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Abstract 

For alleviating arterial congestion, most control strategies provide progression for 

through and turning traffic. A prerequisite input is the arterial origin-destination (OD) 

flow pattern, which can be estimated based on connected vehicle (CV) trajectories. 

However, the existing estimation methods require the ground-truth historical OD flow, 

which is difficult to obtain. To address this issue, this paper develops a method to 

estimate real-time OD flow along a signalized arterial without ground truth. A model 

based on the Generative Adversarial Network (GAN) network is proposed, which 

incorporates long short-term memory (LSTM), attention mechanism, and convolutional 

neural network (CNN) to capture the temporal and spatial correlations between OD 

flow patterns. This model is trained with the proposed self-supervised without historical 

OD flow. The proposed model is extensively tested based on a realistic signalized 

arterial, and the results indicate sufficient accuracy for progression control. 

Keywords: Signalized arterial, Origin-destination flow, trajectory, Generative 

Adversarial Network, self-supervised learning 

 

1. Introduction 

Origin-Destination (OD) flow estimation on arterials over space and time can achieve 

insights into traffic patterns and assists traffic management. For example, the 

conventional two-way progression frequently causes an overflow at turning bays, 

resulting in network gridlock. Considering this situation, a multi-path signal 

progression control system is investigated (Yang et al., 2015; Arsava et al., 2016; Wang 

et al., 2021). Some studies have demonstrated that providing progression to multiple 

path with heavy traffic volume can improve the arterial control efficiency and vehicle 

operational efficiency (Yang et al., 2015; Arsava et al., 2016;). In addition, Wang et al. 

(2021) proposed a traffic signal control system which incorporated adaptive traffic 

signal control at the intersection level and multi-path progression control at the corridor 

level. Their study has demonstrated that signal coordination was provided not only for 

through traffic but also other critical paths, which could improve the performance of 

the network. One of the key questions is how to identify real-time critical paths which 
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are defined as paths with high traffic flows. Therefore, the most fundamental and 

critical information for such a control system is the time-varying distribution of the 

origin-destination (OD) flow along the signalized arterial. To illustrate the arterial OD 

flow, Fig. 1 shows an arterial layout in Chupei, Taiwan, including three intersections, 

which connect the urban road network and a congested freeway. The numbers near the 

arrows represent the traffic volume of the movement. It can be observed that turning 

volumes from-or-to the on-ramps and off-ramps are heavy.  

 

 
Fig. 1. An illustrative example of an arterial segment in Chupei, Taiwan (Yang et 

al., 2015) 

 

Very limited studies have been conducted on estimating arterial OD flow 

patterns along signalized arterials. Conventionally, the arterial OD flow is estimated 

based on traffic counts according to several conservation laws. Specifically, the link 

flows should be the summation of all path flows traveling through the link (Chang and 

Wu, 1994; Lin, 2006), which can only be applied to a simple transportation network 

(Rao et al., 2018). Lou and Yin (2010) proposed a framework to dynamically estimate 

ODs along a signalized arterial by using link counts. They decomposed this problem 

into two sub-problems at the intersection level and the corridor level. They firstly 

inferred the turning movements at each intersection with link counts and then treated 

them as observations. However, their study did not consider the impact of the signal 

timing plan exerted on time-varying link flows, which consequently results in low 

accuracy. Yang and Chang (2015) proposed three models for estimating signalized 

arterial OD flow. The first model was based on the relationship between link counts 

and OD. The second model focused on modeling the interrelationships between OD 

flow patterns and intersection turning counts. Considering the impacts of traffic signal 

timing plans, the third model, incorporating time-varying queue length information, is 

proposed to increase the estimation accuracy. However, computing efficiency and 

tractability are challenging due to a large number of unknown parameters. 

