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Abstract

With a handful of demonstration examples,

large-scale language models show strong ca-

pability to perform various tasks by in-context

learning from these examples, without any fine-

tuning. We demonstrate that in-context learn-

ing performance can be highly unstable across

samples of examples, indicating the idiosyn-

crasies of how language models acquire in-

formation. We formulate example selection

for in-context learning as a sequential decision

problem, and propose a reinforcement learning

algorithm for identifying generalizable policies

to select demonstration examples. For GPT-2,

our learned policies demonstrate strong abil-

ities of generalizing to unseen tasks in train-

ing, with a 5.8% improvement on average. Ex-

amples selected from our learned policies can

even achieve a small improvement on GPT-3

Ada. However, the improvement diminishes

on larger GPT-3 models, suggesting emerging

capabilities of large language models.

1 Introduction

Large language models demonstrate the capability

to learn from just a few examples (Radford et al.,

2019; Brown et al., 2020; Rae et al., 2022; Zhang

et al., 2022). The possibility to train a model with-

out any parameter update has inspired excitement

about the in-context learning paradigm.

Intuitively, high in-context learning performance

should require carefully chosen demonstration ex-

amples, but a recent line of work suggests other-

wise Ð that demonstration examples are not as

important as we expected, and that few-shot perfor-

mance can be largely attributed to the model’s zero-

shot learning capacity (Min et al., 2022), across

GPT-2 and GPT-3. This insight is corroborated

by a parallel line of work that brings significant

improvements to in-context learning performance

without example selection, for example, by re-

ordering randomly selected examples and using

calibration (Lu et al., 2022; Zhao et al., 2021; Ko-

jima et al., 2022). Another notable approach is to

use best-of-n sampling, which requires a labeled

set for validation (Nakano et al., 2022).

Our contribution in this paper is twofold. First,

we revisit the effect of example selection on in-

context learning. We show that even with reorder-

ing and calibration, we still observe a large variance

across sets of demonstration examples, especially

for GPT-2, while calibration reduces the variance

for GPT-3 models. The high variance needs further

investigation, as we take it as evidence that large

language models are still not capable of efficiently

and reliably acquire new information in-context.

Understanding what makes good demonstration ex-

amples sheds some light on the mechanisms that

large language models use to process information.

Second, we seek to discover general trends in

example selection for in-context learning across

different tasks. Concretely, we use reinforcement

learning to optimize example selection as sequen-

tial decision making problem. We argue that active

example selection from unlabeled datasets is the

most appropriate setting for in-context learning be-

cause fine-tuning with an existing labeled set leads

to great performance with low variance. For GPT-

2, we validate our learned policy on a seen task

with labeled dataset and observe a 12.1% improve-

ment over a max-entropy active learning baseline.

Moreover, our learned policy is able to generalize

to new tasks with 5.8% improvement, suggesting

that the policy is able to capture systematic biases

in how GPT-2 acquires information. Examples se-

lected from our learned policies can even achieve

a small improvement on GPT-3 Ada. However,

the improvement diminishes on larger GPT-3 mod-

els. We provide further analyses to understand the

properties of useful examples.

Overall, our work explores how large language

models process information through the perspec-

tive of example selection and formulate active ex-
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tasks such as Amazon and SST-2, much smaller

variance is observed. This difference is potentially

due to the difficulty of the task and the multi-class

nature of AGNews and TREC. We will address the

latter in §4.3. Another interesting observation is

that variance diminishes with calibration. However,

one may argue that calibration no longer reflects

the model’s innate ability to acquire information.

Overall, the differences in model behavior be-

tween GPT-2 and GPT-3 add evidence to the emer-

gent ability of large language models (Wei et al.,

2022; Bowman, 2022). We hypothesize that the

variance will be even smaller with GPT-3 Davinci.

3 Active Example Selection by RL

Given a set of unlabeled examples, can we choose

the right ones to be annotated as demonstration ex-

amples? In this section, we formulate the problem

of active example selection for in-context learning.

Following the definition of in-context learning in

§2.1, constructing a prompt for in-context learning

boils down to choosing a sequence of demonstra-

tion examples.

We emphasize that by selecting from unlabeled

examples, our setup is analogous to active learning,

where we select examples to label. We think that

this is the most appropriate setting for in-context

learning because fine-tuning can lead to great per-

formance with low variance if we already have a

moderately-sized labeled set (e.g., 100 instances).

