Prediction: False

(B) Human rationale

[CLS] susan wanted to have a birthday party . she called

all of her friends . she has five friends . her mom said that
susan can invite them all to the party . her first friend could
not go to the party because she was sick . her second friend
was going out of town . her third friend was not so sure if
her parents would let her . the fourth friend said maybe .
the fifth friend could go to the party for sure . susan was a
little sad . on the day of the party , all five friends showed
up . each friend had a present for susan . susan was happy
and sent each friend a thank you card the next week . [SEP]

how many people did susan call ? | | 5 [SEP]

Prediction: True

Table 1: An example of unsupervised versus human-

provided rationale in MultiRC. The unsupervised

model struggles to localize its attention and makes an

incorrect prediction. The same model makes a correct

prediction by only looking at the human rationale.

an explain-then-predict architecture which first ex-

tracts a rationale from the input and then makes a

prediction from the rationale-masked text (that is,

only the tokens included in rationale) (Lei et al.,

2016; DeYoung et al., 2019). Without external

supervision on this rationale, we typically pursue

parsimony via a sparsity objective. Table 1A shows

an example unsupervised rationale.

With the benefit of a human-annotated rationale

for the true label, we can begin to understand model

mistakes in terms of reliance on inappropriate fea-

tures (and correct them). In the example above, the

unsupervised rationale suggests that the model’s
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mistake is due to missing key information about

how many friends Susan has (i.e., “five”). Forcing

the model to see these key tokens by only using

the human rationale as the input fixes this mistake

(Table 1B). Prior work has shown that this is not

a fluke. For some datasets, human rationales con-

sistently improve model accuracy over baseline

when used as an input mask, by orienting model

attention toward informative tokens and away from

confounding ones (Carton et al., 2020).

Knowing that human rationales contain useful

predictive signal, the key question becomes: can

we improve model prediction accuracy by in-

corporating human rationales into training?

Numerous approaches to using human rationales

in training have been tried, including: regularizing

the parameters of a (linear) model (Zaidan et al.,

2007); regularizing model output gradients (Ross

et al., 2017); regularizing internal transformer at-

tention weights (Jayaram and Allaway, 2021); and

direct supervision on a rationale model (DeYoung

et al., 2019), which serves as our baseline approach

in this paper. These approaches have generally

failed to significantly improve model prediction

accuracy (Hase and Bansal, 2021).

A quality these prior approaches have in com-

mon is treating human rationales as internally and

collectively uniform in predictive utility. That is,

any token included in the human rationale is treated

as equally important to include in the input repre-

sentation; vice versa for tokens excluded. Further-

more, all human rationales are weighted equally.

The reality, we demonstrate empirically via ab-

lation studies in §4, is that the predictive utility of

human rationales is distributed unevenly between

tokens in a rationale, and unevenly between ra-

tionales in a dataset. Based on this analysis, we

suggest that learning objectives which weight every

token equally (accuracy in the case of direct super-

vision), and every rationale equally, are not optimal

for improving downstream model accuracy.

We operationalize these hypotheses in four dis-

tinct modifications to the baseline rationale model

architecture. Three of these modify the naive token-

wise accuracy supervision objective, and the fourth

implements “selective supervision”, ignoring un-

helpful human rationales in training.

Evaluating on three datasets, our proposed meth-

ods produce varying levels of improvement over

both a baseline BERT model and a baseline BERT-

to-BERT supervised rationale model, ranging from

substantial for MultiRC (3%) to marginal for E-

SNLI (0.4%). Additionally, our methods also im-

prove rationale prediction performance.

Taken together, our results demonstrate the im-

portance of considering the variance of predictive

utility both between and within human rationales

as a source of additional training signal. Our pro-

posed modifications help pave the way toward truly

effective and general learning from rationales.

2 Related Work

2.1 Rationalization

The extractor-predictor rationale model proposed

by Lei et al. (2016) and described in more detail in

§5, is an approach to feature attribution, which is

one among many families of explanation methods

(see Vilone and Longo (2020) for a recent survey).

Recent work has extended the original architec-

ture in various ways, including replacing the use of

reinforcement learning with differentiable binary

variables (Bastings et al., 2020; DeYoung et al.,

2019), alternatives to the original sparsity objec-

tive (Paranjape et al., 2020; Antognini and Faltings,

2021), and additional modules which change the

interaction dynamics between the extractor and pre-

dictor (Carton et al., 2018; Yu et al., 2019; Chang

et al., 2020). Pipeline models (Lehman et al., 2019)

are similar, but train the two modules separately

rather than end-to-end.