With the increasing data availability, data-driven OD flow estimation has been 
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investigated to address this problem, such as license plate recognition (LPR) data 

(Castillo et al., 2013; Chiou et al., 2011; Sun et al., 2011, Mo et al., 2020), automatic 

vehicle identification (AVI) data (Van Der Zijpp, 1997; Asakura et al., 2000; Dixon 

and Rilett, 2002; Antoniou et al., 2004; Dixon and Rilett, 2005; Zhou and Mahmassani, 

2006; Chen et al., 2011; Hadavi and Shafahi, 2016;  Cao et al., 2021), cellphone data 

(Sohn and Kim, 2008; Iqbal et al., 2014), and probe vehicle data (Matsumoto et l., 2005; 

Yamamoto et al., 2009; Asmundsdottir et al., 2010; Baek et al., 2010; Cao et al., 2013; 

Yang et al., 2017;). The basic idea of those methods is to boost estimation accuracy by 

supplementing information which is unavailable before. Despite the lack of arterial OD 

flow estimation, the previous studies on flow estimation on the road network can be 

categorized as maximum likelihood models (Geva et al., 1983; Irving et al., 1986; 

Cascetta and Nguyen, 1988; Spiess, 1987); Generalized least squares (GLS) model 

(Bell, 1983; Cascetta, 1984; Bell, 1991; Cascetta et al., 1993; Sherali and Park, 2001; 

Cascetta et al., 2013), Bayesian-based model (Geva et al., 1983; Maher, 1983; Hazelton, 

2008; Perrakis et al., 2012; Wang and Mirchandani, 2013; Castillo et al., 2008b, 2014), 

state-space models (Okutani and Stephanedes, 1984; Ashok and Ben-Akiva, 2002; 

Zhou and Mahmassani, 2007; Alibabai and Mahmassani, 2008; Lu et al., 2015), and 

simple neural networks (Kikuchi et al., 1993; Yang et al., 1998; Gong, 1998; Mussone 

et al., 2010; Padinjarapat & Mathew, 2013; Remya and Mathew, 2013; Zhao et al., 

2017). However, these methods are developed for network OD estimation. Most of 

those studies are traffic-assignment-based methods, which are based on several 

assumptions. For example, it assumed traffic information is available to all traffic users 

and they always select the shortest path, which is not in consistent with the reality. 

Besides, there is only one path for each OD pair along the arterial. Therefore, those 

existing methods may not be applicable for the signalized arterial OD estimation.  

To leverage trajectory data in OD flow estimation, Ou et al. (2019) proposed a 

framework to dynamically estimate arterial OD flow with prior information, which is 

barely applicable. Huang et al. (2019) constructed a deep learning model based on 

Recurrent Neural Network to learn the evolution pattern of OD flow. This method 

requires that all links in the road network are equipped with camera detectors to capture 

vehicle information, which may result in high installation and maintenance costs. 

Considering the large dimensional difference between the observed traffic information 

and OD flow to be estimated, Tang et al. (2021) proposed a convolution-based deep 

neural network to learn the relationship between features extracted from AVI-based 

information and OD flow. This study applied transfer learning to mitigate the obstacle 

in obtaining ground-truth OD flow information, but still needs some prior OD flow 

information. In sum, three critical issues of the state-of-art data-driven methods lie in 

the literature: (a) Prior information and historical arterial OD flow are required to obtain 

acceptable results; (b) Recognition and identification systems are required to get traffic 

information (e.g., link counts), resulting in high installation and maintenance costs; (c) 

The malfunctions of detectors will contribute to serious estimation inaccuracies.  

To address these issues, this paper first proposes a novel framework for learning 

real-time OD flow estimation without ground truth. A self-supervised learning method 

is proposed to leverage partial trajectory data from connected vehicle (CV) to estimate 
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the OD flow of both CV and regular vehicles. More specifically, we firstly obtain a 

partial OD matrix simply by aggregating the collected CV data. Then an original matrix 

is obtained by dividing the partial OD matrix by the global market penetration rate and 

such matrix is considered to be flawed. Second, this study customizes a generative 

adversarial network (GAN) model to repair the OD matrix. This study integrates the 

long short-term memory (LSTM), attention mechanism, and convolutional neural 

network (CNN) into the customized Generative Adversarial Network (GAN) model to 

capture both temporal and spatial patterns of OD flow. Third, the proposed self-

supervised learning method trains the customized GAN for estimating arterial OD. 

