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The global COVID-19 pandemic has had a great impact on transportation across 

the United States. However, there is a lack of studies investigating the 

pandemic’s impact on vehicular traffic at the later stage of the pandemic. 

Therefore, this paper studies the change of freeway traffic patterns in two 

metropolitan counties in the State of Utah at the latter stage of the pandemic. We 

found that with the relaxation of travel restriction and the COVID vaccine, 

vehicular traffic has recovered to equaling, if not exceeding, pre-pandemic levels. 

Truck traffic is higher than the pre-pandemic level due to the growth of online 

shopping and on-demand delivery. To help responsive agencies to prepare for the 

near-future traffic pattern, a traffic prediction model based on an innovative 

approach integrating machine learning with graph theory is proposed. The 

evaluation shows that the proposed prediction model has a desirable 

performance. The mean absolute percentage prediction error is between 0.38% 

and 1.74% for different jurisdictions. On average, the modal outperforms the 

traditional long short-term memory model by 31.20% in terms of root mean 

squared prediction error. 
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Introduction 

Since the early March of 2020, the global COVID-19 pandemic has placed pronounced 

impacts on various aspects of society. In addition to the loss of life and illness, the 

pandemic has resulted in a great impact on the traffic across the U.S. Many studies 

found that at the early stage of the pandemic, traffic has been reduced significantly due 

to the travel restrictions imposed by the government, fear of getting sick, lower levels of 

economic and social activity, and the “work-from-home” style of many residents 

(Katrakazas et al., 2020; Kim, 2021; Zhang & Lee, 2021). Later on, with the process of 

re-opening local businesses, schools, etc., and the decrease in daily COVID confirmed 

cases, traffic demands have been gradually increased over time(Glaeser et al., 2020). It 

is clear to see that traffic pattern, traffic demands, and duration alter with COVID status. 

As the restrictions were relaxed due to the reduced COVID-19 cases and the 

rollout of the vaccines, a return to a post-pandemic “normality” is on the way and will 

probably allow a recovery of mobility to levels comparable to the past. However, there 

are few studies investigating how the traffic patterns will like at the later stage of the 

pandemic or even post-pandemic. A policy analysis conducted by Rothengatter et al. 

(Rothengatter et al., 2021) discussed the impacts of COVID-1 on different travel modes. 

However, they ignored car traveling. Another European long-term travel demand study 

by Christidis et al. (Christidis et al., 2021) was conducted to investigate the post-

pandemic recovery of transportation. They found that travel by car will likely return to 

the 2019 level around the year 2025. Unfortunately, their analysis was based on a 2018 

travel survey rather than either recent traffic data or travel survey. Therefore, there is a 

critical research need of studying the impact of COVID-19 on traffic patterns in the 

later state of pandemic based upon recent data, and analyzing the relationship among 

traffic patterns, daily confirmed cases/deaths, government policies, economic factors, 



etc. Such research results will be valuable to responsive agencies such as state DOTs to 

better understand the long-term impacts of COVID-19 on transportation and get 

prepared for the near-future traffic demand pattern. 

In order to fill the research gap, this study will first examine the impact of the 

COVID-19 and the related government policies on vehicular traffic in the later stage of 

the pandemic. Field traffic data will be used to quantify the traffic patterns. Then, a 

prediction model will be developed to forecast the traffic demand patterns in the near 

future (during the late stage of the pandemic). The model will be formulated with an 

innovative data-driven approach that integrates machine learning with graph theory. 

Methodology 

Study Area 

The study selects the major metropolitan counties, namely Salt Lake County and Utah 

County, in the State of Utah as the study area. These two counties are the most populous 

counties in Utah and account for more than 55% population of the state (2020 estimate). 

The majority difference between the two counties is the political diversity. Salt Lake 

County is one of the more diverse politically speaking areas of Utah while Utah County 

is less diverse. This translates into differences in county policies towards the pandemic. 

This study focuses on traffic patterns of freeways due to the data availability. 

Figure 1 shows the freeways in the study area. The traffic dynamics of two main 

freeway corridors named Interstate-15 and Interstate-80 and other smaller freeways 

including Interstate 80, Interstate 215, State Road 85, State Road 201, State Road 92, 

U.S. Route 6, and U.S. Route 189 are studied in this study. The total lane miles covered 

are 850 lane miles and 540 lane miles for Salt Lake County and Utah County 

respectively. 



