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The global COVID-19 pandemic has had a great impact on transportation across
the United States. However, there is a lack of studies investigating the
pandemic’s impact on vehicular traffic at the later stage of the pandemic.
Therefore, this paper studies the change of freeway traffic patterns in two
metropolitan counties in the State of Utah at the latter stage of the pandemic. We
found that with the relaxation of travel restriction and the COVID vaccine,
vehicular traffic has recovered to equaling, if not exceeding, pre-pandemic levels.
Truck traffic is higher than the pre-pandemic level due to the growth of online
shopping and on-demand delivery. To help responsive agencies to prepare for the
near-future traffic pattern, a traffic prediction model based on an innovative
approach integrating machine learning with graph theory is proposed. The
evaluation shows that the proposed prediction model has a desirable
performance. The mean absolute percentage prediction error is between 0.38%
and 1.74% for different jurisdictions. On average, the modal outperforms the
traditional long short-term memory model by 31.20% in terms of root mean

squared prediction error.
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Introduction

Since the early March of 2020, the global COVID-19 pandemic has placed pronounced
impacts on various aspects of society. In addition to the loss of life and illness, the
pandemic has resulted in a great impact on the traffic across the U.S. Many studies
found that at the early stage of the pandemic, traffic has been reduced significantly due
to the travel restrictions imposed by the government, fear of getting sick, lower levels of
economic and social activity, and the “work-from-home” style of many residents
(Katrakazas et al., 2020; Kim, 2021; Zhang & Lee, 2021). Later on, with the process of
re-opening local businesses, schools, etc., and the decrease in daily COVID confirmed
cases, traffic demands have been gradually increased over time(Glaeser et al., 2020). It
is clear to see that traffic pattern, traffic demands, and duration alter with COVID status.
As the restrictions were relaxed due to the reduced COVID-19 cases and the
rollout of the vaccines, a return to a post-pandemic “normality” is on the way and will
probably allow a recovery of mobility to levels comparable to the past. However, there
are few studies investigating how the traffic patterns will like at the later stage of the
pandemic or even post-pandemic. A policy analysis conducted by Rothengatter et al.
(Rothengatter et al., 2021) discussed the impacts of COVID-1 on different travel modes.
However, they ignored car traveling. Another European long-term travel demand study
by Christidis et al. (Christidis et al., 2021) was conducted to investigate the post-
pandemic recovery of transportation. They found that travel by car will likely return to
the 2019 level around the year 2025. Unfortunately, their analysis was based on a 2018
travel survey rather than either recent traffic data or travel survey. Therefore, there is a
critical research need of studying the impact of COVID-19 on traffic patterns in the
later state of pandemic based upon recent data, and analyzing the relationship among

traffic patterns, daily confirmed cases/deaths, government policies, economic factors,



etc. Such research results will be valuable to responsive agencies such as state DOTs to
better understand the long-term impacts of COVID-19 on transportation and get
prepared for the near-future traffic demand pattern.

In order to fill the research gap, this study will first examine the impact of the
COVID-19 and the related government policies on vehicular traffic in the later stage of
the pandemic. Field traffic data will be used to quantify the traffic patterns. Then, a
prediction model will be developed to forecast the traffic demand patterns in the near
future (during the late stage of the pandemic). The model will be formulated with an

innovative data-driven approach that integrates machine learning with graph theory.

Methodology

Study Area

The study selects the major metropolitan counties, namely Salt Lake County and Utah
County, in the State of Utah as the study area. These two counties are the most populous
counties in Utah and account for more than 55% population of the state (2020 estimate).
The majority difference between the two counties is the political diversity. Salt Lake
County is one of the more diverse politically speaking areas of Utah while Utah County
is less diverse. This translates into differences in county policies towards the pandemic.

