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Abstract

With a handful of demonstration examples,
large-scale language models show strong ca-
pability to perform various tasks by in-context
learning from these examples, without any fine-
tuning. We demonstrate that in-context learn-
ing performance can be highly unstable across
samples of examples, indicating the idiosyn-
crasies of how language models acquire in-
formation. We formulate example selection
for in-context learning as a sequential decision
problem, and propose a reinforcement learning
algorithm for identifying generalizable policies
to select demonstration examples. For GPT-2,
our learned policies demonstrate strong abil-
ities of generalizing to unseen tasks in train-
ing, with a 5.8% improvement on average. Ex-
amples selected from our learned policies can
even achieve a small improvement on GPT-3
Ada. However, the improvement diminishes
on larger GPT-3 models, suggesting emerging
capabilities of large language models.

1 Introduction

Large language models demonstrate the capability
to learn from just a few examples (Radford et al.,
2019; Brown et al., 2020; Rae et al., 2022; Zhang
et al., 2022). The possibility to train a model with-
out any parameter update has inspired excitement
about the in-context learning paradigm.
Intuitively, high in-context learning performance
should require carefully chosen demonstration ex-
amples, but a recent line of work suggests other-
wise — that demonstration examples are not as
important as we expected, and that few-shot perfor-
mance can be largely attributed to the model’s zero-
shot learning capacity (Min et al., 2022), across
GPT-2 and GPT-3. This insight is corroborated
by a parallel line of work that brings significant
improvements to in-context learning performance
without example selection, for example, by re-
ordering randomly selected examples and using

calibration (Lu et al., 2022; Zhao et al., 2021; Ko-
jima et al., 2022). Another notable approach is to
use best-of-n sampling, which requires a labeled
set for validation (Nakano et al., 2022).

Our contribution in this paper is twofold. First,
we revisit the effect of example selection on in-
context learning. We show that even with reorder-
ing and calibration, we still observe a large variance
across sets of demonstration examples, especially
for GPT-2, while calibration reduces the variance
for GPT-3 models. The high variance needs further
investigation, as we take it as evidence that large
language models are still not capable of efficiently
and reliably acquire new information in-context.
Understanding what makes good demonstration ex-
amples sheds some light on the mechanisms that
large language models use to process information.

Second, we seek to discover general trends in
example selection for in-context learning across
different tasks. Concretely, we use reinforcement
learning to optimize example selection as sequen-
tial decision making problem. We argue that active
example selection from unlabeled datasets is the
most appropriate setting for in-context learning be-
cause fine-tuning with an existing labeled set leads
to great performance with low variance. For GPT-
2, we validate our learned policy on a seen task
with labeled dataset and observe a 12.1% improve-
ment over a max-entropy active learning baseline.
Moreover, our learned policy is able to generalize
to new tasks with 5.8% improvement, suggesting
that the policy is able to capture systematic biases
in how GPT-2 acquires information. Examples se-
lected from our learned policies can even achieve
a small improvement on GPT-3 Ada. However,
the improvement diminishes on larger GPT-3 mod-
els. We provide further analyses to understand the
properties of useful examples.

Overall, our work explores how large language
models process information through the perspec-
tive of example selection and formulate active ex-
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ample selection as a sequential decision making
problem. We investigate divergent behaviors be-
tween GPT-2 and GPT-3, which echoes the emerg-
ing abilities of large language models, and suggest
that researchers in the NLP community should col-
lectively build knowledge and research practice in
the era of large language models.'

2 The Effect of Example Selection

In this section, we demonstrate the instability of in-
context learning performance due to the selection
of demonstration examples. We further show that
existing methods (e.g., calibration, reordering) are
insufficient for addressing this stability for GPT-2.
In comparison, the variance of GPT-3 models can
be mitigated with calibration.

2.1 In-context Text Classification with
Demonstration Examples

We start by formally defining in-context learning.
We focus on in-context learning for text classifi-
cation with a left-to-right language model. All
supervision is given through a “prompt” which we
denote as s. The prompt typically contains natural
language instructions and a few demonstration ex-
amples. To make a prediction for a test example
x, we concatenate the prompt and the test example
as prefix, and use the language model to predict
the next token: arg max, Prm(y|s + z), where +
denotes concatenation. Typically, instead of taking
the arg max from the whole vocabulary, we restrict
the model’s output to a set of special tokens which
corresponds to the set of labels, e.g., with the word
“positive” corresponding to the positive class in bi-
nary sentiment classification. In our formulation,
we omit a separate variable for the special tokens,
and use ) to refer to both the label set and the set
of proxy tokens for simplicity.

To summarize, a prompt in this paper is a se-
quence of k labeled examples concatenated to-
gether: s = (z1,v1), (2,92), ..., (Tk, yx). And
the prediction for a test input z is the label with the
highest likelihood of being by the language model:
arg max,cy Prm(yls + ).

Experiment setup. Following Zhao et al. (2021),
we conduct our experiments on AGNews (Zhang

'Our code is available at https://github.com/
ChicagoHAI/active-example-selection.

?If a label is represented as multiple tokens in the LM, e.g.,
negation=neg+ation, we simply use the first unambiguous
token, e.g., neg for negation and ent for entailment.