(Insert “Figure 1. Freeways in the Salt Lake County and Utah County in the State of 

Utah” here) 

Data 

County-wide Vehicle Miles Traveled (VMT) of all freeways are used to quantify the 

vehicular dynamic. The VMT data was collected from the UDOT Performance 

Measurement System (PeMS) (Utah Department of Transportation, 2019) from January 

2019 to the first week of July 2021, which gives the traffic patterns before and during 

the pandemic. VMT for all vehicle types and trucks are collected and analyzed 

separately. 

Various factors related to the pandemic and vehicular traffic are also collected as 

explanatory variables. Daily new COVID-19 confirmed cases and the percentage of 

fully vaccinated individuals over 12 years of age from the Utah Department of Health 

(The State of Utah, 2021a). The former one is a direct quantifier of the severity of the 

pandemic, which has been used by a lot of existing studies (Kim, 2021). While the latter 

impacts people’s risk perception in traveling. 

Traffic is intrinsically related to the economy. Economic factors are also used as 

Economic factors explanatory variables to capture the unexplained heterogeneity by the 

pandemic-related factors. The monthly unemployment rate and daily news sentiment 

index are obtained from the Utah Department of Workforce Services (Utah Department 

of Workforce Services, 2021) and the Federal Reserve Bank of San Francisco (Shapiro 

et al., 2017). The unemployment rate can affect traffic as fewer people will be willing to 

drive due to economic hardship, especially commuting trips. The daily news sentiment 

index is a measure of economic sentiment based on lexical analysis of economics-

related news articles from 24 major newspapers in the US. The developers of the index 

created a sentiment scoring model based on publicly available lexicons with a news-



specific lexicon constructed by the developers. Then the scores of individual articles are 

aggregated into a daily time-series measure of news sentiment which are statistically 

adjusted to account for changes in the composition of the sample across newspapers. 

Then the index is constructed as a trailing weighted average of time series, with weights 

that decline geometrically with the length of time since article publication. The index 

provides information regarding economic downturns and overall sentiment in the public 

eye.  

Weather conditions could affect the traffic operations. For example, traffic 

volumes could be reduced by rainstorms and from snowstorms (Maze et al., 2006). 

Weather related parameters such as temperature, precipitation, and snow depth were 

collected from the National Centers for Environmental Information (National Centres 

for Environmental Information (NCEI), 2020). The weather observing station at the Salt 

Lake International Airport was selected for weather data in Salt Lake County and 

another station at Spanish Fork Power House was selected for the weather data in Utah 

County (their locations are shown in Figure 1 as blue stars). These weather stations 

were selected since their locations near analyzed freeways. All aforementioned data are 

numeric. 

Another important factor is pandemic-related policy. For instance, lock-down 

orders could significantly reduce the traffic volume (Kim, 2021). Important state-wide 

and county-level policies (The State of Utah, 2021b) are listed in Figure 2, which 

includes deceleration of state of emergency, mask mandate, administration of vaccines, 

etc. Some policies restrict traveling directly while others influence people’s willingness 

to travel. Policy indicators are pre-processed as 0-1 dummy variables. When a certain 

policy is effective at a specific time, the dummy variable was set to 1; otherwise, it was 

set to 0.  



(Insert “Figure 2. Milestones of Pandemic-Related Policies” here) 

All data are aligned with VMT data and aggregate by week. In other words, 

economic and weather data are collected from January 2019 to the first week of July 

2021, while pandemic-related data and policies are collected once they are available till 

the first week of July 2021. 

Prediction Model: Graph Convolutional Networks-Long Short-Term Memory 

(GCN-LSTM) 

Recently, Graphical neural networks (GNN) have been used in various traffic 

forecasting studies, such as traffic flow (Tang & Zeng, 2021) and speed (Zhao et al., 

2020) prediction, vehicular trajectory estimation (Li et al., 2021), travel demand 

forecasting (Xiong et al., 2020), etc. As traffic networks are naturally graphs, GNN-

based models are able to capture spatial dependency of traffic data, and thus outperform 

previous forecasting models such as Autoregressive Integrated Moving Average Model, 

Support Vector Regression, and Recurrent Neural Network(RNN)-based models such as 

Long Short-Term Memory (LSTM) (Jiang & Luo, 2021; J. Yuan et al., 2019; Zhao et 

al., 2020). In other words, the “graphs” used in almost all existing GNN-based traffic 

forecasting studies aim at obtaining “spatial information”. A typical “traffic graph” is 

defined as 𝐺𝑡 = (𝑉, 𝐸, 𝐴), where 𝑉 is the set of nodes such as roadway segment/traffic 

detectors for microscopic models or specific geographical areas for macroscopic 

models; 𝐸 is the set of edges between nodes which shows the spatial connectivity;  𝐴 is 

the adjacency matrix represent the “edge weight” such as distances (Jiang & Luo, 

2021). 