This study focuses on traffic patterns of freeways due to the data availability.
Figure 1 shows the freeways in the study area. The traffic dynamics of two main
freeway corridors named Interstate-15 and Interstate-80 and other smaller freeways
including Interstate 80, Interstate 215, State Road 85, State Road 201, State Road 92,
U.S. Route 6, and U.S. Route 189 are studied in this study. The total lane miles covered
are 850 lane miles and 540 lane miles for Salt Lake County and Utah County

respectively.



(Insert “Figure 1. Freeways in the Salt Lake County and Utah County in the State of

Utah” here)

Data

County-wide Vehicle Miles Traveled (VMT) of all freeways are used to quantify the
vehicular dynamic. The VMT data was collected from the UDOT Performance
Measurement System (PeMS) (Utah Department of Transportation, 2019) from January
2019 to the first week of July 2021, which gives the traffic patterns before and during
the pandemic. VMT for all vehicle types and trucks are collected and analyzed
separately.

Various factors related to the pandemic and vehicular traffic are also collected as
explanatory variables. Daily new COVID-19 confirmed cases and the percentage of
fully vaccinated individuals over 12 years of age from the Utah Department of Health
(The State of Utah, 2021a). The former one is a direct quantifier of the severity of the
pandemic, which has been used by a lot of existing studies (Kim, 2021). While the latter
impacts people’s risk perception in traveling.

Traffic is intrinsically related to the economy. Economic factors are also used as
Economic factors explanatory variables to capture the unexplained heterogeneity by the
pandemic-related factors. The monthly unemployment rate and daily news sentiment
index are obtained from the Utah Department of Workforce Services (Utah Department
of Workforce Services, 2021) and the Federal Reserve Bank of San Francisco (Shapiro
et al., 2017). The unemployment rate can affect traffic as fewer people will be willing to
drive due to economic hardship, especially commuting trips. The daily news sentiment
index is a measure of economic sentiment based on lexical analysis of economics-
related news articles from 24 major newspapers in the US. The developers of the index

created a sentiment scoring model based on publicly available lexicons with a news-



specific lexicon constructed by the developers. Then the scores of individual articles are
aggregated into a daily time-series measure of news sentiment which are statistically
adjusted to account for changes in the composition of the sample across newspapers.
Then the index is constructed as a trailing weighted average of time series, with weights
that decline geometrically with the length of time since article publication. The index
provides information regarding economic downturns and overall sentiment in the public
eye.

Weather conditions could affect the traffic operations. For example, traffic
volumes could be reduced by rainstorms and from snowstorms (Maze et al., 2006).
Weather related parameters such as temperature, precipitation, and snow depth were
collected from the National Centers for Environmental Information (National Centres
for Environmental Information (NCEI), 2020). The weather observing station at the Salt
Lake International Airport was selected for weather data in Salt Lake County and
another station at Spanish Fork Power House was selected for the weather data in Utah
County (their locations are shown in Figure 1 as blue stars). These weather stations
were selected since their locations near analyzed freeways. All aforementioned data are
numeric.

Another important factor is pandemic-related policy. For instance, lock-down
orders could significantly reduce the traffic volume (Kim, 2021). Important state-wide
and county-level policies (The State of Utah, 2021b) are listed in Figure 2, which
includes deceleration of state of emergency, mask mandate, administration of vaccines,
etc. Some policies restrict traveling directly while others influence people’s willingness
to travel. Policy indicators are pre-processed as 0-1 dummy variables. When a certain
policy is effective at a specific time, the dummy variable was set to 1; otherwise, it was

set to 0.



(Insert “Figure 2. Milestones of Pandemic-Related Policies™ here)
All data are aligned with VMT data and aggregate by week. In other words,
economic and weather data are collected from January 2019 to the first week of July
2021, while pandemic-related data and policies are collected once they are available till

the first week of July 2021.