Dataset Domain #classes  avg. length
AGNews  Topic cls. 4 37.8
Amazon  Sentiment cls. 2 78.5
SST-2 Sentiment cls. 2 19.3
TREC Question type cls. 6 10.2

Table 1: Dataset information.
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Figure 1: Zero-centered in-context learning accuracy of
GPT-2 on 30 random sets of 4 demonstration examples.
Each dot indicates performance of the best permutation
for one set of demonstration examples. y-axis repre-
sents the accuracy difference with the mean accuracy of
random demonstration examples.

et al., 2015), SST-2 (Socher et al., 2013) and
TREC (Voorhees and Tice, 2000). We addition-
ally include Amazon (Zhang et al., 2015) since it
contains longer texts than the remaining datasets.
Table 1 give basic information of the tasks.

Using GPT-2 345M (GPT-2), GPT-3 Ada (ADA)
and GPT-3 Babbage (BABBAGE) as the in-context
learning models, we report 4-shot example selec-
tion performance across all experiments.

2.2 Sensitivity to Example Selection

We first highlight the sensitivity of GPT-2 due to ex-
ample selection. In Figure 1, we plot the in-context
learning performance of 30 random sequences of
demonstration examples with length 4. Across all
4 tasks, the maximum and minimum performance
due to random sampling differs by > 30%. Addi-
tionally, for 3 out of the 4 tasks (AGNews, SST-2
and TREC), performance of the worst set of demon-
stration examples lead to in-context learning per-
formance below random guessing (e.g., it is 10.0%
on TREC, below 16.7% accuracy of guessing ran-
domly among 6 labels in TREC).

Reordering sequence alone cannot address the
instability. Luetal. (2022) identifies the ordering
of demonstration examples as the cause for vari-
ance, and proposed heuristics to reorder demonstra-
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Figure 2: In-context learning accuracy of 30 random sets
of 4 demonstration examples with calibration. Each
dot indicates performance of the best permutation for
one set of demonstration examples. Accuracy over ran-
dom examples (no calibration) is plotted.

tion examples. For such an approach to be effective,
the underlying assumption is that there exists good
orderings for most sets of demonstration examples.

In Figure 1, we additionally report the highest
possible performance among 4! = 24 permutations
for each of the 30 sets using a validation set of 100
examples. The reordering performance reported
here is highly optimistic for a true few-shot setting
(Perez et al., 2021) since a validation set cannot be
assumed available. As expected, taking the best
permutation on a validation set improves test per-
formance: we observe an average of 8.1% increase
on average over random demonstration examples.

However, these best orderings of examples still
lead to a wide range of possible performance. On
AGNews, we observe a maximum accuracy of
79.6% and a minimum accuracy of 32.7% after
considering the best possible orderings. On TREC,
the best ordering for 9 out of 30 sets of exam-
ples lead to performance below random examples.
These observations suggest that there are simply
no good orderings for considerable proportions of
demonstration sets, motivating the need for select-
ing examples beyond merely reordering.

Calibration does not decrease variance for GPT-
2, either. Zhao et al. (2021) finds that language
models are poorly calibrated when used directly as
in-context classifiers, and argues that calibration
is the key missing piece to improve and stablize
in-context learning performance. It proposes us-
ing dummy examples (e.g., “N/A”) as anchors for
calibrating the language model since a calibrated
language model should make neutral predictions
for these content-free examples.

Figure 2 demonstrates the effectiveness of cali-

Model AGNews Amazon SST-2 TREC
GPT-2 44.59 3 87.53.7 61.7144 29.41238
GPT-2 (C) 55.212.0 76.314.0 66.214.7 40.85.4
ADA 62.917.5 87.06.1 65.010.2 21.2656
ADA (C) 64.04.0 90.01.2 73.89.7 22.15.3
BABBAGE 68.014.0 93.40.8 92.22.7 27.45.8
BABBAGE (C) 78.14.1 92.716 90.81 1 36.04.0

Table 2: Performance of GPT-2, ADA and BABBAGE
across 5 random sets of 4-shot demonstration examples.
C indicates calibration. Standard deviation is reported
as subscripts.

bration in improving few-shot performance. With
calibration, we observe an increase in average per-
formance of varying magnitude on 3 out of the 4
tasks (AGNews, SST-2 and TREC), but a marginal
decrease of performance on Amazon. For exam-
ple, on AGNews where calibration improves per-
formance the most, we observe a maximum accu-
racy of 79.5% and a minimum accuracy of 26.1%,
resulting in a gap of over 53.4%.

Interestingly, we observe varying behavior when
combining calibration with demonstration reorder-
ing. On the binary tasks (Amazon and SST-2),
we observe prompt reordering to be quite effec-
tive, consistently leading to performance above
random examples. On the other hand, for AGNews
(4 labels) and TREC (6 labels), we observe much
greater variance.

In summary, with GPT-2, existing methods do
not provide satisfactory solutions to the sensitivity
of in-context learning to demonstration examples.
Reordering demonstration requires a well-behaving
demonstration set, which is often not the case, and
does not reduce variance. Calibration, though im-
proves performance, does not reduce variance, and
its effectiveness deteriorates with a large label set.
These findings motivate the need for identifying
high quality demonstration examples for consistent
and performant in-context learning.