However, in this study, although the problem could be formulated into a time 

series forecasting, we are specifically interested in modeling the impacts of external 

factors on vehicular traffic. A preprint paper reveals that adding human knowledge as a 



form of “knowledge graph” to the existing GNN-based traffic forecasting model could 

improve the model performance (Zhu et al., 2020). Therefore, we adopted this idea and 

developed a knowledge graph depicting the relationships between the factors mentioned 

in the previous section. The directed knowledge graph 𝐺𝑘 = (𝑉𝑘, 𝐸𝑘, 𝐴𝑘) is shown in 

Figure 3, where node set 𝑉𝑔 consists of VMT and impact factors; edge set 𝐸𝑔 represents 

the “possible” impact relations (The edge 𝑒𝑖𝑗 exists if the node 𝑖 has possible impact on 

node 𝑗); the adjacency matrix 𝐴𝑔 is a binary matrix showing the existence of edges only. 

The complex knowledge graph clearly demonstrates that these factors are highly 

intercorrelated, which might indicate that simple regression models may fail due to 

collinearity. 

(Insert “Figure 3. Knowledge Graph Depicting” here) 

Therefore, the forecasting problem is formulated as learning the mapping 

function 𝑓 on the premise of knowledge graph 𝐺𝑘 and the factor matrix 𝑋 and calculate 

𝑋𝑇 in next 𝑇 timestamps. In this study, a one-step forecast (one week ahead) is 

considered as longer-term forecasting may not be valid due to the rapid change of 

pandemic and policy status: 

𝑋𝑡+1 =  𝑓(𝐺𝑘; (𝑋𝑡−𝑛, … , 𝑋𝑡−1, 𝑋𝑡 )) (1) 

where 𝑋𝑡+1 is the values of all factors at the timestamp 𝑡 + 1 although we are only 

interested in the VMT, and 𝑛 is the length of historical time series which is a tunable 

factor. 

The model used to learn the mapping is Graph Convolutional Networks-Long 

Short-Term Memory (GCN-LSTM). It is a variant of the model proposed by Zhao et al 

(2020). The model consists of two parts (Figure4): the graph convolution network 

(GCN)(Defferrard et al., 2016), a popular GNN model used to obtain the relationships 



between factors from the knowledge graph, and the LSTM (Hochreiter et al., 1997) 

used to obtain the temporal dependency. 

(Insert “Figure 4. GCN-LSTM Model Structure” here) 

The basic concept behind the GCN model is using a filter to capture the feathers 

between a node and its first-order neighborhood. Then, the GCN can be built by 

stacking multiple convolutional neural network layers: 

𝐻(𝑙+1) =  𝜎 (𝐷̃−
1
2𝐴̃𝐷̃−

1
2𝐻(𝑙)𝜃(𝑙)) (2) 

where 𝐴̃ =  𝐴𝑘 + 𝐼𝑛 is the adjacency matrix including self-connections of the nodes; 𝐼𝑛 

is an n-degree identity matrix representing self-connections; 𝐷̃ = ∑ 𝐴̃𝑖𝑗𝑗 is the degree 

matrix of the graph representing the neighborhood information; 𝐻(𝑙) is the output matrix 

the layer 𝑙 and the 𝜃(𝑙) is the associated trainable parameters; 𝜎(∙) is the sigmoid 

function. 