The remainder of the paper is organized as follows. Section 2 states the problem 

of signalized arterial OD flow estimation. Section 3 describes the training method 

without ground truth data and introduces the model to estimate OD flow. Section 4 

conducts an experimental study and presents the results. The last section summarizes 

the conclusions and recommendations for future research directions. 

 

 

2. Problem Statement 

This research considers a signalized arterial with several intersections, 

represented by 𝐺 = (𝑁, 𝐿) , where 𝑁  denotes the node set, specified by 𝑁 =

{1,2, . . . , 𝑛}; 𝑛 represents the node where two roads intersect (i.e., the red nodes in Fig. 

1) or the node that vehicles enter to and exit from the intersection (i.e., the blue nodes 

in Fig. 2). 𝐿 denotes the link set in which each component is the link between two 

adjacent nodes, specified by 𝐿 = {1,2, . . . 𝑙}. Blue nodes in Fig. 2 are considered as 

origin nodes and destination nodes. By connecting each origin node and destination 

node, a set of OD pairs, represented by 𝐼, can be constructed, 𝐼 = {1,2, . . . 𝑖}. Let 𝑇 

denote the analysis period and dividing it into 𝑘  uniform intervals, the set of time 

intervals is denoted by 𝐾 = {1,2, . . . , 𝑘}.  

 

 

Fig. 2. A simplified signalized arterial structure 

 

Based on the above notation definition, the traffic pattern along a signalized 

arterial during the analysis period can be represented by an OD matrix, 𝑀, as follows: 
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where 𝑥𝑖
𝑘 denotes the number of vehicles traveling between OD pair 𝑖 within time 

interval 𝑘. The OD matrix 𝑀 is the output of this problem. 

This research assumes two types of vehicles, regular vehicles and CV, travel 

along this signalized arterial. Since CV broadcasts real-time locations, it is easy to 

obtain the number of CV traveling between each OD pair, namely CV OD matrix, 

within each time interval. The CV OD matrix 𝑀𝐶 is the input of this problem: 
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 (2) 

To further illustrate the problem, Fig. 3 shows the signalized arterial with 6 

origins, 6 destinations, and 30 OD pairs. The path between each OD pair is composed 

of several links: (a) only partial paths have common links. For example, path 1 shares 

link 1 with path 3 while they do not have common links with path 2; (b) The number of 

shared links is different for paths, e.g., path 1 and path 3 only have one shared link, link 

1, but path 1 and path 4 have two shared links, link 1 and link 7. For those paths with 

shared links, the turning directions of vehicles on shared links are uncertain, resulting 

in different path flows. This may contribute to complicated dependencies between 

different OD flows. Such relationships are highly time-dependent. 
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Fig. 3. An illustrative case of a signalized arterial 

 

 



6 
 

3. Methodology 

3.1 Notation 

To help the understanding of the proposed model, the used notations are listed 

in the following table. 