Prediction Model: Graph Convolutional Networks-Long Short-Term Memory
(GCN-LSTM)

Recently, Graphical neural networks (GNN) have been used in various traffic
forecasting studies, such as traffic flow (Tang & Zeng, 2021) and speed (Zhao et al.,
2020) prediction, vehicular trajectory estimation (Li et al., 2021), travel demand
forecasting (Xiong et al., 2020), etc. As traffic networks are naturally graphs, GNN-
based models are able to capture spatial dependency of traffic data, and thus outperform
previous forecasting models such as Autoregressive Integrated Moving Average Model,
Support Vector Regression, and Recurrent Neural Network(RNN)-based models such as
Long Short-Term Memory (LSTM) (Jiang & Luo, 2021; J. Yuan et al., 2019; Zhao et
al., 2020). In other words, the “graphs” used in almost all existing GNN-based traffic
forecasting studies aim at obtaining “spatial information”. A typical “traffic graph” is
defined as G; = (V,E, A), where V is the set of nodes such as roadway segment/traffic
detectors for microscopic models or specific geographical areas for macroscopic
models; E is the set of edges between nodes which shows the spatial connectivity; A4 is
the adjacency matrix represent the “edge weight” such as distances (Jiang & Luo,
2021).

However, in this study, although the problem could be formulated into a time
series forecasting, we are specifically interested in modeling the impacts of external

factors on vehicular traffic. A preprint paper reveals that adding human knowledge as a



form of “knowledge graph” to the existing GNN-based traffic forecasting model could
improve the model performance (Zhu et al., 2020). Therefore, we adopted this idea and
developed a knowledge graph depicting the relationships between the factors mentioned
in the previous section. The directed knowledge graph G, = (V, Ei, Ax) is shown in
Figure 3, where node set ; consists of VMT and impact factors; edge set E; represents
the “possible” impact relations (The edge e;; exists if the node i has possible impact on
node j); the adjacency matrix A, is a binary matrix showing the existence of edges only.
The complex knowledge graph clearly demonstrates that these factors are highly
intercorrelated, which might indicate that simple regression models may fail due to
collinearity.

(Insert “Figure 3. Knowledge Graph Depicting” here)

Therefore, the forecasting problem is formulated as learning the mapping
function f on the premise of knowledge graph Gj, and the factor matrix X and calculate
X7 innext T timestamps. In this study, a one-step forecast (one week ahead) is
considered as longer-term forecasting may not be valid due to the rapid change of
pandemic and policy status:

Xep1 = f(Gki Xepy s Xeo1, Xe )) (1)
where X1 is the values of all factors at the timestamp t + 1 although we are only
interested in the VMT, and n is the length of historical time series which is a tunable
factor.

The model used to learn the mapping is Graph Convolutional Networks-Long
Short-Term Memory (GCN-LSTM). It is a variant of the model proposed by Zhao et al
(2020). The model consists of two parts (Figure4): the graph convolution network

(GCN)(Defterrard et al., 2016), a popular GNN model used to obtain the relationships



between factors from the knowledge graph, and the LSTM (Hochreiter et al., 1997)
used to obtain the temporal dependency.
(Insert “Figure 4. GCN-LSTM Model Structure” here)
The basic concept behind the GCN model is using a filter to capture the feathers
between a node and its first-order neighborhood. Then, the GCN can be built by

stacking multiple convolutional neural network layers:
_1__1
HWD = ¢ (D‘EAD‘EH@H@) (2)

where A = Ay + I, is the adjacency matrix including self-connections of the nodes; I,,
is an n-degree identity matrix representing self-connections; D = Y j A; j1s the degree
matrix of the graph representing the neighborhood information; H® is the output matrix
the layer [ and the 8 is the associated trainable parameters; o (*) is the sigmoid
function.