As in-context learning uses a small number of

examples, we formulate active example selection

as a sequential decision making problem, where

prompt is constructed by selecting and annotating

one demonstration example at a time. We use a

Markov Decision Process (MDP) to formalize the

problem, discuss our design of the reward function,

and introduce our solution to example selection

using reinforcement learning (RL).

3.1 Active Example Selection as a MDP

Given a set of unlabeled examples, we want to

maximize the expected accuracy on unseen test ex-

amples by getting up to k annotations. The space

of possible prompts grows exponentially with the

number of unlabeled example and is intractable to

enumerate, so we treat it as a sequential decision

making problem: given the pool of unlabeled ex-

amples SX = {xi}, choose one example xi, obtain

its groundtruth label yi, append the pair (xi, yi) to

our prompt, and repeat this process until either the

budget k is exhausted or the policy takes a special

action ⊥ indicating early termination.

Action space and state space. The action space

of the MDP is the set of unlabeled examples plus

the special end-of-prompt action: A = SX ∪ {⊥}.

After choosing an action xi we observe its label yi,

and the state is defined by the prefix of the prompt

s = (x1, y1), (x2, y2), . . . , (xi, yi).
Reward. The reward r can be defined based on an

arbitrary scoring function f of the language model

LM when conditioned on the prompt s, denoted

r = f(LMs). In practice, we use the accuracy on

a labeled validation set as reward.

It follows that we need to have access to a val-

idation set during training, which we refer to as

reward set. Similarly, we also have a labeled set

from which our policy learns to select examples.

We refer to this labeled set as training set. Ideally,

our learned policies identify generalizable qualities

of demonstration examples and can select useful un-

labeled examples in a task where the policy has not

observed any labeled examples. We will explore

different setups to evaluate our learned policies.

It is useful to emphasize how active example se-

lection deviates from the standard reinforcement

learning setting. First, the action space is the exam-

ples to be selected, which can be variable in size.

Furthermore, the actions during test time can be

actions that the policy has never observed during

training. Similarly, the classification task can dif-

fer from training, analogous to a new environment.

Such generalizations are not typically assumed in

reinforcement learning, due to the challenging na-

ture of the problem (Kirk et al., 2022).

3.2 Active Example Selection by Q-learning

Framing active example selection as a sequen-

tial problem allows us to use off-the-shelf RL

algorithms to train a policy. We opt to use Q-

learning (Mnih et al., 2013) for its simplicity and

effectiveness.

The objective of Q-learning is to approximate

the optimal state-value function Q⋆(s, a), i.e., the

maximum (discounted) future reward after taking

action a in state s. The Bellman equation (Bellman,

1957) allows a recursive formulation of the optimal

state-value function Q⋆ as

Q⋆(s, a) = Es∼S

[

r(s, a) + γmax
a′

Q⋆(s′, a′)

]

.

We collect off-policy training data in our imple-

mentation and thus use offline Q-learning to lever-
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age off-policy data (Prudencio et al., 2022). Specif-

ically, We use conservative Q-learning (CQL) (Ku-

mar et al., 2020), which uses regularization to pre-

vent the overestimation of Q-values for unobserved

actions in training data, contributing to a robust

policy when evaluated in an unfamiliar environ-

ment. More details about CQL can be found in the

Appendix A.

Generation of off-policy data. Offline learning

requiers off-policy training data. We run a random

policy for a fixed number (2,000) of episodes to

create the off-policy data. For every episode, we

randomly sample 4 demonstration examples, and

compute features and intermediate rewards. Then,

we store the trajectory as training data.

Feature-based representation of actions. In our

framework, a state s is a sequence of examples, and

we simply use the number of already selected ex-

amples |s| as the feature representation. To enable

our method to be deployed in an active example

selection process, we assume no access to labels

prior to selecting an example. That is, when rep-

resenting a example to be selected a = (x, y), we

omit the label y and simply use predicted label

probabilities conditioned on the current examples

PLM( · | s+x). We additionally include entropy of

the prediction.4

Reward shaping. The previously defined reward

function only rewards a completed prompt, while

intermediate states receive zero reward.Sparse re-

ward schemes are known to make learning diffi-

cult (Pathak et al., 2017). Therefore, we propose an

alternative reward function based on the marginal

utility of actions (Von Wieser, 1893). At time step

t we define r : S ×A → R as

r(s, a) = f(LMs+a)− f(LMs).

Intuitively, r measures the ªadditional gainº on

objective f by acquiring the label of example a.