Table 1. Notations 

Arterial 

𝑀 Number of intersections 

𝐺 Signalized arterial structure 

𝑁 Node set 

𝐿 Link set 

𝐼 Set of OD pairs 

𝑇 Analysis period 

𝐾 Set of time interval 

ℳ OD matrix of all vehicles 

𝑥𝑖
𝑘 Number of vehicles traveling between OD pair 𝑖 within time 

interval 𝑘 

ℳ𝒞 OD matrix of CV 

𝑥𝑐𝑖
𝑘 Number of CV traveling between OD pair 𝑖  within time 

interval 𝑘 

General deep neural network 

𝑥𝑖 Inputs of deep neural network 

𝑦𝑖 Ground truth data 

𝑓𝜃 Parametric vector 

𝑛 Number of training samples 

L𝑅 Empirical risk 

J-invariant function 

𝑀𝑓 Original OD samples 

𝑀𝑐 Ground truth OD matrix 

𝑏 Flaw 

𝑚 Dimensions of each matrix 

𝒥 A given partition of dimensions of a matrix 

𝐽 Sub-dimensions of 𝒥 

𝑥𝐽 Values of a matrix on dimension 𝐽 

𝑓(𝑢)𝐽 Values of a function on dimension 𝐽 

ℒ(𝑓) Self-supervised loss function 

𝐽𝐶 Complement of 𝐽 

𝑓𝜃 Denoising function 

𝑔𝜃 Classical function 

ℎ(𝑢) Function replacing the values on the location 𝐽 

𝑞(𝑢) Neighborhood of an element in a matrix 

𝑙, 𝑤 Random value of an element in a matrix 
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𝑟 Width of the surrounding window of an element in a matrix 

Specific  deep neural network structure 

P(. ), Q(. ) Certain distribution 

𝑝(. ), q(. ) Probability function 

𝐺 Generator of GAN 

𝐷 Discriminator of GAN 

𝜏𝑖 Input gate of LSTM 

𝜏𝑓 Forget gate of LSTM 

𝜏𝑜 Output gate of LSTM 

𝑎𝑡̃ Candidate state of LSTM 

ℎ𝑡 State of step 𝑡 in LSTM 

𝑥𝑡 Input of step 𝑡 in LSTM 

𝑊𝑖,𝑊𝑓 , 𝑊𝑜, 𝑊𝑐 Weights in LSTM 

𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 , 𝑏𝑐 Bias in LSTM 

𝜎, 𝜏 Activation functions 

𝑄 Query vector 

𝐾 Key vector 

𝑉 Value vector 

𝑊𝑄 , 𝑊𝐾 ,𝑊𝑉 Weights of attention mechanism 

𝑑𝑘 Dimension of the key vectors of attention mechanism 

𝑦𝑐𝑜𝑛𝑣 Output of convolutional layer 

𝑏 Bias in convolutional neural network  

 

3.2 Novel Framework of the Self-supervised Learning Model 

This research aims to mine the real-time trajectory data from 𝑀𝐶to estimate 

time-dependent OD flows of a signalized arterial (e.g., elements in 𝑀). We can view 

this estimation problem from a probabilistic perspective. Considering the spatio-

temporal relationship, each OD, 𝑥𝑖
𝑘, can be viewed as a random variable depending on 

the collected CV OD flow of all OD pairs within historical time intervals and the 

conditional probability P(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1) follows a certain distribution. Here, we use 

𝑥𝑐0
0: 𝑥𝑐𝑖

𝑚−1 to indicate the historical CV records for all OD pairs. Then probabilistic 

inference methods can be adapted to solve the unknown distribution. Conventionally, 

the unknown distribution can be obtained by a model Q(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1, 𝜃) controlled 

by several parameters 𝜃 and then let this model approximate the real data distribution 

P(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1), as shown in Eq. (3). 

 

 Q(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1, 𝜃)~P(𝑥𝑖

𝑘|𝑥𝑐1
1: 𝑥𝑐𝑖

𝑘−1) (3) 

 

The difference between these two distributions is usually measured by 

Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951): 

 



8 
 

KL(q(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1)p(𝑥𝑖

𝑘|𝑥𝑐1
1: 𝑥𝑐𝑖

𝑘−1, 𝜃)) = 

 ∫ q(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1)log

q(𝑥𝑖
𝑘|𝑥𝑐1

1:𝑥𝑐𝑖
𝑘−1)

p(𝑥𝑖
𝑘|𝑥𝑐1

1:𝑥𝑐𝑖
𝑘−1,𝜃)

𝑑𝑥𝑖
𝑘

 

𝑥𝑗
𝑚

 (4) 

 

Then the optimal parameters can be obtained by minimizing the KL divergence, 

as shown in Eq. (5). 