Rationale models are a powerful approach to

NLP explanations because of how specific objec-

tives can be put on the properties of the rationale,

but they have some downsides. First, they are un-

stable, the extractor often collapsing to all-0 or all-1

output (DeYoung et al., 2019; Yu et al., 2019). We

introduce an engineering trick in §5 that appears

to lessen this risk. Also, with end-to-end training

comes the risk of information leakage between the

extractor and predictor (Jethani et al., 2021; Hase

et al., 2020; Yu et al., 2021). This idea of leak-

age plays a part in how we estimate explanation

predictive utility in section §4.

2.2 Learning from Explanations

Wiegreffe and Marasović (2021) present a review

of explainable NLP datasets, a number of which

have been incorporated into the ERASER collec-

tion and benchmark (DeYoung et al., 2019).

Early work in learning from human explanations

include Zaidan et al. (2007) and Druck et al. (2009),

and a line of work termed “explanatory debugging”
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(Kulesza et al., 2015; Lertvittayakumjorn and Toni,

2021). More recent work spans a variety of ap-

proaches, categorized by Hase and Bansal (2021)

into regularization (e.g., Ross et al. (2017)), data

augmentation (e.g., Hancock et al. (2018)), and su-

pervision over intermediate outputs (e.g., DeYoung

et al. (2019); Jayaram and Allaway (2021)).

Significant improvements to model accuracy as

a result of explanation learning have proven elu-

sive. Studies occasionally claim such improvement,

such as Rieger et al. (2020), which observes gen-

eral improvements on a medical vision task. More

commonly their claims pertain to secondary objec-

tive such as explanation quality (e.g., Plumb et al.

(2020)), robustness (e.g., Ross et al. (2017), Sri-

vastava et al. (2020)), or few-shot learning (e.g.,

Yao et al. (2021)). Hase and Bansal (2021) gives

an overview of the problem and discusses circum-

stances under which learning from explanations is

liable to work. Our paper contributes to this discus-

sion by considering the variance of training signal

quality both within and between human rationales,

and how to exploit these variances.

3 Data

We consider three datasets in this work. All three

are document-query text comprehension tasks,

where the task is to determine whether the query is

true or false given the document. We use the train,

development, test splits offered by DeYoung et al.

(2019). Table 2 shows the basic statistics of each

dataset based on the training set.

• MultiRC (Khashabi et al., 2018). A read-

ing comprehension dataset of 32,091 document-

question-answer triplets that are true or false. Ra-

tionales consist of 2-4 sentences from a document

that are required to answer the given question.

• FEVER (Thorne et al., 2018). A fact verification

dataset of 76,051 snippets of Wikipedia articles

paired with claims that they support or refute.

Rationales consist of a single contiguous sub-

snippet, so the basic unit of rationale is sentence.

• E-SNLI (Camburu et al., 2018). A textual en-

tailment dataset of 568,939 short snippets and

claims for which each snippet either refutes, sup-

ports, or is neutral toward. Input texts are much

shorter than MultiRC and FEVER, and rationales

are at the token level.

Dataset Text length Rationale
length

Rationale
granularity

MultiRC 336.0 52.0 sentence
FEVER 355.9 47.0 sentence
E-SNLI 23.5 6.1 token

Table 2: Basic statistics of the datasets.

4 Analysis

To understand properties of human rationales for

the purpose of learning from rationales, we analyze

the effect of human rationales when they are used

as inputs to a trained model.

4.1 Human Rationales have Predictive Utility

A basic question about the viability of learning

from rationales is whether human rationales bear

the potential for improving model performance.

That is, do human explanations successfully reveal

useful tokens while occluding confounding tokens,

such that a model evaluated only on the revealed to-

kens is able to get improved performance relative to

the full input? We refer to such rationale-redacted

inputs as rationalized inputs.

We define sufficiency-accuracy (SA) as how ac-

curate the model is across a corpus of rationalized

input. This is an aggregate measure, similar to suf-

ficiency as defined in DeYoung et al. (2019) but

focused on absolute performance rather than sim-

ilarity to baseline model output. We refer to the

sufficiency-accuracy of the human rationales as

human sufficiency-accuracy (HSA).

Estimating sufficiency-accuracy is problematic.

The natural way to probe whether the tokens in a

rationale are sufficient for an accurate prediction is

to remove the non-included tokens from the input,

run the model on just the included tokens, and as-

sess its accuracy. But a version of the input where

a majority of tokens are removed or masked (by a

[MASK] special token in the case of BERT), is out-

of-distribution relative to the training data, which

has no removal or masking. This difference may

lead to unpredictable output from the model when

tested on masked input. This masking-is-OOD

problem has not received much discussion in the

literature, though Jacovi and Goldberg (2021) pro-

pose to mitigate it with random masking during

model training. The effect of this problem will be

to underestimate the sufficiency-accuracy of ratio-

nales tested against an un-adapted model.