(Insert “Figure 5. Illustration of a GCN Filter (Adopted from Zhao et al. (2020))” here) 

Incorporating GCN with LSTM, we get:  

ℎ𝑡 = 𝑜𝑡𝑅𝑒𝐿𝑈(𝑐𝑡) (3) 

𝑜𝑡 =  𝜎(𝑊𝑜[𝑓(𝐴𝑘 , 𝑋𝑡), ℎ𝑡−1] + 𝑉𝑜𝑐𝑡) (4) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑅𝑒𝐿𝑈(𝑊𝑐[𝑓(𝐴𝑘, 𝑋𝑡), ℎ𝑡−1]) (5) 

𝑓𝑡 = 𝜎(𝑊𝑓[𝑓(𝐴𝑘, 𝑋𝑡), ℎ𝑡−1] + 𝑉𝑓𝑐𝑡−1) (6) 

𝑖𝑡 = 𝜎(𝑊𝑖[𝑓(𝐴𝑘, 𝑋𝑡), ℎ𝑡−1] + 𝑉𝑖𝑐𝑡−1) (7) 

where ℎ𝑡 is the output of LSTM unit at the timestamp 𝑡, while the forecast is the output 

of the final LSTM layer (as shown in Figure 4); 𝑜𝑡 is the "output gate" that modulates 

the amount of memory content exposure; 𝑊s are trainable matrixes; 𝑓(𝐴𝑘, 𝑋𝑡) is the 

final output of the stacked GCN layers; 𝑉s are diagonal matrixes; 𝑐𝑡 is the “memory” 

maintained by the unit at 𝑡 and is updated by partially forgetting the existing memory by 

factor gate 𝑓𝑡 and adding a new memory content through input gate 𝑖𝑡. It should be 



noted that normally the activation function used in LSTM is hyperbolic the tangent 

function (tanh). However, the tanh activation does not perform well in this forecasting 

problem according to extensive algorithm trainings done by the research team. Since 

REctified Linear Unit (ReLU) activation functions could be used in RNNs with right 

initialization of the weights (Le et al., 2015), the ReLU activations are adopted. 

The loss function used in training is mean square errors between the predicted 

factors and the observed ones. Adam optimizer was selected to minimize the loss.  

Forecasting models are developed for two counties separately since their 

demographics are very different. For example, as stated in the last section, residents of 

two counties have different political views and in turn, impact their risk perceptions on 

the virus and traveling during the pandemic. Such unobserved heterogeneity could not 

be modeled using the existing data. Therefore, in total, four models (2 counties × 2 

VMT types) are developed.   

The model is evaluated by two benchmark models, namely the persistence 

model and a fine-tuned LSTM. The persistence model is widely used as the benchmark 

for time series forecasting problems. A persistence model assumes that the future value 

of a time series is calculated under the assumption that nothing changes between the 

current time and the forecast time. It should be noted that although GCN-LSTM is able 

to forecast all input factors at the future timestamps, only VMT is used to quantify the 

model performance. Two evaluation metrics are employed, which are Root Mean 

Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑉𝑀𝑇𝑡 − 𝑉𝑀𝑇𝑡̂)

2
𝑁

𝑡=1

 (8) 



𝑀𝐴𝑃𝐸 =
100

𝑛
√∑ (

𝑉𝑀𝑇𝑡 − 𝑉𝑀𝑇𝑡̂

𝑉𝑀𝑇𝑡̂

)

𝑁

𝑡=1

 (9) 

 

Results 

Impact of Pandemic on Vehicular Traffic 

VMT is highly affected by the severity of the pandemic (quantified by the number of 

new cases), policies, and individual/societal risk perceptions of traveling during the 

pandemic. Figure 6 shows the VMT for all types of vehicles (Total VMT) and trucks for 

two counties with the progression of the pandemic. It should be noted that the Truck 

VMT shown in the figure is scaled up by 10 times for better illustration. The most 

prolonged decrease in VMT occurs during the initial phase of the pandemic. After travel 

restrictions regarding COVID-19 were announced (around the second week of March 

2020), Total VMT dropped significantly by around 38.9% for Salt Lake County (72.9 

million miles vs 44.6 million miles) and 36.7% for Utah County (37.7 million miles vs 

23.8 million miles) in one month. Truck VMT also dropped by 26.2% (4.6 million miles 

vs 3.6 million miles) and 19.8% (3.4 million miles vs 2.7 million miles) for Salt Lake 

and Utah Counties respectively. Both travel restrictions issued by the state government 

and public concerns regarding the virus lead to this large and prolonged drop. 