 

 𝜃∗ = argmin
𝜃

 KL(q(𝑥𝑖
𝑘|𝑥𝑐1

1: 𝑥𝑐𝑖
𝑘−1)||p(𝑥𝑖

𝑘|𝑥𝑐1
1: 𝑥𝑐𝑖

𝑘−1, 𝜃)) (5) 

 

There are two challenges to solving the transformed divergence minimization 

problem. First, the concrete formulations of the two distributions are unknown. It is 

difficult to measure the divergence between them theoretically (Park et al., 2008; Sun 

et al., 2004). Second, previous methods require ground-truth data to get meaningful 

numerical output. To tackle the two problems, we customize GAN, which can train a 

generative machine that is associated with an implicit experimental distribution to 

capture the temporal and spatial relationship of ODs, and propose a self-supervised 

training model to train the GAN without ground truth. 

Conventional GANs are under the supervised learning framework, where the 

ground-truth outputs are required. However, the historical OD flow is not accessible in 

this problem due to the low penetration rate of CV. To address this issue, this study aims 

to propose a self-supervised learning technique to training GAN without ground truth. 

The architecture of GAN is shown in Fig. 4 and the detailed network structures of the 

generator and discriminator are introduced in the following part. Fig. 4 shows the 

overall framework of arterial OD flow estimation. CVs that equipped with on-board 

units (OBU) can transmit vehicle trajectory information to roadside unit (RSU) in real-

time. CV OD flow information can be achieved by processing trajectory data within 

each time interval. Based on this and considering the features of OD flows, we design 

two different models as the generator and the discriminator to capture the temporal and 

spatial correlations of OD flows. General approaches to train the generator and 

discriminator are based on fully observed OD flows. However, the only available 

information we can leverage is CV OD flow. Hence, a self-supervised training method 

only based on the CV OD flow is proposed. 

 

Real-world/

Simulated road network

Partial trajectory 

information 
Generator Discriminator

Self-supervised learning 

scheme

GAN

On-board equipment 

VISSIM COM

preprocessing Generated

OD Matrix

Self-supervised loss

 OD Matrix

GAN loss

 
Fig. 4. Pipeline of the proposed self-supervised learning with no ground truth 
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3.3 Learning Without Ground Truth Method 

Unlike traditional methods that explicit a priori statistical modeling of 

estimation, recent advances in deep neural networks have sparked significant interest 

in mapping flawed observations to the unobserved variables. This happens by training 

a regression model with a large number of pairs (𝑥𝑖,𝑦𝑖) of inputs 𝑥𝑖 and ground truth 

data 𝑦𝑖 and minimizing the empirical risk 

 

 argmin
𝜃

∑ L(𝑓𝜃(𝑥𝑖), 𝑦𝑖)
𝑛

𝑖=1
 (6) 

 

where 𝑓𝜃 is a parametric vector, and 𝑛 is the number of training samples. 

The empirical risk can typically be defined as the type of mean square error 

(MSE) as follows: 

 

 L𝑅 =
1

𝑛
∑ (𝑓𝜃(𝑥𝑖) − 𝑦𝑖)

2𝑛
𝑖=1  (7) 

 

Apart from MSE, other optimization functions, such as mean absolute error 

(MAE), mean bias error (MBE), can also be applied. Regardless of which function, 

ground truth data is essential. However, it is difficult to access the ground truth data 

(i.e., ODs along the signalized arterial) in this paper. Therefore, it is challenging to 

estimate without ground truth data by using the typical empirical risk. In this paper, we 

propose a new empirical risk. 