(Insert “Figure 5. Illustration of a GCN Filter (Adopted from Zhao et al. (2020))” here)

Incorporating GCN with LSTM, we get:

he = 0,ReLU(c,) 3)

or = a(W,[f (A, X)), he—a] + Vocr) (4)

e = feCe_q + ieReLUW,[f (Ar, X0), he_1]) (5)
fe = o(Wrlf (Ax, Xo), he—1] + Vici—q) (6)

ie = o(Wilf (A, X, he—1] + Vice_1) (7)

where h; is the output of LSTM unit at the timestamp t, while the forecast is the output
of the final LSTM layer (as shown in Figure 4); o, is the "output gate" that modulates
the amount of memory content exposure; W's are trainable matrixes; f (A, X;) is the
final output of the stacked GCN layers; Vs are diagonal matrixes; c; is the “memory”
maintained by the unit at ¢ and is updated by partially forgetting the existing memory by

factor gate f; and adding a new memory content through input gate i,. It should be



noted that normally the activation function used in LSTM is hyperbolic the tangent
function (tanh). However, the tanh activation does not perform well in this forecasting
problem according to extensive algorithm trainings done by the research team. Since
REctified Linear Unit (ReLU) activation functions could be used in RNNs with right
initialization of the weights (Le et al., 2015), the ReLU activations are adopted.

The loss function used in training is mean square errors between the predicted
factors and the observed ones. Adam optimizer was selected to minimize the loss.

Forecasting models are developed for two counties separately since their
demographics are very different. For example, as stated in the last section, residents of
two counties have different political views and in turn, impact their risk perceptions on
the virus and traveling during the pandemic. Such unobserved heterogeneity could not
be modeled using the existing data. Therefore, in total, four models (2 counties X 2
VMT types) are developed.

The model is evaluated by two benchmark models, namely the persistence
model and a fine-tuned LSTM. The persistence model is widely used as the benchmark
for time series forecasting problems. A persistence model assumes that the future value
of a time series is calculated under the assumption that nothing changes between the
current time and the forecast time. It should be noted that although GCN-LSTM is able
to forecast all input factors at the future timestamps, only VMT is used to quantify the
model performance. Two evaluation metrics are employed, which are Root Mean

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) as follows:

N
1 _
RMSE = NZ(VMTt — VMT,)" (8)

t=1
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Results

Impact of Pandemic on Vehicular Traffic

VMT is highly affected by the severity of the pandemic (quantified by the number of
new cases), policies, and individual/societal risk perceptions of traveling during the
pandemic. Figure 6 shows the VMT for all types of vehicles (Total VMT) and trucks for
two counties with the progression of the pandemic. It should be noted that the Truck
VMT shown in the figure is scaled up by 10 times for better illustration. The most
prolonged decrease in VMT occurs during the initial phase of the pandemic. After travel
restrictions regarding COVID-19 were announced (around the second week of March
2020), Total VMT dropped significantly by around 38.9% for Salt Lake County (72.9
million miles vs 44.6 million miles) and 36.7% for Utah County (37.7 million miles vs
23.8 million miles) in one month. Truck VMT also dropped by 26.2% (4.6 million miles
vs 3.6 million miles) and 19.8% (3.4 million miles vs 2.7 million miles) for Salt Lake
and Utah Counties respectively. Both travel restrictions issued by the state government
and public concerns regarding the virus lead to this large and prolonged drop.

(Insert “Figure 6. VMT versus Number of New COVID Cases (Truck VMT is Scaled

up by 10 Times for Better Illustration)” here)
However, once restrictions were relaxed, and public perception shifted even

during rising case counts; starting from the last week of April 2020, VMT began to
recover to pre-pandemic levels. By mid-June 2020, total VMT recovered to 89.9% (65.6

million miles) and 99.6% (37.5 million miles) of pre-pandemic level for Salt Lake and



Utah Counties respectively. Truck VMT shows a similar trend. It should be noticed that
the VMT recovered faster and more for Utah County. As to this date, there is not a huge
difference in pandemic-related policies between the two counties, the differences are
likely to be due to the different risk perceptions of the residents living/traveling in the
two counties. Interestingly, implementation mask mandates did not significantly reduce
VMTs.