Variance persists to some degree with GPT-3.
In Table 2, we report the performance of GPT-2,
ADA and BABBAGE on 5 random sets of demon-
stration examples.® GPT-3 models are not immune
to instability due to resampling demonstration ex-
amples. On multi-labeled tasks including AGNews
and TREC, we observe both ADA and BABBAGE
demonstrate significant variance, and on binary

3We do not use the same sample size or examine the effect
of re-ordering for cost considerations.

9136



tasks such as Amazon and SST-2, much smaller
variance is observed. This difference is potentially
due to the difficulty of the task and the multi-class
nature of AGNews and TREC. We will address the
latter in §4.3. Another interesting observation is
that variance diminishes with calibration. However,
one may argue that calibration no longer reflects
the model’s innate ability to acquire information.
Opverall, the differences in model behavior be-
tween GPT-2 and GPT-3 add evidence to the emer-
gent ability of large language models (Wei et al.,
2022; Bowman, 2022). We hypothesize that the
variance will be even smaller with GPT-3 Davinci.

3 Active Example Selection by RL

Given a set of unlabeled examples, can we choose
the right ones to be annotated as demonstration ex-
amples? In this section, we formulate the problem
of active example selection for in-context learning.
Following the definition of in-context learning in
§2.1, constructing a prompt for in-context learning
boils down to choosing a sequence of demonstra-
tion examples.

We emphasize that by selecting from unlabeled
examples, our setup is analogous to active learning,
where we select examples to label. We think that
this is the most appropriate setting for in-context
learning because fine-tuning can lead to great per-
formance with low variance if we already have a
moderately-sized labeled set (e.g., 100 instances).

As in-context learning uses a small number of
examples, we formulate active example selection
as a sequential decision making problem, where
prompt is constructed by selecting and annotating
one demonstration example at a time. We use a
Markov Decision Process (MDP) to formalize the
problem, discuss our design of the reward function,
and introduce our solution to example selection
using reinforcement learning (RL).

3.1 Active Example Selection as a MDP

Given a set of unlabeled examples, we want to
maximize the expected accuracy on unseen test ex-
amples by getting up to k£ annotations. The space
of possible prompts grows exponentially with the
number of unlabeled example and is intractable to
enumerate, so we treat it as a sequential decision
making problem: given the pool of unlabeled ex-
amples Sy = {z;}, choose one example x;, obtain
its groundtruth label y;, append the pair (z;, y;) to
our prompt, and repeat this process until either the

budget k is exhausted or the policy takes a special
action L indicating early termination.

Action space and state space. The action space
of the MDP is the set of unlabeled examples plus
the special end-of-prompt action: A =Sy U {L}.
After choosing an action x; we observe its label y;,
and the state is defined by the prefix of the prompt
s = (21,91), (22, 92), -, (i, Yi)-

Reward. The reward r can be defined based on an
arbitrary scoring function f of the language model
LM when conditioned on the prompt s, denoted
r = f(LMj;). In practice, we use the accuracy on
a labeled validation set as reward.

It follows that we need to have access to a val-
idation set during training, which we refer to as
reward set. Similarly, we also have a labeled set
from which our policy learns to select examples.
We refer to this labeled set as training set. Ideally,
our learned policies identify generalizable qualities
of demonstration examples and can select useful un-
labeled examples in a task where the policy has not
observed any labeled examples. We will explore
different setups to evaluate our learned policies.

It is useful to emphasize how active example se-
lection deviates from the standard reinforcement
learning setting. First, the action space is the exam-
ples to be selected, which can be variable in size.
Furthermore, the actions during test time can be
actions that the policy has never observed during
training. Similarly, the classification task can dif-
fer from training, analogous to a new environment.
Such generalizations are not typically assumed in
reinforcement learning, due to the challenging na-
ture of the problem (Kirk et al., 2022).

3.2 Active Example Selection by Q-learning

Framing active example selection as a sequen-
tial problem allows us to use off-the-shelf RL
algorithms to train a policy. We opt to use Q-
learning (Mnih et al., 2013) for its simplicity and
effectiveness.

The objective of Q-learning is to approximate
the optimal state-value function Q*(s, a), i.e., the
maximum (discounted) future reward after taking
action a in state s. The Bellman equation (Bellman,
1957) allows a recursive formulation of the optimal
state-value function QQ* as

Q*(5,a) = Eqgus |1(s,a) + ymax Q*(s', )
a/

We collect off-policy training data in our imple-
mentation and thus use offline Q-learning to lever-
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age off-policy data (Prudencio et al., 2022). Specif-
ically, We use conservative Q-learning (CQL) (Ku-
mar et al., 2020), which uses regularization to pre-
vent the overestimation of Q-values for unobserved
actions in training data, contributing to a robust
policy when evaluated in an unfamiliar environ-
ment. More details about CQL can be found in the
Appendix A.