The opposite problem stems from overfitting

rather than OOD issues: label leakage. A human

rationale may contain signal about the true label
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baseline until roughly 40% of tokens have been

dropped from them, suggesting that a minimum

of 60% recall is needed to derive an advantage

from human rationales over the full input. Per the

“added” curve, adding the same number of irrele-

vant tokens to the rationale has a much less severe

impact on accuracy, suggesting that errors of omis-

sion are significantly worse than errors of inclusion

for learning from rationales.

Fig. 2b and 2c respectively show the effect of this

perturbation on high- and low-sufficiency-accuracy

human rationales, which constitute 74% and 26%

of rationales respectively for this model. High-

SA rationales follow a similar trend to the whole

population, but the recall requirement is lower than

Fig. 2a to exceed model accuracy with the full input

(the “dropped” curve meets the blue line at 50%).

In comparison, low-SA rationales demonstrate in-

teresting properties. These rationales actually have

a sabotaging effect in a quarter of cases: the model

would have an accuracy of 27% with the full input,

which is lowered to 0% by the presence of these ra-

tionales. Also, addition and dropping have a similar

effect in mitigating this sabotage. Similar results

hold on FEVER and E-SNLI except the apparent

required recall is much higher (>90%) for both

methods (see the appendix), indicating challenges

for learning from rationales on these datasets.

In summary, our analyses inspire two general ob-

servations about learning from rationales: 1) mov-

ing away from naive accuracy (toward recall, for

example) as a rationale supervision objective, and

2) focusing on useful rationales over harmful ones.

5 Methods

We propose architecture changes based on these

insights. Our code is available at https://github.

com/ChicagoHAI/learning-from-rationales.

5.1 Background and Baseline Models

Our training data include input tokens, their cor-

responding rationales, and labels. Formally, an

instance is denoted as (x,α, y), where x =
(x1, . . . ,xL) is a text sequence of length L and

human rationale α of the same length. αi = 1
indicates that token xi is part of the rationale (and

relevant for the prediction), αi = 0 otherwise.

We use HuggingFace’s BERT-base-uncased (De-

vlin et al., 2018; Wolf et al., 2020) as the basis for

our experiments and analysis. Used in the standard

way, BERT ignores α and is fine-tuned on tuples

……𝒙! 𝒙" 𝒙#

Rational Extractor (g)

"𝜶!

Original input: 

Rationalized input: 𝒎(𝒙𝟏, "𝜶!)

Rational loss

Unsupervised: sparsity loss

Supervised: prediction loss

Predictor (f)

!𝑦Label loss

"𝜶" …… "𝜶#

𝒎(𝒙", "𝜶") 𝒎(𝒙#, "𝜶#)……

Figure 3: Illustration of our multi-task framework. Our

main innovation lies in how we define rationale loss for

the supervised case and the masking function m.

of (x, y). This is our simplest baseline.

Rationale model. We use the rationale model of

Lei et al. (2016) for both supervised and unsuper-

vised rationale generation, in its updated BERT-to-

BERT form (DeYoung et al., 2019). This model

consists of two BERT modules: a rationale extrac-

tor g that generates a binary attention mask α̂ as

the rationale, and a predictor f which makes a pre-

diction using the rationalized input via a masking

function m on x and α̂ (Fig. 3):

g(x) → α̂,

f(m(x, α̂)) → ŷ.

The two components are trained in tandem. In

the unsupervised scenario, the joint objective func-

tion consists of a prediction loss term and a ratio-

nale sparsity term, encouraging the model to retain

only those tokens in x that are necessary for accu-

rate prediction:

Lu = Lp(y, ŷ) + λsp||α̂||,

where Lp is typically cross entropy.

In the supervised scenario, given a human ratio-

nale α, we replace the sparsity objective with a

rationale supervision objective:

Lsu = Lp(y, ŷ) +
λsu

L

L∑

i=1

Lp(αi, α̂i),

where λsu is a hyperparameter that controls the

weight of rationale loss compared to label loss.

Each of these scenarios represents a baseline

for our experiment. We refer to the unsupervised

version as unsupervised rationale model, and the

supervised version as supervised rationale model.

Implementation details. The original Lei et al.