Notice that f(LM∅) can be conveniently inter-

preted as the zero-shot performance of the language

model. Maximizing this marginal utility reward

function is indeed equivalent to optimizing the true

objective f : observe that the summation of rewards

along a trajectory is a telescoping series, leaving

only the final term f(LMs⊥
) minus a constant term

that does not affect the learned policy.5 It turns out

4Other features can be used, such as embeddings of the
language model. We use minimal features so that policies
could be evaluated across models (GPT-2 and GPT-3).

5Requires the discount factor γ = 1, which we use in
across all experiments.

that r is a shaped reward (Ng et al., 1999), a fam-

ily of transformed reward functions that preserves

the invariance of optimal policies.

Target network with replay buffer. Our algorithm

uses separate policy and target networks (Hasselt,

2010) with a replay buffer (Lin, 1992). Both are

standard extensions to vanilla DQN (Arulkumaran

et al., 2017), and are demonstrated to improves

performance while alleviating certain optimization

issues (Hessel et al., 2017). After concatenating

state and action representations, we use a 3-layer

MLP as the Q-network: Q̂(s, a) = MLP([s ∥ a]).
We report hyperparameters details in Appendix B.

4 Results

In this section, we investigate the performance of

our learned policies for GPT-2. Due to the signif-

icant costs of generating episodes, we only apply

the policies learned from GPT-2 and examine direct

transfer results on GPT-3. Baselines, oracles and

our method have access to the same underpinning

calibrated GPT-2 model.

4.1 Setup

Following our framework in §3, during training,

we use a training set from which the trained policy

picks 4 examples for demonstration, as well as a

reward set, which is a validation set where we

compute rewards for the learning agent. Each set

has 100 examples and our training scheme uses a

total of 200 examples.

Depending on the availability of a reward set, we

consider three evaluation settings:

• SEEN EXAMPLES, SAME TASK. In this setting,

we use the learned policy to pick demonstration

examples from the training set. We expect our

method to be competitive with oracle methods

that select examples based on rewards.

• NEW EXAMPLES, SAME TASK. We consider a

more challenging setting where the learned pol-

icy picks from an unlabeled set of 100 or 1000

previously unseen examples. The learned policy

still benefits from access to the reward set during

training as the classification task is the same, but

it cannot perform well simply by memorizing

good sequences.

• NEW EXAMPLES, NEW TASK. Finally, we ask

the learned policy to pick examples on a new task

that it has never seen. Specifically, we adopt a

multi-task learning approach, allowing the policy
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Method Average AGNews Amazon SST-2 TREC

random 59.6 55.210.5 76.312.3 66.212.9 40.84.7

max-entropy 59.3 58.811.3 74.85.1 65.710.7 37.86.7

reordering 63.5 63.36.8 89.83.8 67.911.1 33.04.2

best-of-10 72.5 72.11.9 91.10.6 81.14.4 45.63.5

greedy-oracle 78.0 80.61.7 91.81.1 81.73.9 58.07.5

our method (seen examples) 71.4 70.87.8 90.41.9 81.03.5 43.32.0

our method (100 new examples) 71.6 71.37.4 89.23.9 81.82.6 44.04.6

our method (1000 new examples) 69.0 65.57.4 88.54.2 76.77.5 45.45.0

Table 3: SAME TASK accuracy on AGNews, Amazon, SST-2 and TREC, across 5 random seeds. 95% confidence

intervals are reported as subscripts.

to simultaneously learn from all but one tasks.

Then, we evaluate the held-out task (e.g., train

on AGNews, SST-2, TREC and test on Amazon).

The learned policies use 600 examples from train-

ing (3 × 100 each for the training set and re-

ward set). During evaluation, the policy picks

examples from an unlabeled set of examples in

the held-out task, and we experiment with either

100 or 1000 unlabeled examples.

SEEN EXAMPLES, SAME TASK and NEW EX-

AMPLES, SAME TASK serve as sanity check of

our learned policies, while NEW EXAMPLES, NEW

TASK is the most appropriate setting for evaluating

in-context learning.