Generation of off-policy data. Offline learning
requiers off-policy training data. We run a random
policy for a fixed number (2,000) of episodes to
create the off-policy data. For every episode, we
randomly sample 4 demonstration examples, and
compute features and intermediate rewards. Then,
we store the trajectory as training data.
Feature-based representation of actions. In our
framework, a state s is a sequence of examples, and
we simply use the number of already selected ex-
amples |s| as the feature representation. To enable
our method to be deployed in an active example
selection process, we assume no access to labels
prior to selecting an example. That is, when rep-
resenting a example to be selected a = (z,y), we
omit the label y and simply use predicted label
probabilities conditioned on the current examples
Prm( - | s+ ). We additionally include entropy of
the prediction.*

Reward shaping. The previously defined reward
function only rewards a completed prompt, while
intermediate states receive zero reward.Sparse re-
ward schemes are known to make learning diffi-
cult (Pathak et al., 2017). Therefore, we propose an
alternative reward function based on the marginal
utility of actions (Von Wieser, 1893). At time step
t we definer: S x A — R as

r(s,a) = f(LMs—i-a) - f(LMs>'

Intuitively, r measures the “additional gain” on
objective f by acquiring the label of example a.
Notice that f(LMg) can be conveniently inter-
preted as the zero-shot performance of the language
model. Maximizing this marginal utility reward
function is indeed equivalent to optimizing the true
objective f: observe that the summation of rewards
along a trajectory is a telescoping series, leaving
only the final term f(LM, ) minus a constant term
that does not affect the learned policy.> It turns out

4Other features can be used, such as embeddings of the
language model. We use minimal features so that policies
could be evaluated across models (GPT-2 and GPT-3).

SRequires the discount factor v = 1, which we use in
across all experiments.

that r is a shaped reward (Ng et al., 1999), a fam-
ily of transformed reward functions that preserves
the invariance of optimal policies.

Target network with replay buffer. Our algorithm
uses separate policy and target networks (Hasselt,
2010) with a replay buffer (Lin, 1992). Both are
standard extensions to vanilla DQN (Arulkumaran
et al., 2017), and are demonstrated to improves
performance while alleviating certain optimization
issues (Hessel et al., 2017). After concatenating
state and action representations, we use a 3-layer
MLP as the Q-network: Q(s,a) = MLP([s || a]).
We report hyperparameters details in Appendix B.

4 Results

In this section, we investigate the performance of
our learned policies for GPT-2. Due to the signif-
icant costs of generating episodes, we only apply
the policies learned from GPT-2 and examine direct
transfer results on GPT-3. Baselines, oracles and
our method have access to the same underpinning
calibrated GPT-2 model.

4.1 Setup

Following our framework in §3, during training,
we use a training set from which the trained policy
picks 4 examples for demonstration, as well as a
reward set, which is a validation set where we
compute rewards for the learning agent. Each set
has 100 examples and our training scheme uses a
total of 200 examples.

Depending on the availability of a reward set, we
consider three evaluation settings:

* SEEN EXAMPLES, SAME TASK. In this setting,
we use the learned policy to pick demonstration
examples from the training set. We expect our
method to be competitive with oracle methods
that select examples based on rewards.

e NEW EXAMPLES, SAME TASK. We consider a
more challenging setting where the learned pol-
icy picks from an unlabeled set of 100 or 1000
previously unseen examples. The learned policy
still benefits from access to the reward set during
training as the classification task is the same, but
it cannot perform well simply by memorizing
good sequences.

* NEW EXAMPLES, NEW TASK. Finally, we ask
the learned policy to pick examples on a new task
that it has never seen. Specifically, we adopt a
multi-task learning approach, allowing the policy
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Method Average AGNews Amazon SST-2 TREC
random 59.6 55.210,5 76.312,3 66421249 40.84,7
max-entropy 59.3 58.811.3  74.851  65.7107 37.86.7
reordering 63.5 6336.8 89.83,8 67.911‘1 33.04,2
best-of-10 72.5 72.11,9 91-10.6 81.14,4 45.63‘5
greedy-oracle 78.0 80.61.7 91.81.1 81.73.9  58.07.5
our method (seen examples) 71.4 70.87.5 90.41.9 81.035 43.32.0
our method (100 new examples) 71.6 71.37.4 89.23.9 81.82.6 44.046
our method (1000 new examples) 69.0 65.57.4 88.54.2 76.775 45450

Table 3: SAME TASK accuracy on AGNews, Amazon, SST-2 and TREC, across 5 random seeds. 95% confidence

intervals are reported as subscripts.

to simultaneously learn from all but one tasks.
Then, we evaluate the held-out task (e.g., train
on AGNews, SST-2, TREC and test on Amazon).
The learned policies use 600 examples from train-
ing (3 x 100 each for the training set and re-
ward set). During evaluation, the policy picks
examples from an unlabeled set of examples in
the held-out task, and we experiment with either
100 or 1000 unlabeled examples.

SEEN EXAMPLES, SAME TASK and NEW EX-
AMPLES, SAME TASK serve as sanity check of
our learned policies, while NEW EXAMPLES, NEW
TASK is the most appropriate setting for evaluating
in-context learning.

Baselines and oracles. We consider three base-
line methods for example selection. The random
strategy simply picks demonstration examples ran-
domly. Our second baseline (max-entropy) is a
standard approach in active learning (Settles, 2009;
Dagan and Engelson, 1995) which greedily picks
the example maximizing classification entropy. We
additionally consider a strong example reordering
heuristic by Lu et al. (2022) , dubbed reordering;’
reordering first uses the language model to gener-
ate a set of fake examples that resemble demonstra-
tion, and then chooses an ordering that maximizes
classification entropy on these fake examples. In-
tuitively, max-entropy and reordering both en-
courages class balance during prediction. All three
baselines can be used in active example selection,
namely, example selection that does not have label
access to examples before they are selected.