(2016) model generates binary rationales by

Bernoulli sampling from continuous probability

values produced by the generator, and uses the

REINFORCE algorithm (Williams, 1992) to prop-
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agate approximate gradients through this non-

differentiable operation.

We instead use Gumbel Softmax (Jang et al.,

2017) to generate differentiable approximate binary

rationale masks. In this framework, the generator

produces logits zi to which are added random noise

G ∼ Gumbel(0, 1), before applying a softmax to

produce class probabilities ci. This approximates a

discrete distribution parameterized by ezi . We then

use the positive class probability c
1
i as the rationale

value α̂i.

ci = softmax(zi+G ∼ Gumbel(0, 1)); α̂i = c
1
i

Generating stable rationales. We find it helpful

as an engineering trick to pre-train the predictor

layer of this model on the full input before co-

training the predictor and extractor on the joint

objective. This step appears to mitigate some of

the issues this model has with rationale collapse,

noted for example by DeYoung et al. (2019).

Given α̂i, we mask non-rationale tokens by mul-

tiplicatively substituting the [MASK] token vector

across their vector representations, analogously to

what is done during the MASK-LM pretraining of

the BERT model:

ms(xi, α̂i) = α̂i · ei + (1− α̂i) · e[MASK],

where ei represents the embedding associated with

xi and e[MASK] is the embedding for the [MASK]

token. We never mask special tokens [CLS] or

[SEP], and we set α̂i = 1 for the query in MultiRC

and FEVER as well because the query is always

part of human rationales in these two datasets.

5.2 Learning from Human Rationales

Inspired by the analysis in §4, we propose four

strategies for improving the efficacy of learning

from rationales: 1) tuning class weights for ratio-

nale supervision; 2) enforcing sentence-level ra-

tionalization; 3) using non-occluding “importance

embeddings”; and 4) selectively supervising only

rationales with high sufficiency-accuracy. The first

three are designed to loosen the supervision’s de-

pendence on flat tokenwise accuracy, while the last

tries to operationalize our observations about help-

ful versus non-helpful rationales.

Class weights. Rationales may become more effec-

tive enablers of model prediction accuracy at differ-

ent balances of precision and recall. We can adjust

this balance simply by using differing weights to

positive and negative classes in rationale supervi-

sion:

Lw = Lp(y, ŷ) +
1

L

L∑

i=1

(1 + λ1
suαi)Lp(αi, α̂i),

where λ1
su controls the relative weight of rationale

vs. non-rationale tokens. In particular, as we will

discuss in §4, we find that increased recall is asso-

ciated with increased model accuracy. Thus, we

explore several values for λ1
su in our experiment to

encourage higher recall.

Sentence-level rationalization. Another diver-

gence from strict token-wise accuracy is to ratio-

nalize at the sentence rather than the token level.

Given a function sent mapping a token xi to

its corresponding sentence s consisting of tokens

{..., xi, ...}, we average token-level logits zi across

each sentence to produce a binary mask at the sen-

tence level and then propagate that mask value to

all sentence tokens:

α̂i = α̂
s
sent(i),

where z
s = 1

|{i|sent(i)=s}|

∑
{i|sent(i)=s} zi is used

to generate α̂
s
sent(i).

Importance embeddings. Another way to miti-

gate the impact of false negatives in predicted ra-

tionales is for these negatives to still remain visible

to the predictor. This variant uses additive em-

beddings for rationalization rather than occluding

masks, using a two-element embedding layer e

constituting one embedding for rationale tokens

and one for nonrationale tokens, added to the in-

put vectors according to the predicted rationale.

This way, input tokens are tagged as important or

unimportant, but the predictor f has the freedom to

learn how to engage with these tags for maximum

label accuracy, rather than being fully blinded to

“unimportant” tokens.

me(xi,α̂i)=ei+(1−α̂i)·enon-rationale+α̂i·erationale.

An important drawback of this approach is that the

predictor now has access to the full input instead

of only the rationalized input, so these rationales

provide a weak guarantee that important tokens are

actually used to make predictions. This method

also represents a large distribution shift from full

text, so we find it necessary to calibrate the predic-

tor using human rationales, as described in Fig. 1b.

Selective supervision. Our fourth modification at-

tempts to improve rationale prediction performance

on high-sufficiency-accuracy rationales by selec-

tively supervising only on human rationales with

this property, ignoring those where human ratio-

1080



Dataset Model Acc.
Rationale prediction Human

Suff. Acc.