Baselines and oracles. We consider three base-

line methods for example selection. The random

strategy simply picks demonstration examples ran-

domly. Our second baseline (max-entropy) is a

standard approach in active learning (Settles, 2009;

Dagan and Engelson, 1995) which greedily picks

the example maximizing classification entropy. We

additionally consider a strong example reordering

heuristic by Lu et al. (2022) , dubbed reordering;6

reordering first uses the language model to gener-

ate a set of fake examples that resemble demonstra-

tion, and then chooses an ordering that maximizes

classification entropy on these fake examples. In-

tuitively, max-entropy and reordering both en-

courages class balance during prediction. All three

baselines can be used in active example selection,

namely, example selection that does not have label

access to examples before they are selected.

We further consider two oracle methods that re-

quire a labeled candidate set and a reward set. The

best-of-10 strategy randomly samples 10 times and

6Lu et al. (2022) experiment with two metrics for selecting
the best ordering. In the reordering baseline, we use the
ªGlobal Entropyº metric since it performs better on average in
the original paper.

keeps the sample that maximizes performance on

the reward set as the final demonstration sequence.

In addition, we use a greedy strategy to iteratively

choose the example that results in the highest per-

formance on the reward set, and we refer to this

strategy as greedy-oracle. The oracles do not work

for active example selection and cannot be used

in NEW TASK as the assumption is that we do not

have any labeled examples, so we do not compare

our learned policies with oracles in NEW TASK.

We use baselines and our methods to select 4

demonstration examples for every task, and we

average model performances across 5 random runs.

4.2 Main results

We analyze the effectiveness of applying our

method in both SAME TASK and NEW TASK.

SAME TASK. Our method evaluated by picking

from seen examples demonstrates strong perfor-

mance. Across all 4 tasks, our method outperforms

random, max-entropy and reordering baselines by

an average of 11.8%, 12.1% and 7.9%, respec-

tively, as well as > 10% improvements on 2 tasks.

Beyond performance gains, it is clear that our

method helps reduce variance. We present 95%
confidence intervals as a proxy for variance. Across

all 4 tasks, we observe consistent decrease in vari-

ance compared to the baselines.

Picking from both 100 and 1000 new examples

largely retains the performance gains and variance

reductions. Interestingly, we notice a higher over-

all performance of picking from 100 over 1000

new examples. This can be attributed to the large

variance (see Appendix C.1 for more results).

Comparing with oracle methods, our methods

perform relatively closely to best-of-10, while

greedy-oracle significantly outperforms the other

methods. Since we want the policies to learn gener-

alizable example selection strategies, we intention-
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Method Average AGNews Amazon SST-2 TREC

random 59.6 55.210.5 76.312.3 66.212.9 40.84.7
max-entropy 59.3 58.811.3 74.85.1 65.710.7 37.86.7
reordering 63.5 63.36.8 89.83.8 67.911.1 33.04.2

our method (100 examples) 63.8 63.410.4 86.86.7 65.913.4 38.95.1
our method (1000 examples) 65.4 66.75.7 89.91.6 61.97.7 43.34.4

Table 4: New-task accuracy on AGNews, Amazon, SST-2 and SST-2, across 5 random seeds. 95% confidence

intervals are reported as subscripts.

ally use simple features, which may explain why

our method, even when picking from seen exam-

ples, does not outperform oracles. Thanks to the

high variance of random sampling, best-of-10 is a

very performant strategy despite its simplicity, and

a reasonable choice if validation is possible. At

the cost of an exponential runtime, greedy-oracle

shows the strong in-context learning performance

attainable with just example selection, motivating

the framing of in-context learning optimization as

a pure example selection problem. In fact, the aver-

age performance from greedy-oracle with GPT-2

(345M) is better than that of GPT-3 Curie, a 20x

larger model (see Appendix C.2).7

NEW TASK. We further evaluate our methods

under the new task setting, where we train the

example selection policy on 3 tasks, and evalu-

ate on a previously unseen task. On average, we

observe a smaller, but still significant improve-

ments over both random and max-entropy base-

lines, suggesting the existence of learnable insights

about good demonstration examples that generalize

across tasks. On the other hand, we observe limited

gains over reordering, signifying the challenge of

finding good examples in an unknown task.

Interestingly, when picking from 1000 examples,

we observe a much greater effect of variance re-

duction compared to baselines. In comparison, the

variance reduction effect is minimal when picking

from 100 examples and the performance gain is

slightly smaller likely due to randomness.

We continue this discussion on the effect of size

of selection set on transfer performance in Ap-

pendix C.1.