To better elaborate our model, we treat the inputs to the model, the original OD 

matrix estimated from trajectories, as a matrix and each component (i.e., each estimated 

path flow) is estimated by dividing the CV OD flow by global CV market penetration 

rate (e.g., 20%). Let 𝑀𝑓 represents the original OD matrix and we name it flawed 

matrix. 𝑀𝑐 represents the ground truth OD matrix and we name it clear matrix. Then 

a flawed matrix can be represented by 

 

 𝑀𝑓 = 𝑀𝑐 + 𝑏 (8) 

 

where 𝑏 denotes flaw. 𝑀𝑐, 𝑀𝑓 ∈ 𝑅𝑚, where 𝑚 = ℎ ∗ 𝑤 ∗ 𝑐 depends on the spatial 

and channel dimensions.  

Since the flaw matrix is obtained by dividing the CV OD flow matrix by the 

global market penetration rate, thus, we furthermore assume the flaw to be zero-mean 

 

 E(𝑏𝑖) = 0 (9) 

 

Then 

 

 E(𝑀𝑖
𝑓
) = 𝑀𝑖

𝑐 (10) 
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Eq (9) and Eq (10) mean that if we obtain multiple flawed matrices of the same 

true matrix based on different flaws, the result shall reach the true matrix by averaging 

those flawed matrices. 

Here, we borrow the concept of 𝐽 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function (Baston and Royer, 

2019), as follows: 

Definition 1. Consider a clean matrix 𝑀𝑐 and its flawed measurement 𝑀𝑓, 𝑀𝑐 , 𝑀𝑓 ∈

𝑅𝑚, where 𝑚 = ℎ ∗ 𝑤 ∗ 𝑐 depends on the spatial and channel dimensions. For a given 

partition 𝒥 = {1,2,3, . . . , 𝑚} of the dimensions of a matrix 𝑢 ∈ 𝑅𝑚 . Let 𝐽 ∈ 𝒥 . A 

function 𝑓: 𝑅𝑚 → 𝑅𝑚  is 𝐽 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  if 𝑓(𝑀𝑓)𝐽  does not depend on the value 

of 𝑥𝐽. where 𝑓(𝑀𝑓)𝐽 and  𝑥𝐽 denote values of 𝑓(𝑀𝑓) and 𝑢 on 𝐽. For each 𝐽 ∈ 𝒥, 

if the function is 𝐽 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡, then 𝑓 is 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡. 

We use Fig. 5 to explain the specific meaning of 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  in the 

application of OD flow estimation. Fig. 5 is an example original OD matrix 𝑥. J is a 

subset of the matrix, and 𝑓 is a 𝐽 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function. It has the property that the 

value of 𝑓(𝑥) does not dependent on the value of 𝑥 restricted to 𝐽, 𝑥𝐽. 

J

CJ

f

x  

Fig. 5. An example OD flow matrix 

Then we propose the self-supervised loss function over 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

function 𝑓 as follows: 

 

 ℒ(𝑓) = E ∥ 𝑓(𝑀𝑓) − 𝑀𝑓 ∥2 (11) 

 

Based on this, consider a flawed matrix 𝑀𝑓 ∈ 𝑅𝑚 and its ground truth 𝑀𝑐 ∈

𝑅𝑚. Assume the flaw is zero mean and independent on the input data, the actual optimal 

estimator through any class of 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 functions to estimate the true value 

from flawed data alone by minimizing the self-supervised loss function ℒ(𝑓). 

 

E𝑀𝑓 ∥ 𝑓(𝑀𝑓) − 𝑀𝑓 ∥2= E𝑀𝑓,𝑀𝑐 ∥ 𝑓(𝑀𝑓) − 𝑀𝑐 ∥2+ E𝑀𝑓,𝑀𝑐 ∥ 𝑀𝑓 − 𝑀𝑐 ∥2− 

 2 < 𝑓(𝑀𝑓) − 𝑀𝑐 , 𝑓(𝑀𝑓) − 𝑀𝑐 > (12) 