We further consider two oracle methods that re-
quire a labeled candidate set and a reward set. The
best-of-10 strategy randomly samples 10 times and

SLu et al. (2022) experiment with two metrics for selecting
the best ordering. In the reordering baseline, we use the
“Global Entropy” metric since it performs better on average in
the original paper.

keeps the sample that maximizes performance on
the reward set as the final demonstration sequence.
In addition, we use a greedy strategy to iteratively
choose the example that results in the highest per-
formance on the reward set, and we refer to this
strategy as greedy-oracle. The oracles do not work
for active example selection and cannot be used
in NEW TASK as the assumption is that we do not
have any labeled examples, so we do not compare
our learned policies with oracles in NEW TASK.
We use baselines and our methods to select 4
demonstration examples for every task, and we
average model performances across 5 random runs.

4.2 Main results

We analyze the effectiveness of applying our
method in both SAME TASK and NEW TASK.
SAME TASK. Our method evaluated by picking
from seen examples demonstrates strong perfor-
mance. Across all 4 tasks, our method outperforms
random, max-entropy and reordering baselines by
an average of 11.8%, 12.1% and 7.9%, respec-
tively, as well as > 10% improvements on 2 tasks.

Beyond performance gains, it is clear that our
method helps reduce variance. We present 95%
confidence intervals as a proxy for variance. Across
all 4 tasks, we observe consistent decrease in vari-
ance compared to the baselines.

Picking from both 100 and 1000 new examples
largely retains the performance gains and variance
reductions. Interestingly, we notice a higher over-
all performance of picking from 100 over 1000
new examples. This can be attributed to the large
variance (see Appendix C.1 for more results).

Comparing with oracle methods, our methods
perform relatively closely to best-of-10, while
greedy-oracle significantly outperforms the other
methods. Since we want the policies to learn gener-
alizable example selection strategies, we intention-
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Method Average AGNews Amazon SST-2  TREC
random 59.6 55.210,5 76.312,3 66.212.9 40.84,7
max-entropy 59.3 58.811.3 74.85.1 65.710.7 37.86.7
reordering 63.5 63.3¢.8 89.835 67.9111 33.049
our method (100 examples) 63.8 63.410.4 86.86.7 65.9134 38.951
our method (1000 examples) 65.4 66.75.7 89.91¢ 61977 43.344

Table 4: New-task accuracy on AGNews, Amazon, SST-2 and SST-2, across 5 random seeds. 95% confidence

intervals are reported as subscripts.

ally use simple features, which may explain why
our method, even when picking from seen exam-
ples, does not outperform oracles. Thanks to the
high variance of random sampling, best-of-10 is a
very performant strategy despite its simplicity, and
a reasonable choice if validation is possible. At
the cost of an exponential runtime, greedy-oracle
shows the strong in-context learning performance
attainable with just example selection, motivating
the framing of in-context learning optimization as
a pure example selection problem. In fact, the aver-
age performance from greedy-oracle with GPT-2
(345M) is better than that of GPT-3 Curie, a 20x
larger model (see Appendix C.2).”

NEW TASK. We further evaluate our methods
under the new task setting, where we train the
example selection policy on 3 tasks, and evalu-
ate on a previously unseen task. On average, we
observe a smaller, but still significant improve-
ments over both random and max-entropy base-
lines, suggesting the existence of learnable insights
about good demonstration examples that generalize
across tasks. On the other hand, we observe limited
gains over reordering, signifying the challenge of
finding good examples in an unknown task.

Interestingly, when picking from 1000 examples,
we observe a much greater effect of variance re-
duction compared to baselines. In comparison, the
variance reduction effect is minimal when picking
from 100 examples and the performance gain is
slightly smaller likely due to randomness.

We continue this discussion on the effect of size
of selection set on transfer performance in Ap-
pendix C.1.

GPT-3 transfer. Training example selection poli-
cies directly on GPT-3 models is not viable since it
requires sample a significant number of trajectories
while computing rewards. Therefore, we instead
"The sizes of GPT-3 models hosted by OpenAl are not

publicly known, and we use estimations at https://blog.
eleuther.ai/gpt3-model-sizes.

evaluate if policies and examples trained on GPT-2
generalize to GPT-3. Overall, we find mixed trans-
fer results. On the smaller GPT-3 ADA model, we
observe small gains (~ 1%) by transferring both
policies and examples, which is impressive con-
sider the architectural differences between GPT-2
and GPT-3. However, we observe mixed results
in transfer to BABBAGE and CURIE. We report
further details in Appendix C.2.

4.3 What Makes Good Examples?

To understand what makes good examples, we ex-
plore properties of the learned policy and design
additional experiments based on our qualitative ex-
amination of the selected examples. In the interest
of space, we focus on label balance and coverage,
and present other results based on linear policies
(C.3) and length (C.4) in the Appendix.

On Amazon and SST-2, both binary sentiment
classification tasks, we focus on label balance,
measured by the number of positive labels in the
demonstration set. For AGNews (4 labels) and
TREC (6 labels), we instead focus on the distinct
number of labels covered in demonstration. We
present the results in Figure 3 and Figure 4.