GPT-3 transfer. Training example selection poli-

cies directly on GPT-3 models is not viable since it

requires sample a significant number of trajectories

while computing rewards. Therefore, we instead

7The sizes of GPT-3 models hosted by OpenAI are not
publicly known, and we use estimations at https://blog.
eleuther.ai/gpt3-model-sizes.

evaluate if policies and examples trained on GPT-2

generalize to GPT-3. Overall, we find mixed trans-

fer results. On the smaller GPT-3 ADA model, we

observe small gains (∼ 1%) by transferring both

policies and examples, which is impressive con-

sider the architectural differences between GPT-2

and GPT-3. However, we observe mixed results

in transfer to BABBAGE and CURIE. We report

further details in Appendix C.2.

4.3 What Makes Good Examples?

To understand what makes good examples, we ex-

plore properties of the learned policy and design

additional experiments based on our qualitative ex-

amination of the selected examples. In the interest

of space, we focus on label balance and coverage,

and present other results based on linear policies

(C.3) and length (C.4) in the Appendix.

On Amazon and SST-2, both binary sentiment

classification tasks, we focus on label balance,

measured by the number of positive labels in the

demonstration set. For AGNews (4 labels) and

TREC (6 labels), we instead focus on the distinct

number of labels covered in demonstration. We

present the results in Figure 3 and Figure 4.

Perhaps surprisingly, a well-balanced demonstra-

tion set does not consistently lead to greater per-

formance or less variance. In Amazon, we notice

that having all 4 examples being positive actually

leads to good in-context learning performance, with

an average accuracy of 87.8% and 4.5% greater

than that of a perfectly balanced demonstration set

(83.3%). A similar trend is demonstrated in SST-2,

where having all positive or all negative labels leads

to much smaller variance compared to more bal-

anced sets, while outperforming perfectly balanced

sets on average.

In TREC, we again observe that the model does

not need to observe the entire label space to per-

form well. The greatest performance occurs when
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6 Discussion

Inspired by Pang and Lee (2005), we adopt a Q&A

format to discuss the implications of our work.

Q: Are GPT-2 results still relevant?

A: We believe that it is relevant for three rea-

sons. First, GPT-2 is public and economically fea-

sible options for many researchers. Our knowledge

about GPT-2 is far from complete and expanding

this understanding is useful on its own. Second, in

the long term, it is unclear that everyone will have

access to large models or that it is appropriate to

use the largest model available in every use case.

Models of moderate sizes are likely still useful de-

pending on the use case. Third, it is important to

highlight the emerging abilities over different sizes

of language models. By understanding the phase

change, i.e., when emerging abilities happen, we

will better understand the behavior of large-scale

language models.

That said, one should caution against making

generalizing claims based on results from GPT-2,

because the results may not generalize to GPT-3

(Bowman, 2022). This is why we present nega-

tive results from GPT-3. Differing results between

GPT-2 and GPT-3 or more generally models of dif-

ferent sizes will be a reality in NLP for a while.

It is important for the NLP community to collec-

tively build knowledge about such differences and

develop the future ecosystem of models.

Q: Why did you not experiment with GPT-3-

Davinci?

A: The goal of this work is twofold: 1) assess-

ing the ability of large-scale language models to

acquire new information and 2) exploring whether

reinforcement learning can identify reliable strate-

gies for actively selecting examples. Our results are

generally positive on GPT-2. Meanwhile, we ob-

serve relatively small variance after calibration with

GPT-3-Babbage, so it does not seem economically

sensible to experiment with even bigger models.

Q: Why did you choose k = 4? Is this general-

izable?

A: Our experiments are limited by the context

window of GPT-2 (1024 tokens) and GPT-3 (2048)

tokens. Using k beyond 4 would frequently leads

to demonstration examples overflowing the token

limit and need to be truncated. Additionally, prior

work (Zhao et al., 2021; Brown et al., 2020) shows

diminishing improvements of in-context learning

performance by adding the number of demonstra-

tion examples beyond 4. Therefore, we believe

experimenting with k = 4 is a reasonable choice.

We are optimistic that our framework and method

can generalize to different shots.

7 Conclusion

In this work, we investigate how large language

models acquire information through the perspec-

tive of example selection for in-context learning.

In-context learning with GPT-2 and GPT-3 is sensi-

tive to the selection of demonstration examples. In

order to identify generalizable properties of useful

demonstration examples, we study active example

selection where unlabeled examples are iteratively

selected, annotated, and added to the prompt. We

use reinforcement learning to train policies for ac-

tive example selection. The learned policy stablizes

in-context learning and improves accuracy when

we apply it to a new pool of unlabeled examples or

even completely new tasks unseen during training

for GPT-2. Our analyses further reveal that proper-

ties of useful demonstration examples can deviate

from human intuitions.