Methods

F1 Prec. Rec. Masking Granularity
Pos. class

weight

Selective

supervision

MultiRC

BERT baseline 68.1 - - - 73.9 - Tokens - -

Unsupervised rationale model 67.2 22.2 18.5 27.9 71.2 [MASK] Tokens - -

Supervised rationale model 67.0 46.5 41.5 52.9 70.8 [MASK] Tokens 1.0 No

Best overall model 71.2 57.1 44.9 78.4 74.5 Embeddings Sentences 5.0 No

FEVER

BERT baseline 90.2 - - - 89.4 - Tokens - -

Unsupervised rationale model 88.3 22.6 20.5 25.1 88.7 [MASK] Tokens - -

Supervised rationale model 90.7 68.4 61.7 76.7 91.1 [MASK] Tokens 1.0 No

Best overall model 91.5 81.2 83.5 79.1 91.6 Embeddings Sentences 1.0 No

E-SNLI

BERT baseline 89.7 - - - 73.9 - Tokens - -

Unsupervised rationale model 88.9 40.6 28.2 72.6 85.0 [MASK] Tokens - -

Supervised rationale model 87.8 58.7 47.7 76.0 89.4 [MASK] Tokens 1.0 No

Best overall model 90.1 59.6 45.5 86.2 92.3 Embeddings Tokens 3.0 No

Table 3: Best-performing model variant compared to baseline models.

nales do not allow a correct prediction.

Specifically, for every training batch, we use the

true human rationales α as an input mask for the

BERT predictor to get the HSA for each document.

HSA then serves as a weight on the human rationale

supervision during the main training batch:

Lss=Lp(y,ŷ)+I(y=f(m(x,α)))λsu
L

∑L
i=1

Lp(αi,α̂i).

By weighting supervision this way, we hope to

ignore low-quality human rationales during train-

ing and focus instead on those that enable good

accuracy.

6 Results

6.1 Experiment Setup

Our goal in this experiment is to understand the

impact of our four proposed model/training mod-

ifications. We do this with a comprehensive scan:

We try three positive rationale supervision class

weights λ1
su ({0, 2, 4}), and toggle sentence-level

rationalization, importance embedding, selective

supervision on and off. In addition, we vary ratio-

nale supervision loss weight λsu in {0.5, 1, 2}. This

resulted in 72 models for MultiRC and FEVER, and

36 models for E-SNLI (for which sentence-level

rationalization is not applicable).

The best resultant model is our best overall

model. The best model with λsu1 = 1 (i.e., iden-

tical class weights for human rationales) and no

other learning strategy enabled is our baseline su-

pervised rationale model. We additionally train

three unsupervised rationale models with sparsity

weights 0.15, 0.25, and 0.35, selecting as repre-

sentative the one which produced the sparsest ra-

tionales while maintaining a reasonable level of

accuracy (because in this architecture, there is in-

variably a trade-off between accuracy and sparsity).

To evaluate the performance of our models, we

consider both accuracy of the predicted labels (ŷ)

and performance of rationale prediction in terms of

F1, precision, and recall. We use Pytorch Lightning

(Falcon et al., 2019) for training with a learning

rate of 2e-5 and gradient accumulation over 10

batches for all models. Early stopping was based

on validation set loss with a patience of 3, evaluated

every fifth of an epoch. Training was performed on

two 24G NVidia TITAN RTX GPUs.

6.2 Model Performance

Table 3 compares our best overall model against

the baselines, and presents the learning strategies

used in the models.

Prediction accuracy. For MultiRC, this best

model includes every proposed modification

(sentence-level rationalization, importance embed-

dings, class weights) except for selective supervi-

sion, and yields a 3-point improvement from the

baseline accuracy of 68.1% to 71.2%. We observe

a more modest improvement on FEVER, with the

best model using sentence-level rationalization and

importance embeddings, and scoring a 1-point im-

provement from 90.2% to 91.5%. We note, how-

ever, that this approaches the accuracy of the model

with access to a human rationale oracle (91.6%).

Finally, we observe a tiny improvement of 0.4% on

E-SNLI, though our proposed methods do improve

upon the baselines of unsupervised and supervised

rationale model, which causes a performance drop.

A McNemar’s significance test with Bonferroni

correction between the best and baseline model

finds that the accuracy improvement is significant

for MultiRC and FEVER (p =2e-7 and 3e-6 respec-

tively) and not significant for E-SNLI (p = 0.1).

The limited improvement in E-SNLI echos the per-

formance drop in Fig. 1a without adaptation, sug-

gesting that human rationales in this dataset are too

idiosyncratic to improve model performance.