(Insert “Figure 6. VMT versus Number of New COVID Cases (Truck VMT is Scaled 

up by 10 Times for Better Illustration)” here) 

However, once restrictions were relaxed, and public perception shifted even 

during rising case counts; starting from the last week of April 2020, VMT began to 

recover to pre-pandemic levels. By mid-June 2020, total VMT recovered to 89.9% (65.6 

million miles) and 99.6% (37.5 million miles) of pre-pandemic level for Salt Lake and 



Utah Counties respectively. Truck VMT shows a similar trend. It should be noticed that 

the VMT recovered faster and more for Utah County. As to this date, there is not a huge 

difference in pandemic-related policies between the two counties, the differences are 

likely to be due to the different risk perceptions of the residents living/traveling in the 

two counties. Interestingly, implementation mask mandates did not significantly reduce 

VMTs.  

During the late months of 2020 and the beginning of 2021, VMT began to drop 

again. This decrease can partially be attributed to holidays during this time of year, 

especially for Truck VMT. However, the Total VMT of the first week in 2021 (52.6 

million miles for Salt Lake County and 29.9 million miles for Utah County) is less than 

that of the first week in 2020 (57.9 million for Salt Lake County and 31.8 million miles 

for Utah County). The slight drop can be attributed to increased state restrictions and the 

highest case count totals of COVID-19. This high case counts, and restrictions remained 

throughout early 2021 causing the decline in VMT to stagnate as the high case counts 

lasted.  

During the later stage of the pandemic, the vaccine plays an important role in the 

recovery of traffic. Figure 7 shows the changes of VMT with the percentage of fully 

vaccinated individuals over 12 years of age. COVID vaccines began to be administered 

in the State of Utah in December 2020 during the peak of the pandemic. In the ensuing 

months as vaccines became more available, the new confirmed cases began to decrease 

significantly. A Pearson correlation study reveals that Total VMT is positively 

correlated to the percentage of fully vaccinated individuals with coefficients of 0.837 

and 0.937 for Salt Lake and Utah counties respectively (Figure 7). At the end of the 

study period, VMT has gradually recovered to if not exceed pre-pandemic levels. In late 

June of 2021, the Total VMT is 75.8 million miles for Salt Lake County and 32.5 



million miles for Utah County, which yield a 2.2% and 6.8% of increase compared with 

Total VMT of late February of 2020 respectively. Again, VMT increased faster and 

more for Utah County due to similar reasons. As for the truck VMT, it increased by 

more than 10% (4.6 million miles vs 5.2 million miles) for Salt Lake County. A 

possible reason is the significant growth of online shopping and on-demand during the 

pandemic(AASHTO, 2020; Christidis et al., 2021; Shamshiripour et al., 2020). Online 

shopping and on-demand delivery are increased during the crisis as a response to 

limitations in retailing, risk aversion, and social distancing. The growth of online 

shopping requires more trips of delivery trucks then in turn significantly increases the 

truck VMT. 

(Insert “Figure 7. VMT versus Percentage of Fully Vaccinated People (Truck VMT is 

Scaled up by 10 Times for Better Illustration)” here) 

In summary, the pandemic significantly impacts the traffic in Salt Lake County 

and Utah County in the State of Utah. At the earlier stage, traffic drops significantly due 

to the direct travel restrictions. Once the restrictions have been reduced, traffic has been 

gradually recovered while the recovering process may be impacted by the pandemic if it 

is severe. As the vaccinated population continuously growing, traffic of both counties 

has been fully recovered to the pre-pandemic level. The recovery is much faster than the 

forecast by Christidis et al.(2021), which states that vehicular traffic will return to the 

pre-pandemic level around the year 2025. The truck traffic even increased as a result of 

the growing online shopping activities.  

Forecasting Model 

Table 1 shows the specifications and hypermeters used in the GCN-LSTM model and 

the benchmarking LSTM. As stated earlier, due to the rapid change of pandemic and 

policy status, only the data of the later stage of the pandemic, i.e., after the rollout of 



vaccines, was selected to develop the forecasting model. Twenty weeks of data are used 

for training and four last weeks of data are used for testing. During the training, an early 

stopping technique was employed to prevent overfitting. It also should be noted that for 

GCN-LSTM, the data of the past two weeks were used to construct the direct input 

according to the model tuning. The turning process shows that adding data of previous 

timestamps into the knowledge graph improve the model performance, possibly due to 

some independent variables may have delayed impacts on the others. Therefore, 𝑋𝑡+1,𝑔 

is calculated as follows: 

𝑋𝑡+1,𝑔 =  𝑓𝑔(𝐺𝑘; (𝑋𝑡−1, 𝑋𝑡 )) (10) 