Examples selected from GPT-2 can still lead to

a small improvement on GPT-3 Ada, however, the

gain diminishes on larger models (i.e., Babbage

and Curie). Our results highlight the challenges

of generalization in the era of large-scale models

due to their emerging capabilities. We believe that

it is important for the NLP community to collec-

tively build knowledge about such differences and

develop the future ecosystem of models together.

Ethics Statement

Our primary goal is to understand how large

language models acquire new information in in-

context learning through the perspective of exam-
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Method Average AGNews Amazon SST-2 TREC

random 59.6 55.210.5 76.312.3 66.212.9 40.84.7
max-entropy 59.3 58.811.3 74.85.1 65.710.7 37.86.7

best-of-10 72.5 72.11.9 91.10.6 81.14.4 45.63.5
greedy-oracle 78.0 80.61.7 91.81.1 81.73.9 58.07.5

Linear policy (seen examples) 65.6 62.87.8 82.78.6 74.25.8 42.82.9
Linear policy (1000 new examples) 65.9 69.56.0 83.76.2 65.24.9 45.22.8

MLP policy (seen examples) 71.4 70.87.8 90.41.9 81.03.5 43.32.0
MLP policy (1000 new examples) 69.0 65.57.4 88.54.2 76.77.5 45.45.0

Table 6: SAME TASK accuracy on AGNews, Amazon, SST-2 and TREC, across 5 random seeds, with our methods

(using MLP and Linear networks as policies). 95% confidence intervals are reported as subscripts.

In Figure 5, we plot average accuracies in the

NEW TASK setting, where we train our policies on

three datasets and evaluate on a held-out dataset.

Here, we notice the benefit of a larger unlabeled

set is twofold, both in increasing transfer perfor-

mance, and in reducing variance. That said, the

improvement is not necessarily monotonic due to

the large variance. Interestingly, our learned policy

is performant even when the unlabeled set is small.

Picking from 50 unlabeled examples, our policies

reaches an average accuracy of 63.3%, still manage

to outperform random demonstration (59.6%).

C.2 Transfer to GPT-3

Despite demonstrating abilities to generalize across

tasks, it is yet clear whether learned policies on

GPT-2 can generalize to other models, such as

GPT-3. In table 7, we report the performance of

transferring both learned policies and selected ex-

amples from GPT-2 to GPT-3 ADA, BABBAGE

and CURIE.

We observe mixed results when transferring to

GPT-3. With an uncalibrated ADA model, we ob-

serve a small, but measurable improvement of trans-

ferring either policy (1.1%) or examples directly

(0.9%). Such a trend holds for the calibrated ADA

model too (0.4% and 1.9%). Despite the improved

performance, the benefits of variance reduction

is diminished. Perhaps surprising is the general-

ization of learned policies: it suggests different

models could indeed share similar preferences for

demonstration examples.

On the other hand, we observe negative results

when transferring to BABBAGE. When transferring

learned policy to an uncalibrated BABBAGE model,

we notice the performance drops by 1.6%. For cost

considerations, we run CURIE experiments for one

random set and do not report variance. Marginal

gains are observed when transferring policy to the

uncalibrated model (1.8%) and examples to the cal-

ibrated model (1.0%). In other scenarios, transfer

results match or underperform base models. As the

observed results could be attributed to randomness,

we hold short of drawing conclusions.

C.3 Coefficients in Linear Policies

Although linear policies perform worse than the

MLP, they are more interpretable. Figure 6 shows

the coefficients of feature representations of actions

for AGNews and SST-2. The average coefficient

of entropy is indeed positive, suggesting that strate-

gies encouraging class balance have some value.

However, it is often not the most important feature.

For example, positive examples in SST-2 matter

more, which is consistent with our observation in

the main paper. Moreover, the variance is large,

highlighting the challenges in learning a generaliz-

able policy.

C.4 Effect of Length

We also examine the effect of length on in-context

learning. Intuitively, one might expect longer ex-

amples to be more meaningful. However, we do not

see a correlation between length and accuracy in

AGNews and TREC, and a non-significant negative

correlations in SST-2. In Amazon, we observe a

statistically significant (p-value = 0.019), but weak

correlation between length and accuracy. Overall,

there is no evidence suggesting longer examples

improve in-context learning performance.
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