Perhaps surprisingly, a well-balanced demonstra-
tion set does not consistently lead to greater per-
formance or less variance. In Amazon, we notice
that having all 4 examples being positive actually
leads to good in-context learning performance, with
an average accuracy of 87.8% and 4.5% greater
than that of a perfectly balanced demonstration set
(83.3%). A similar trend is demonstrated in SST-2,
where having all positive or all negative labels leads
to much smaller variance compared to more bal-
anced sets, while outperforming perfectly balanced
sets on average.

In TREC, we again observe that the model does
not need to observe the entire label space to per-
form well. The greatest performance occurs when
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demonstration), across 100 total random samples of 4 demonstration examples. Demonstration set that only covers
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exactly two labels are covered by demonstration,
and the performance deteriorates as label cover-
age increases. AGNews demonstrates a somewhat
expected pattern. When 4 label are covered, we
observe the best performance along with a small
variance. That said, covering three labels does not
improve over covering two labels.

Overall, our analysis highlights the idiosyn-
crasies of how GPT-2 acquires information in in-
context learning. The sequences that lead to strong
performance may not align with human intuitions.

5 Related Work

Our paper builds on top of prior work that uses RL
to solve the active learning problem (Fang et al.,
2017; Liu et al., 2018), and is made possible by
the recent advances in pre-trained language mod-
els (Devlin et al., 2019; Liu et al., 2019; Raffel
et al., 2020; Gao et al., 2021). In-context learn-
ing, the observation that LMs (Radford et al., 2019;
Brown et al., 2020; Rae et al., 2022; Zhang et al.,
2022) can “learn” to perform a task when condi-
tioned on a prompt. Xie et al. (2022) explains the

emergenece of in-context learning by inferring the
shared latent concept among demonstration exam-
ples, while Min et al. (2022) finds the success of
in-context learning is largely independent of access
to gold labels.

A variety of issues with in-context learning is
discovered, including surface form competition, the
phenomenon that multiple words referring to the
same concept fighting for probability mass (Holtz-
man et al., 2021), and sensitivity of LMs due to
changes in prompt (Lester et al., 2021), instruction
(Mishra et al., 2022), or ordering of demonstra-
tion examples (Zhao et al., 2021; Lu et al., 2022).
To optimize the performance of in-context learn-
ing, methods with varying levels of granularity are
proposed. Such methods include prompt tuning
(Lesteretal., 2021; Vuetal., 2022; Wu et al., 2022),
and instruction optimization (Mishra et al., 2022;
Kojima et al., 2022). Liu et al. (2021) approaches
the example selection problem by searching for
nearest neighbors of test examples in the embed-
ding space, while Rubin et al. (2022) uses a scoring
LM for example retrieval.
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6 Discussion

Inspired by Pang and Lee (2005), we adopt a Q&A
format to discuss the implications of our work.

Q: Are GPT-2 results still relevant?

A: We believe that it is relevant for three rea-
sons. First, GPT-2 is public and economically fea-
sible options for many researchers. Our knowledge
about GPT-2 is far from complete and expanding
this understanding is useful on its own. Second, in
the long term, it is unclear that everyone will have
access to large models or that it is appropriate to
use the largest model available in every use case.
Models of moderate sizes are likely still useful de-
pending on the use case. Third, it is important to
highlight the emerging abilities over different sizes
of language models. By understanding the phase
change, i.e., when emerging abilities happen, we
will better understand the behavior of large-scale
language models.

That said, one should caution against making
generalizing claims based on results from GPT-2,
because the results may not generalize to GPT-3
(Bowman, 2022). This is why we present nega-
tive results from GPT-3. Differing results between
GPT-2 and GPT-3 or more generally models of dif-
ferent sizes will be a reality in NLP for a while.
It is important for the NLP community to collec-
tively build knowledge about such differences and
develop the future ecosystem of models.

Q: Why did you not experiment with GPT-3-
Davinci?

A: The goal of this work is twofold: 1) assess-
ing the ability of large-scale language models to
acquire new information and 2) exploring whether
reinforcement learning can identify reliable strate-
gies for actively selecting examples. Our results are
generally positive on GPT-2. Meanwhile, we ob-
serve relatively small variance after calibration with
GPT-3-Babbage, so it does not seem economically
sensible to experiment with even bigger models.

Q: Why did you choose k£ = 4? Is this general-
izable?

A: Our experiments are limited by the context
window of GPT-2 (1024 tokens) and GPT-3 (2048)
tokens. Using k£ beyond 4 would frequently leads
to demonstration examples overflowing the token
limit and need to be truncated. Additionally, prior
work (Zhao et al., 2021; Brown et al., 2020) shows
diminishing improvements of in-context learning
performance by adding the number of demonstra-
tion examples beyond 4. Therefore, we believe

experimenting with k£ = 4 is a reasonable choice.
We are optimistic that our framework and method
can generalize to different shots.

7 Conclusion

In this work, we investigate how large language
models acquire information through the perspec-
tive of example selection for in-context learning.
In-context learning with GPT-2 and GPT-3 is sensi-
tive to the selection of demonstration examples. In
order to identify generalizable properties of useful
demonstration examples, we study active example
selection where unlabeled examples are iteratively
selected, annotated, and added to the prompt. We
use reinforcement learning to train policies for ac-
tive example selection. The learned policy stablizes
in-context learning and improves accuracy when
we apply it to a new pool of unlabeled examples or
even completely new tasks unseen during training
for GPT-2. Our analyses further reveal that proper-
ties of useful demonstration examples can deviate
from human intuitions.