However, for LSTM, the turning process indicates that adding data of previous 

timestamps may distort the memory since it does not have a structure that allows the 

interactions between independent variables. Thus, the 𝑉𝑀𝑇𝑡+1,𝑙 is as follows: 

𝑉𝑀𝑇𝑡+1,𝑙 =  𝑓𝑙(𝑋𝑡−1) (11) 

 

(Insert “Table 1. Model Configuration” here) 

The GCN-LTSM is developed using Python programming language with the 

support of machine learning packages StellarGraph (Data61, 2018), Keras (Chollet, 

2015), and TensorFlow (Abadi et al., 2016). 

Table 2 shows the performance of GCN-LSTM and other benchmark models for 

different scenarios (2 counties × 2 vehicle types). It can be seen that GCN-LSTM 

obtains the best forecast performance for all four scenarios in terms of both evaluation 

metrics. On average, GCN-LSTM reduced RSME by 31.20% and MAPE by 31.48% 

compared with traditional LSTM models. Thus, incorporating knowledge regarding the 

interrelationships between explanatory factors significantly improves the model's 



prediction ability, which is also confirmed by previous studies (Y. Yuan et al., 2021; 

Zhu et al., 2020). 

(Insert “Table 2. Model Performance” here) 

To better understand the GCN-LSTM model, the prediction results of the model 

and the benchmarks on testing data are visualized (Figure 8). The results show that: 

(1) Persistence models fail to forecast future VMTs due to the rapid change of the 

pandemic status. Take the Total VMT of Salt Lake County as an example. The 

Total VMT of the fourth week (74.5 million miles) increased by 5.4% (70.7 

million miles) in three weeks. This also implies that long-term forecasting 

during the pandemic might not be valid. 

(2) Both LSTM and GCN-LSTM are able to capture the general increasing trend of 

VMT. GCN-LSTM has smaller prediction errors for almost all prediction points. 

This re-confirms that human knowledge helps to improving model performance. 

(3) However, there exists a sudden drop of VMT from the third week to the fourth. 

Both LSTM and GCN-LSTM models have poor capability in predicting this 

drop. LSTM failed to predict drops for all scenarios while GCN-LSTM only 

captured the drop when predicting the Truck VMT of Utah County. We 

speculate that the main cause is uncaptured randomness. Prediction models tend 

to make smoother predictions. 

(Insert “Figure 8. Prediction Results of the Models (Up Left: Total VMT for Salt Lake 

County; Up Right: Total VMT for Utah County; Down Left: Truck VMT for Salt Lake 

County; Down Right: Truck VMT for Utah County)” here) 

Conclusions and Discussion 

The global COVID-19 pandemic has placed a great impact on the traffic across the U.S. 



However, there are few studies investigating the pandemic’s impact on vehicular traffic 

at the later stage of the pandemic. Therefore, this paper studies the change of freeways 

traffic patterns in two metropolitan counties, Salt Lake County and Utah County, in the 

State of Utah, during the pandemic. We conclude that: 

(1) Vehicular traffic is decreased during the early stage of the pandemic due to the 

government restrictions and individuals’ risk perception in traveling. 

(2) With the relaxation of travel restriction and COVID vaccine, vehicular traffic 

has been recovered to if not exceed pre-pandemic levels. 

(3) Truck traffic at the later stage of the pandemic is higher than the pre-pandemic 

level due to the growth of online shopping and on-demand delivery. 

The summarized traffic patterns at the later stage of the pandemic could help 

transportation agencies better understand the impacts of COVID-19 on traffic mobility. 

These can also potentially support the long-term urban planning strategic goals during 

the post-pandemic periods. For example, relevant agencies need to prepare adequate 

facilities such as truck parking and rest facilities in response to increasing truck traffic. 

A prediction model based on innovative GCN-LSTM is then developed to 

forecast traffic patterns in the near future. GCN-LSTM is able to capture the 

interrelations between the explanatory variables. The evaluation results show that the 

proposed prediction model has a highly desirable performance. The highest MAPE of 

the model among all four scenarios (2 counties × 2 vehicle types) is only 1.74% while 

the lowest is 0.38%. The model outperforms the benchmarking persistence models and 

LSTM models by -68.91% and -31.20% in terms of RSME. This reassures that 

incorporating human knowledge helps to improve model performance. The developed 

prediction model could be used by responsive agencies such as state DOTs to get 

prepared for the near-future traffic demand pattern. 