Since 𝑓  is 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 , then 𝑓(𝑀𝑓)𝐽  and 𝑀𝑓
𝐽  are independent 

variables for all 𝐽 ∈ 𝒥. Then the third term can be reduced to 
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< 𝑓(𝑀𝑓) − 𝑀𝑐, 𝑓(𝑀𝑓) − 𝑀𝑐 >= E𝑀𝑐 < E𝑀𝑓∣𝑠[𝑓(𝑀𝑓) − 𝑀𝑐], E𝑀𝑓∣𝑠[𝑀
𝑓 − 𝑀𝑐] > 

 = E𝑀𝑐(E𝑀𝑓∣𝑀𝑐[𝑓(𝑀𝑓) − 𝑀𝑐]E𝑀𝑓∣𝑀𝑐[𝑀𝑓 − 𝑀𝑐]) (13) 

 

Because the noise is zero mean, then 

 

 E𝑀𝑐(E𝑀𝑓∣𝑀𝑐[𝑓(𝑀𝑓) − 𝑀𝑐]E𝑀𝑓∣𝑀𝑐[𝑀𝑓 − 𝑀𝑐]) = 0 (14) 

 

Then 

 

E𝑀𝑓 ∥ 𝑓(𝑀𝑓) − 𝑀𝑓 ∥2= E𝑀𝑓,𝑀𝑐 ∥ 𝑓(𝑀𝑓) − 𝑀𝑐 ∥2+ E𝑀𝑓,𝑀𝑐 ∥ 𝑀𝑓 − 𝑀𝑐 ∥2

 (15) 

 

In the above equation, the first term is ground truth loss. The second term is 

noise variance, which is in particular independent on 𝑓. Therefore, when 𝑓 is 𝒥 −

𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 , minimizing the self-supervised loss E𝑀𝑓 ∥ 𝑓(𝑀𝑓) − 𝑀𝑓 ∥2  indirectly 

minimizes the supervised loss E𝑀𝑓,𝑀𝑐 ∥ 𝑓(𝑀𝑓) − 𝑀𝑐 ∥2. 

According to definition 1, the output of 𝑓(𝑥)𝐽 in those 𝐽 coordinates does not 

depend on its input in those coordinates. Intuitively, 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 means 𝑓 

only uses the complement of 𝐽, 𝐽𝐶, to repair 𝑥𝐽. Thus, any 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function 

can be treated as a set of functions 𝑓𝐽 : 𝑅𝐽𝐶
→ 𝑅𝐽 . Then, the self-supervised loss 

function can be changed to 

 

 ℒ(𝑓) = ∑ E ∥ 𝑓𝐽(𝑀
𝑓
𝐽𝐶) − 𝑀𝑓

𝐽 ∥2
𝐽∈𝒥  (16) 

 

The 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function 𝑓𝒥
∗ minimizing Eq. (12) satisfies 

 

 𝑓𝒥
∗(𝑀𝑓)𝐽 = E(𝑀𝑐

𝐽|𝑀
𝑓
𝐽𝐶) (17) 

 

for each 𝐽 ∈ 𝒥. 

This means that the optimal 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 estimator for 𝑀𝑐 in dimensions 

𝐽 refers to their expected value conditional on 𝑀𝑓 in the dimensions out of 𝐽. We aim 

to apply the aforementioned methods to obtain the optimal parameter 𝜃  for the 

denoising function 𝑓𝜃, the denoising function requires to be 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function. 

Then the optimal parameters can be achieved by minimizing the proposed self-

supervised loss function. Therefore, we propose a masking scheme to modify a classical 

repair to 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡  function. Specifically, 𝐽 is regarded as a subset sampled 

from the flawed matrix and the masking scheme to create a blind spot. Then the 𝒥 −

𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function is used to predict the values of the blind spot. Generally, let 𝑔𝜃 
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be the classical repair; ℎ(𝑀𝑓) be the function replacing the values on the location 𝐽. 