Examples selected from GPT-2 can still lead to
a small improvement on GPT-3 Ada, however, the
gain diminishes on larger models (i.e., Babbage
and Curie). Our results highlight the challenges
of generalization in the era of large-scale models
due to their emerging capabilities. We believe that
it is important for the NLP community to collec-
tively build knowledge about such differences and
develop the future ecosystem of models together.

Ethics Statement

Our primary goal is to understand how large
language models acquire new information in in-
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A Conservative Q-Learning

The objective of standard Q-learning is to minimize
the Bellman Error (BE):

BE(Q) = Es,a,s’wD [7'(5, a)+
ymaxQ(s',a’) — Q(s. a)].

An issue with offline Q-learning is there are
OOD actions that do not appear in the training data.
Learned Q-networks often overestimate these Q-
values, resulting in the policy taking unfamiliar ac-
tions during evaluation and hurts performance. To
mitigate this issue, conservative Q-learning (CQL)
adds a penalty term to regularize Q-values:

mén aEgp {log Z exp(Q(s,a))—

a

Eqmr, [Qs,0)] | + 5BE@),

where « is a weight term, and 73 is the behavior
policy, under which the offline transitions are col-
lected for training. Notice this objective penalizes
all unobserved actions under 7. Intuitively, this
regularizer leads to a policy that avoids unfamiliar
actions during evaluation. We refer the interested
reader to the original paper for theoretical guaran-
tees and further details (Kumar et al., 2020).

B Hyperparameters

We report the list of hyperparameters for the hyper-
parameter search in Table 5. We use grid search
over these hyperparameters to determine the com-
bination that maximizes validation performance.

Hyperparameter Value

Train steps 8000

Batch size 16

Hidden dim (MLP) 16

Replay memory size 50000
Learning rate le-4, 3e-4, Se-4
CQL regularization weight « | 0, 0.1, 0.2
Target network update steps | 100, 200, 400
Dropout rate 0,0.25

Table 5: List of hyperparameters used in our experi-
ments.
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Figure 5: Average NEW TASK (transfer) accuracy on 4
tasks across 5 random seeds. 95% confidence intervals
are reported as error bars.

During validation, the policy picks from the re-
ward set, and is evaluated on the training set,
whereas in training, we pick from the training set
and evaluate on the reward set. We point out that
our validation scheme does not use extra data.

Table 6 further includes the performance of lin-
ear policies. The performance of linear policies is
better than the baselines, but clearly worse than the
MLP policy.

C Additional Results

We present results on the effect of unlabeled size
and on transfer GPT-3. We also provide additional
analysis towards understanding what makes good
examples for in-context learning.

C.1 Effect of Unlabeled Size

In §4.2, we noticed the number of unlabeled exam-
ples available for selection plays a role in the perfor-
mance our policies. One might expect the transfer
performance in the NEW TASK setting scales with
unlabeled size, simply because there are additional
examples to pick from.
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Method Average AGNews Amazon SST-2 TREC
random 59.6 55.210,5 76.312,3 66.212.9 40.84.7
max—entropy 59.3 58.811.3 74.85.1 65.710_7 37.86.7
best-of-10 72.5 72.11.9 91-10.6 81.14.4 45.63,5
greedy-oracle 78.0 80.61.7 91.811 81.739 58.075
Linear policy (seen examples) 65.6 62.87.3 82.73¢ T4.258 42.899
Linear policy (1000 new examples) 65.9 69.560 83.74.2 65.249 45.29%
MLP policy (seen examples) 71.4 70.87 8 90.41 9 81.035 43.399
MLP policy (1000 new examples) 69.0 65.57 4 88.549  76.775 45.45,

Table 6: SAME TASK accuracy on AGNews, Amazon, SST-2 and TREC, across 5 random seeds, with our methods
(using MLP and Linear networks as policies). 95% confidence intervals are reported as subscripts.

In Figure 5, we plot average accuracies in the
NEW TASK setting, where we train our policies on
three datasets and evaluate on a held-out dataset.
Here, we notice the benefit of a larger unlabeled
set is twofold, both in increasing transfer perfor-
mance, and in reducing variance. That said, the
improvement is not necessarily monotonic due to
the large variance. Interestingly, our learned policy
is performant even when the unlabeled set is small.
Picking from 50 unlabeled examples, our policies
reaches an average accuracy of 63.3%, still manage
to outperform random demonstration (59.6%).

C.2 Transfer to GPT-3

Despite demonstrating abilities to generalize across
tasks, it is yet clear whether learned policies on
GPT-2 can generalize to other models, such as
GPT-3. In table 7, we report the performance of
transferring both learned policies and selected ex-
amples from GPT-2 to GPT-3 ADA, BABBAGE
and CURIE.