Factor analysis. We use regression analysis to
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Method
Coefficients

MultiRC FEVER E-SNLI

Sentences .015*** .001 -
Class weights .017*** .007*** .005
Importance embeddings .012*** .006*** -.010**
Selective supervision 0.004 -.006*** -.032***

Table 4: Regression coefficients for effect each pro-

posed method on overall prediction accuracy

Dataset
Sel.
Sup.

Acc.
F1.

High-HSA Low-HSA

MultiRC
No 71.2 59.3 57.2
Yes 71.0 56.2 54.1

FEVER
No 91.5 79.0 72.5
Yes 90.6 61.2 57.0

E-SNLI
No 90.1 61.2 48.0
Yes 88.8 49.0 44.9

Table 5: Label accuracy and predicted rationale F1 for

high- versus low-HSA examples.

understand the impact of the different modifications

on model accuracy. Table 4 suggests that rationale

class weighting has the highest positive effect on

accuracy across datasets. Importance embeddings

have a positive effect for MultiRC and FEVER and

a negative effect for E-SNLI, while sentence-level

rationalization improves only MultiRC.

Selective supervision is found to have a non-

existant or negative effect across all three datasets.

Table 5 details this result, showing model accuracy

and rationale performance for the best model with

(yes) vs. without (no) selective supervision. If

our method succeeded, F1 for high-HSA examples

would increase from the “No” to the “Yes” models

and remain flat or decrease for low-HSA examples.

Indeed, we observe lower rationale F1 for low-HSA

examples, but the rationale F1 also drops substan-

tially for high-HSA examples, possibly because of

the reduced available training data.

Rationale performance. Although our modifica-

tions are designed to improve label prediction per-

formance, they also improve rationale prediction

performance in most cases. The only exception is

the reduced precision in E-SNLI compared to the

supervised rationale model.

6.3 Qualitative Analysis

Table 6 shows three examples, each drawn from a

different dataset, to illustrate different outcomes.

For each example, we show the human rationale

and predicted rationales for both the baseline super-

vised rationale model and our best overall model.

Incorrect predictions are colored red.

Example 6a shows an instance sampled from

MultiRC where our best model, with higher recall

and sentence-level rationalization, more success-

fully captures the (sufficient) information present

in the human rationale, allowing for a correct pre-

diction where the supervised rationale model fails.

Example 6b presents a contrasting example from

the FEVER dataset. The human rationale omits

important context, that Legendary Entertainment

is a subsidiary of Wanda Group, making it harder

to infer that it is not a subsidiary of Warner Bros.

Our best model succeeds at capturing this snippet

in its rationale, but still predicts the incorrect label,

illustrating that a sufficient (for humans) rationale

does not always produce a correct label.

Finally, example 6c shows a case where the base-

line supervised rationale model succeeds while our

best model fails. This is a hard-to-interpret ex-

ample, mainly a demonstration of the limitations

of rationales as an explanatory device for certain

kinds of task. This begs a question: how relevant

are rationales as an explanation or learning mecha-

nism when models like GPT-3 (Brown et al., 2020)

are increasingly capable of human-level natural

language explanations (Table 7)?

Our position is that however an explanation is

presented, meaning is still localized within text, so

rationales can still serve as a useful interface for

scrutinizing or controlling model logic, even if they

require additional translation to be comprehensible

to humans. Works that hybridize the two ideas such

as Zhao and Vydiswaran (2020) may represent a

good way of resolving this issue.

7 Discussion

The analysis in section §4 explores the limits of po-

tential improvement from learning from rationales.

It suggests two insights toward improved learn-

ing from rationales: 1) that insofar as they boost

model accuracy, not all human rationale tokens are

equally valuable, e.g., with false positives causing

less degradation than false negatives; and 2) we

could in principle boost label accuracy with good

rationale accuracy on useful (high-SA) rationales

and low accuracy on useless (low-SA) ones.

We exploit these two insights with four modifi-

cations to the baseline architecture. Three of these

diverge from flat rationale supervision accuracy:

rationale supervision class weighting, sentence-

level rationalization, and importance embeddings.