During the late months of 2020 and the beginning of 2021, VMT began to drop
again. This decrease can partially be attributed to holidays during this time of year,
especially for Truck VMT. However, the Total VMT of the first week in 2021 (52.6
million miles for Salt Lake County and 29.9 million miles for Utah County) is less than
that of the first week in 2020 (57.9 million for Salt Lake County and 31.8 million miles
for Utah County). The slight drop can be attributed to increased state restrictions and the
highest case count totals of COVID-19. This high case counts, and restrictions remained
throughout early 2021 causing the decline in VMT to stagnate as the high case counts
lasted.

During the later stage of the pandemic, the vaccine plays an important role in the
recovery of traffic. Figure 7 shows the changes of VMT with the percentage of fully
vaccinated individuals over 12 years of age. COVID vaccines began to be administered
in the State of Utah in December 2020 during the peak of the pandemic. In the ensuing
months as vaccines became more available, the new confirmed cases began to decrease
significantly. A Pearson correlation study reveals that Total VMT is positively
correlated to the percentage of fully vaccinated individuals with coefficients of 0.837
and 0.937 for Salt Lake and Utah counties respectively (Figure 7). At the end of the
study period, VMT has gradually recovered to if not exceed pre-pandemic levels. In late

June of 2021, the Total VMT is 75.8 million miles for Salt Lake County and 32.5



million miles for Utah County, which yield a 2.2% and 6.8% of increase compared with
Total VMT of late February of 2020 respectively. Again, VMT increased faster and
more for Utah County due to similar reasons. As for the truck VMT, it increased by
more than 10% (4.6 million miles vs 5.2 million miles) for Salt Lake County. A
possible reason is the significant growth of online shopping and on-demand during the
pandemic(AASHTO, 2020; Christidis et al., 2021; Shamshiripour et al., 2020). Online
shopping and on-demand delivery are increased during the crisis as a response to
limitations in retailing, risk aversion, and social distancing. The growth of online
shopping requires more trips of delivery trucks then in turn significantly increases the
truck VMT.

(Insert “Figure 7. VMT versus Percentage of Fully Vaccinated People (Truck VMT is

Scaled up by 10 Times for Better Illustration)” here)

In summary, the pandemic significantly impacts the traffic in Salt Lake County
and Utah County in the State of Utah. At the earlier stage, traffic drops significantly due
to the direct travel restrictions. Once the restrictions have been reduced, traffic has been
gradually recovered while the recovering process may be impacted by the pandemic if it
is severe. As the vaccinated population continuously growing, traffic of both counties
has been fully recovered to the pre-pandemic level. The recovery is much faster than the
forecast by Christidis et al.(2021), which states that vehicular traffic will return to the
pre-pandemic level around the year 2025. The truck traffic even increased as a result of

the growing online shopping activities.

Forecasting Model

Table 1 shows the specifications and hypermeters used in the GCN-LSTM model and
the benchmarking LSTM. As stated earlier, due to the rapid change of pandemic and

policy status, only the data of the later stage of the pandemic, i.e., after the rollout of



vaccines, was selected to develop the forecasting model. Twenty weeks of data are used
for training and four last weeks of data are used for testing. During the training, an early
stopping technique was employed to prevent overfitting. It also should be noted that for
GCN-LSTM, the data of the past two weeks were used to construct the direct input
according to the model tuning. The turning process shows that adding data of previous
timestamps into the knowledge graph improve the model performance, possibly due to
some independent variables may have delayed impacts on the others. Therefore, X444

is calculated as follows:

Xt+1,g = fg(Gki (Xe—1,X¢ )) (10)

However, for LSTM, the turning process indicates that adding data of previous
timestamps may distort the memory since it does not have a structure that allows the

interactions between independent variables. Thus, the VMT,, 1 ; is as follows:

VMTy 1, = fi(Xe-1) (11)

(Insert “Table 1. Model Configuration” here)

The GCN-LTSM is developed using Python programming language with the
support of machine learning packages StellarGraph (Data61, 2018), Keras (Chollet,
2015), and TensorFlow (Abadi et al., 2016).