We observe mixed results when transferring to
GPT-3. With an uncalibrated ADA model, we ob-
serve a small, but measurable improvement of trans-
ferring either policy (1.1%) or examples directly
(0.9%). Such a trend holds for the calibrated ADA
model too (0.4% and 1.9%). Despite the improved
performance, the benefits of variance reduction
is diminished. Perhaps surprising is the general-
ization of learned policies: it suggests different
models could indeed share similar preferences for
demonstration examples.

On the other hand, we observe negative results
when transferring to BABBAGE. When transferring
learned policy to an uncalibrated BABBAGE model,
we notice the performance drops by 1.6%. For cost
considerations, we run CURIE experiments for one

random set and do not report variance. Marginal
gains are observed when transferring policy to the
uncalibrated model (1.8%) and examples to the cal-
ibrated model (1.0%). In other scenarios, transfer
results match or underperform base models. As the
observed results could be attributed to randomness,
we hold short of drawing conclusions.

C.3 Coefficients in Linear Policies

Although linear policies perform worse than the
MLP, they are more interpretable. Figure 6 shows
the coefficients of feature representations of actions
for AGNews and SST-2. The average coefficient
of entropy is indeed positive, suggesting that strate-
gies encouraging class balance have some value.
However, it is often not the most important feature.
For example, positive examples in SST-2 matter
more, which is consistent with our observation in
the main paper. Moreover, the variance is large,
highlighting the challenges in learning a generaliz-
able policy.

C.4 Effect of Length

We also examine the effect of length on in-context
learning. Intuitively, one might expect longer ex-
amples to be more meaningful. However, we do not
see a correlation between length and accuracy in
AGNews and TREC, and a non-significant negative
correlations in SST-2. In Amazon, we observe a
statistically significant (p-value = 0.019), but weak
correlation between length and accuracy. Overall,
there is no evidence suggesting longer examples
improve in-context learning performance.
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Model Average AGNews Amazon SST-2  TREC

ADA 59.0 62.915.3 87.05.3 65.0g39 21.25¢
ADA (C) 62.5 64.03 5 90.011 73.83.5 22146
GPT-2 policy —+ ADA 60.1 51.8155  89.117 T73.3150 26.239
GPT-2 policy — ADA (C) 62.9 55.65.9 89.720  86.716 19.514
GPT-2 examples — ADA 59.9 48.9125 89.39 5 74.811.4 26.639
GPT-2 examples — ADA (C) 64.4 62.0g.3 88.730  84.036 23.053
BABBAGE 70.3 68.012.3 93.4¢ 7 92.294 27.45,4
BABBAGE (C) 74.4 78.15.3 92.714 90.810 36.035
GPT-2 policy — BABBAGE 68.7 58.05.9 93.69.9 90.61.4 32.514
GPT-2 policy — BABBAGE (C) 74.4 75.153 93.405 90317 38.86.1
GPT-2 examples — BABBAGE 65.8 42.6100 93.004 91.159 36.634
GPT-2 examples — BABBAGE (C) 73.6 73.97.3 93.105 91.1;8 36.2256
CURIE 74.2 76.7 94.7 93.8 314
CURIE (C) 76.3 69.8 94.8 93.4 47.0
GPT-2 policy — CURIE 76.0 81.2 95.7 96.0 31.0
GPT-2 policy — CURIE (C) 75.4 75.8 95.4 93.0 38.2
GPT-2 examples — CURIE 74.4 7.7 93.8 94.3 31.8
GPT-2 examples — CURIE (C) 77.3 79.8 93.1 94.6 41.8

Table 7: Transfer of policies and examples learned on GPT-2 to various GPT-3 models across 5 random sets of
4-shot demonstration examples. C indicates calibration. 95% confidence intervals are reported as subscripts. Due to
resource constraints, we limit experiments with CURIE to 1 random set.
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Figure 6: Average coefficients of linear policies trained on AGNews and SST-2 across 5 runs. Error bars show the
standard deviation.

9147



80 ° ° K YX. ¥ ° °
i %ot P o® © L) °
o se .o 90 ° .:. ‘.‘ < 4
70 ° °
° . ®° ..: ?... %° .
260 - g g0l , o o | 287 ¢
c °% % ¢° o0  § ©
> ° L4 ° B
O 50 e o o 00, H 0 70
® ® oo - °
40- 0 °, ¢
° ° 60+ ° ° °
30 ° ° °
. ° °
T T T T T T T T T T T T
120 140 160 180 200 150 200 250 300 350 400 450
length length
(a) AGNews (r = —0.01) (b) Amazon (r = —0.23%)
° o o°° :0 o 504 © ° . o
8o ¢ ° ‘ . o ° ° . *ld . e ©
° J
° ... ® e 40 45 o o %0 8 oe
> XERRL R Y0 PSS S LR s
©70q e © ® o ° o ° ® ogo
3 n e o o0 2 ®© g0, ®0 % o®
o ° 9 354 ® 080 of
® ° r ® o o 0% ® o ©
4 o0 °
60 oo ‘. ° L] °
° L) °e o '. 301 ° e
°
50 °°, e o % o ° °
T T T T T 25_ T T T T T T T
40 60 80 100 120 30 35 40 45 50 55 60
length length

Figure 7: Correlation between length (number of words) of the demonstration prompt and in-context learning

(c) SST-2 (r = —0.08)

(d) TREC (r = —0.00)

performance across 100 sets of randomly sample 4-shot demonstration. * indicates a p-value < 0.05.
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