The last, selective supervision, pursues utility-

discriminative weighting during model training.
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Human rationale Baseline supervised rationale Best model

(A) MultiRC: Best model beats supervised baseline

[CLS] there have been many organisms that have

lived in earths past . only a tiny number of them

became fossils . still , scientists learn a lot from

fossils . fossils are our best clues about the his-

tory of life on earth . fossils provide evidence

about life on earth . they tell us that life on earth

has changed over time . fossils in younger rocks

look like animals and plants that are living to-

day . fossils in older rocks are less like living

organisms . fossils can tell us about where the

organism lived . was it land or marine ? fossils

can even tell us if the water was shallow or deep .

fossils can even provide clues to ancient climates

. [SEP] what can we tell about former living or-

ganisms from fossils ? | | how they adapted [SEP]

[CLS] there have been many organisms that have

lived in earths past . only a tiny number of them

became fossils . still , scientists learn a lot from

fossils . fossils are our best clues about the history

of life on earth . fossils provide evidence about

life on earth . they tell us that life on earth has

changed over time . fossils in younger rocks look

like animals and plants that are living today . fos-

sils in older rocks are less like living organisms .

fossils can tell us about where the organism lived

. was it land or marine ? fossils can even tell us if

the water was shallow or deep . fossils can even

provide clues to ancient climates . [SEP] what

can we tell about former living organisms from

fossils ? | | how they adapted [SEP]

[CLS] there have been many organisms that have

lived in earths past . only a tiny number of them

became fossils . still , scientists learn a lot from

fossils . fossils are our best clues about the his-

tory of life on earth . fossils provide evidence

about life on earth . they tell us that life on earth

has changed over time . fossils in younger rocks

look like animals and plants that are living today

. fossils in older rocks are less like living organ-

isms . fossils can tell us about where the organism

lived . was it land or marine ? fossils can even tell

us if the water was shallow or deep . fossils can

even provide clues to ancient climates . [SEP]

what can we tell about former living organisms

from fossils ? | | how they adapted [SEP]

Prediction: False Prediction: True Prediction: False

(B) FEVER: Human rationale is insufficient

[CLS] legendary entertainment - lrb - also known

as legendary pictures or legendary - rrb - is an

american media company based in burbank , cali-

fornia . the company was founded by thomas tull

in 2000 and in 2005 , concluded an agreement to

co - produce and co - finance films with warner

bros . , and began a similar arrangement with uni-

versal studios in 2014 . since 2016 , legendary

has been a subsidiary of the chinese conglomer-

ate wanda group . [SEP] legendary entertainment

is a subsidiary of warner bros pictures . [SEP]

[CLS] legendary entertainment - lrb - also known

as legendary pictures or legendary - rrb - is an

american media company based in burbank , cali-

fornia . the company was founded by thomas tull

in 2000 and in 2005 , concluded an agreement to

co - produce and co - finance films with warner

bros . , and began a similar arrangement with uni-

versal studios in 2014 . since 2016 , legendary

has been a subsidiary of the chinese conglomer-

ate wanda group . [SEP] legendary entertainment

is a subsidiary of warner bros pictures . [SEP]

[CLS] legendary entertainment - lrb - also known

as legendary pictures or legendary - rrb - is an

american media company based in burbank , cali-

fornia . the company was founded by thomas tull

in 2000 and in 2005 , concluded an agreement to

co - produce and co - finance films with warner

bros . , and began a similar arrangement with uni-

versal studios in 2014 . since 2016 , legendary

has been a subsidiary of the chinese conglomer-

ate wanda group . [SEP] legendary entertainment

is a subsidiary of warner bros pictures . [SEP]

Prediction: Supports Prediction: Supports Prediction: Supports

(C) E-SNLI: Supervised baseline beats best model

[CLS] a big dog catches a ball on his nose [SEP]

a big dog is sitting down while trying to catch a

ball [SEP]

[CLS] a big dog catches a ball on his nose [SEP]

a big dog is sitting down while trying to catch a

ball [SEP]

[CLS] a big dog catches a ball on his nose [SEP]

a big dog is sitting down while trying to catch a

ball [SEP]

Prediction: Neutral Prediction: Neutral Prediction: Contradiction

Table 6: Examples of human, supervised baseline, and best model rationales and predictions.

Source Natural language explanation

Human There is no indication that the dog is sitting down while playing catch on his nose.
Human A dog can catch a ball by not to sitting down.
GPT-3 The entailment of this sentence is that the dog is sitting down, and the contradiction would be if the dog was

standing up. This sentence is neutral, meaning it doesn’t entail or contradict anything.

Table 7: Examples of natural language explanations for the “neutral” prediction on E-SNLI example from Table

6c. See Appendix §D for GPT-3 prompt details.

Taken together, our proposed methods yield a

substantial 3% improvement over baseline perfor-

mance for MultiRC, a 1% improvement on FEVER,

and a tiny .4% improvement on E-SNLI, mirroring

the potential improvements observed in the analy-

sis. We find that all three token supervision meth-

ods are useful in achieving this, while selective

supervision has a marginal or negative effect.