Table 2 shows the performance of GCN-LSTM and other benchmark models for
different scenarios (2 counties X 2 vehicle types). It can be seen that GCN-LSTM
obtains the best forecast performance for all four scenarios in terms of both evaluation
metrics. On average, GCN-LSTM reduced RSME by 31.20% and MAPE by 31.48%
compared with traditional LSTM models. Thus, incorporating knowledge regarding the

interrelationships between explanatory factors significantly improves the model's



prediction ability, which is also confirmed by previous studies (Y. Yuan et al., 2021;
Zhu et al., 2020).
(Insert “Table 2. Model Performance” here)
To better understand the GCN-LSTM model, the prediction results of the model

and the benchmarks on testing data are visualized (Figure 8). The results show that:

(1) Persistence models fail to forecast future VMTs due to the rapid change of the
pandemic status. Take the Total VMT of Salt Lake County as an example. The
Total VMT of the fourth week (74.5 million miles) increased by 5.4% (70.7
million miles) in three weeks. This also implies that long-term forecasting
during the pandemic might not be valid.

(2) Both LSTM and GCN-LSTM are able to capture the general increasing trend of
VMT. GCN-LSTM has smaller prediction errors for almost all prediction points.
This re-confirms that human knowledge helps to improving model performance.

(3) However, there exists a sudden drop of VMT from the third week to the fourth.
Both LSTM and GCN-LSTM models have poor capability in predicting this
drop. LSTM failed to predict drops for all scenarios while GCN-LSTM only
captured the drop when predicting the Truck VMT of Utah County. We
speculate that the main cause is uncaptured randomness. Prediction models tend

to make smoother predictions.

(Insert “Figure 8. Prediction Results of the Models (Up Left: Total VMT for Salt Lake
County; Up Right: Total VMT for Utah County; Down Left: Truck VMT for Salt Lake

County; Down Right: Truck VMT for Utah County)” here)

Conclusions and Discussion

The global COVID-19 pandemic has placed a great impact on the traffic across the U.S.



However, there are few studies investigating the pandemic’s impact on vehicular traffic
at the later stage of the pandemic. Therefore, this paper studies the change of freeways
traffic patterns in two metropolitan counties, Salt Lake County and Utah County, in the

State of Utah, during the pandemic. We conclude that:

(1) Vehicular traffic is decreased during the early stage of the pandemic due to the
government restrictions and individuals’ risk perception in traveling.

(2) With the relaxation of travel restriction and COVID vaccine, vehicular traffic
has been recovered to if not exceed pre-pandemic levels.

(3) Truck traffic at the later stage of the pandemic is higher than the pre-pandemic

level due to the growth of online shopping and on-demand delivery.

The summarized traffic patterns at the later stage of the pandemic could help
transportation agencies better understand the impacts of COVID-19 on traffic mobility.
These can also potentially support the long-term urban planning strategic goals during
the post-pandemic periods. For example, relevant agencies need to prepare adequate
facilities such as truck parking and rest facilities in response to increasing truck traffic.

A prediction model based on innovative GCN-LSTM is then developed to
forecast traffic patterns in the near future. GCN-LSTM is able to capture the
interrelations between the explanatory variables. The evaluation results show that the
proposed prediction model has a highly desirable performance. The highest MAPE of
the model among all four scenarios (2 counties x 2 vehicle types) is only 1.74% while
the lowest is 0.38%. The model outperforms the benchmarking persistence models and
LSTM models by -68.91% and -31.20% in terms of RSME. This reassures that
incorporating human knowledge helps to improve model performance. The developed
prediction model could be used by responsive agencies such as state DOTs to get

prepared for the near-future traffic demand pattern.