Although discussing how the new “traffic normality” likes is not the main 

objective of this study, according to our conclusions, the vehicular traffic likely remains 

on the pre-pandemic level for a considerably long period. Firstly, governments are 

highly unlikely to place travel restrictions due to the high vaccination rate (As of July 

21, 2021, 56.9% of the U.S. population received at least one dose of COVID-19 vaccine 

(Mathieu et al., 2021)) and huge damage to the economy (U.S. economy drops 32.9% 

during the “lock-down”(Horsley, 2020)). As the government restriction is the major 

reason leads to the drastic decrease of vehicular traffic, a “huge” drop is not expected in 

the near future. Secondly, other pandemic-related policies such as mask mandate did not 

significantly reduce the traffic. Although the U.S. Centers for Disease Control and 

Prevention changes mask guidance to recommend fully vaccinated people in certain 

areas of the country wearing masks indoors in public areas on July 27, 2021 (Centers 

for Disease Control and Prevention (CDC), 2021), such guidance and possible 

state/local policies on mask mandate will unlikely negatively impact the traffic. Thirdly, 

although data is not sufficient enough, we did see the traffic was continuously 

increasing in June 2021 despite the newly confirmed COVID-19 cases was also 

increasing (see Figure 6). This may imply that people’s risk perception on traveling 

during the pandemic has been changed. Therefore, unless the decrease changed 

conspicuously, people’s willingness to travel by car would highly unlikely be changed. 

In the future, we will continue monitoring the status of the pandemic and its impact on 

vehicular traffic. Additional jurisdictions and types of roadway facilities (such as local 

roads) may be added when data are available. 
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Table 1. Model Configuration.  

Model GCN-LSTM LSTM 

Layer Configuration 
GCN: (16,10) N/A 

LSTM: (20, 20, 40, 40, 40, 40, 20, 20) 20 

Learning Rate 0.001 0.01 

Optimizer Adam Adam 

Past Data Used Two weeks One week 

 

Table 2. Model Performance. 

County 
Vehicle 

Type 

Persistence LSTM GCN-LSTM 

RSME 

(106 Miles) 
MAPE 

RSME 

(106 Miles) 
MAPE 

RSME  

(106 Miles) 
MAPE 

Salt 

Lake 

Total 2.3979 2.98% 
0.9440 

(-60.63%) 

1.25%  

(-58.08%) 

0.6374 

(-73.42%) 

0.72%  

(-75.90%) 

Truck 0.2480 4.53% 
0.1449 

(-41.56%) 

2.19%  

(-51.57%) 

0.1006 

(-59.45%) 

1.74% 

(-61.67%) 

Utah 

Total 1.8757 3.09% 
0.9327 

(-50.28%) 

1.76%  

(-42.91%) 

0.5943 

(-68.32%) 

1.39%  

(-55.01%) 

Truck 0.0689 1.93% 
0.0236 

(-65.76%) 

0.64%  

(-66.62%) 

0.0176 

(-74.46%) 

0.38% 

(-80.43%) 

Average 

Performance 

Improvement 

Persistence / LSTM Persistence / GCN-LSTM LSTM / GCN-LSTM 

RSME MAPE RSME MAPE RSME MAPE 

-54.56% -54.80% -68.91% -68.25% -31.20% -31.48% 

  



Figure 1. Freeways and Weather Stations in the Salt Lake County and Utah County in 

the State of Utah  

 



Figure 2. Milestones of Pandemic-Related Policies 

 



 

Figure 3. Knowledge Graph Depicting 

 

 

Figure 4. GCN-LSTM Model Structure 

 

 



Figure 5. Illustration of a GCN Filter (Adopted from Zhao et al. (2020)) 

 

 

Figure 6. VMT versus Number of New COVID Cases (Truck VMT is scaled up by 10 

Times for Better Illustration) 

 



Figure 7. VMT versus Percentage of Fully Vaccinated People (Truck VMT is scaled up 

by 10 Times for Better Illustration) 

 

 
  



Figure 8. Prediction Results of the Models (Up Left: Total VMT for Salt Lake County; 

Up Right: Total VMT for Utah County; Down Left: Truck VMT for Salt Lake County; 

Down Right: Truck VMT for Utah County) 

 

 