In summary, our results support the potential for

learning from rationales in certain datasets, and

demonstrate the importance of understanding the

properties of human rationales to properly exploit

them for this purpose. We believe that these two

insights are useful steps towards effective learn-

ing from rationales, and could yield even greater

improvements if operationalized optimally.

Limitation. A limitation of our analysis is that

all three datasets are document-query style reading

comprehension tasks, as opposed to, e.g., sentiment

analysis. Because of the popularity of this type

of task in NLP benchmarks, this type of dataset

represents a majority of what is available in the

ERASER collection (DeYoung et al., 2019). By

contrast, sentiment is often scattered throughout a

text, so human rationales for sentiment are likely to

contain redundant signal, which could impact their

predictive utility. We leave a more comprehensive

survey of NLP tasks for future work.
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Dataset Method Role Accuracy
Rationale prediction Human

Suff. Acc.
F1 Precision Recall

MultiRC

Sentences Best with 71.2 57.1 44.9 78.4 74.5
Sentences Best without 70.6 41.6 27.7 84.1 75.8

Class-weights Best with 71.2 57.1 44.9 78.4 74.5
Class-weights Best without 70.8 55.2 66.1 47.4 76.5

Importance embeddings Best with 71.2 57.1 44.9 78.4 74.5
Importance embeddings Best without 71.0 53.6 39.7 82.5 75.8

Selective supervision Best with 71.0 53.6 39.7 82.5 75.8
Selective supervision Best without 71.2 57.1 44.9 78.4 74.5

FEVER

Sentences Best with 91.5 81.2 83.5 79.1 91.6
Sentences Best without 91.3 72.4 61.3 88.5 91.6

Class-weights Best with 91.5 79.6 73.1 87.3 91.8
Class-weights Best without 91.5 81.2 83.5 79.1 91.6

Importance embeddings Best with 91.5 81.2 83.5 79.1 91.6
Importance embeddings Best without 91.4 80.0 74.9 85.9 91.8

Selective supervision Best with 90.6 56.4 41.4 88.6 90.4
Selective supervision Best without 91.5 81.2 83.5 79.1 91.6

E-SNLI

Class-weights Best with 90.1 59.6 45.5 86.2 92.3
Class-weights Best without 89.9 62.2 55.7 70.4 92.0

Importance embeddings Best with 90.1 59.6 45.5 86.2 92.3
Importance embeddings Best without 89.9 33.5 20.2 100.0 72.5

Selective supervision Best with 88.8 49.0 33.2 93.4 84.0
Selective supervision Best without 90.1 59.6 45.5 86.2 92.3

Table 8: Comparison of best model with each proposed factor against best model without that factor.

A Detailed Factor Analysis

Table 8 compares, for each proposed method, the

performance of the best model using that method

and the best model not using it. The story shown

here is similar to the regression analysis in Table

4, but one new insight is that the improvement in

model prediction performance appears to be driven

by the sentence-level rationalization method, as it

cuts down on stray tokens dropped from or added

to the predicted rationales.

B Rationale Perturbation on FEVER

and E-SNLI

Furthering the analysis in §4.2, we extend the hu-

man rationale perturbation experiment to FEVER

and E-SNLI.

Fig. 4 show the result for FEVER. Fig. 4a shows

that the baseline accuracy is so high for this dataset

that to match just the baseline accuracy for FEVER,

we require near perfect prediction of human ratio-

nales.

Moreover, even for documents with HSA = 1,

the model performance drops below baseline on

dropping just ∼ 10% tokens (synonymous with ra-

tionale recall = ∼0.9) in Fig. 4b. Interestingly, the

model performance remains consistently above the

baseline when adding non-rationale tokens (syn-

onymous with decreasing rationale precision). In

comparison, the model performance for MultiRC in

Fig. 2b drops below baseline after dropping ∼50%

of the tokens.

For FEVER examples with HSA = 0 (Fig. 4c),

the model performance remains below the base-

line accuracy consistently, supporting the second

hypothesis in §4.2. The near-perfect need to pre-

dict rationales in FEVER may explain behind the

difference in improvements of model performance

between MultiRC and FEVER.

Fig. 5 covers E-SNLI. We see that the model

performance decreases after dropping rationale to-

kens (signifying decreasing recall) and it consis-

tently remains below the baseline. In contrast, the

model performance shows a slight improvement

after adding non-rationale tokens (signifying de-

crease in rationale precision). Moreover, for doc-

uments with HSA = 1, the model performance

drops below baseline at ∼3% for dropping and

swapping rationale tokens, where as the model per-

formance plateaus with addition of non-rationale to-

kens. These insights highlights the substantial chal-

lenges in learning from explanations for E-SNLI.
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