Although discussing how the new “traffic normality” likes is not the main
objective of this study, according to our conclusions, the vehicular traffic likely remains
on the pre-pandemic level for a considerably long period. Firstly, governments are
highly unlikely to place travel restrictions due to the high vaccination rate (As of July
21,2021, 56.9% of the U.S. population received at least one dose of COVID-19 vaccine
(Mathieu et al., 2021)) and huge damage to the economy (U.S. economy drops 32.9%
during the “lock-down”’(Horsley, 2020)). As the government restriction is the major
reason leads to the drastic decrease of vehicular traffic, a “huge” drop is not expected in
the near future. Secondly, other pandemic-related policies such as mask mandate did not
significantly reduce the traffic. Although the U.S. Centers for Disease Control and
Prevention changes mask guidance to recommend fully vaccinated people in certain
areas of the country wearing masks indoors in public areas on July 27, 2021 (Centers
for Disease Control and Prevention (CDC), 2021), such guidance and possible
state/local policies on mask mandate will unlikely negatively impact the traffic. Thirdly,
although data is not sufficient enough, we did see the traffic was continuously
increasing in June 2021 despite the newly confirmed COVID-19 cases was also
increasing (see Figure 6). This may imply that people’s risk perception on traveling
during the pandemic has been changed. Therefore, unless the decrease changed
conspicuously, people’s willingness to travel by car would highly unlikely be changed.
In the future, we will continue monitoring the status of the pandemic and its impact on
vehicular traffic. Additional jurisdictions and types of roadway facilities (such as local

roads) may be added when data are available.
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Table 1. Model Configuration.

Model GCN-LSTM LSTM
GCN: (16,10) N/A
Layer Configuration
LSTM: (20, 20, 40, 40, 40, 40, 20, 20) 20
Learning Rate 0.001 0.01
Optimizer Adam Adam
Past Data Used Two weeks One week
Table 2. Model Performance.
Persistence LSTM GCN-LSTM
Vehicle
County RSME RSME RSME
Type MAPE MAPE MAPE
(10° Miles) (10° Miles) (10° Miles)
0.9440 1.25% 0.6374 0.72%
Total 2.3979 2.98%
Salt (-60.63%) | (-58.08%) | (-73.42%) | (-75.90%)
Lake 0.1449 2.19% 0.1006 1.74%
Truck 0.2480 4.53%
(-41.56%) | (-51.57%) | (-59.45%) | (-61.67%)
0.9327 1.76% 0.5943 1.39%
Total 1.8757 3.09%
" (-50.28%) | (-42.91%) | (-68.32%) | (-55.01%)
Uta
0.0236 0.64% 0.0176 0.38%
Truck 0.0689 1.93%
(-65.76%) | (-66.62%) | (-74.46%) | (-80.43%)
Average Persistence / LSTM Persistence / GCN-LSTM | LSTM / GCN-LSTM
Performance RSME MAPE RSME MAPE RSME MAPE
Improvement -54.56% -54.80% -68.91% -68.25% -31.20% -31.48%




Figure 1. Freeways and Weather Stations in the Salt Lake County and Utah County in
the State of Utah
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Figure 2. Milestones of Pandemic-Related Policies
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Figure 3. Knowledge Graph Depicting
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Figure 4. GCN-LSTM Model Structure
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Figure 5. Illustration of a GCN Filter (Adopted from Zhao et al. (2020))

(b)

Figure 6. VMT versus Number of New COVID Cases (Truck VMT is scaled up by 10

Times for Better Illustration)
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Figure 7. VMT versus Percentage of Fully Vaccinated People (Truck VMT is scaled up

by 10 Times for Better Illustration)
Salt Lake County VMT vs Vaccination Rate
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Figure 8. Prediction Results of the Models (Up Left: Total VMT for Salt Lake County;
Up Right: Total VMT for Utah County; Down Left: Truck VMT for Salt Lake County;

Down Right: Truck VMT for Utah County)
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