Then the 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 function 𝑓𝜃 can be defined by 

 

 𝑓𝜃(𝑀𝑓)𝐽:= 𝑔𝜃(1𝐽 ∗ ℎ(𝑀𝑓) + 1𝐽𝐶 ∗ 𝑀𝑓)𝐽 (18) 

where 1𝐽  and 1𝐽𝐶  are the indicator functions of the set 𝐽 and 𝐽𝐶 . This means the 

element-wise multiplication of 1𝐽 with a matrix will be masked and the element-wise 

multiplication of 1𝐽𝐶 retain element values. 

To achieve this, this study proposes a masking scheme named random element 

selection (RES), which estimates a local distribution 𝑞(𝑀𝑓) in the neighborhood of an 

element and then replaces that element with a sample from the distribution. More 

specifically, we replace the value of element 𝑙 with a random element value 𝑤 from 

its 𝑟 ∗ 𝑟  surrounding window. Note that if the value of element ℎ  is also used, 

information about this element may leak, resulting in a function which is not 𝒥 −

𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡. Therefore, we replace it with a random neighbor when estimating the local 

distribution. 

The self-supervised loss function can be written as 

 

 E𝑀𝑓 ∥ 𝑓(𝑅𝑃𝑆ℎ(𝑀𝑓))ℎ − 𝑀𝑓
ℎ ∥2 (19) 

 

According to the above stated, minimizing the loss function in Eq. (19) satisfies 

 

 𝑓∗(𝑀𝑓)ℎ = E𝑀𝑓[𝑀𝑓
ℎ|𝑅𝑃𝑆ℎ(𝑀𝑓))] (20) 

 

Let 𝜚𝑙𝑘(𝑢) represents the vector 𝑢 with the value 𝑢ℎ replaced by 𝑢𝑘. Then 

 

 𝑓∗(𝑀𝑓)ℎ = E𝑀𝑓E𝑘[𝑀
𝑓
ℎ|𝜚ℎ𝑘(𝑀

𝑓)] (21) 

 

Eq. (3.21) can be converted to  

 

 𝑓∗(𝑀𝑓)ℎ =
1

𝑟2
∑ E[𝑀𝑓

ℎ|𝜚ℎ𝑘(𝑀
𝑓)]𝑘 =

1

𝑟2 E[𝑢ℎ|𝜚ℎℎ(𝑀𝑓)] +

1

𝑟2
∑ E[𝑀𝑓

𝑗|𝜚ℎ𝑘(𝑀
𝑓)] 𝑘≠ℎ   (22) 

 

Since we replace the value ℎ with its random neighbor, we can regard this 

value as the element belong to −ℎ which represents the complement of value ℎ. Then 

 

 𝑓∗(𝑀𝑓)ℎ =
1

𝑟2 E[𝑀𝑓
ℎ|𝑀𝑓

−ℎ] = (1 −
1

𝑟2)𝑓𝒥
∗(𝑀𝑓)ℎ (23) 

3.4 Customized Generative Adversarial Networks 

GAN was first proposed by Goodfellow et al. (2014) and was introduced to 

solve traffic problems, such as traffic state estimation (Liang et al., 2018) and traffic 

data imputation (Chen et al., 2019; Zhang et al., 2021). Due to the flexible framework, 
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GAN is capable of incorporating different structures to capture traffic spatio-temporal 

features. Besides, unlike other neural networks which requires a deterministic input to 

achieve meaningful outputs, GAN can be trained while interacting only indirectly with 

the data distribution by sampling from it (Goodfellow et al, 2014). The core idea of 

GAN is derived from a two-player game model, where one generator 𝐺  and one 

discriminator 𝐷 are involved in the game. The generator aims to learn the distribution 

of real data and then generates fake data with random flawed variables 𝑧 . The 

discriminator attempts to determine whether the input data is real data or generated data. 

If the input data is real, 𝐷 is supposed to classify it to be 1. Otherwise, it should be 

classified to be 0. To achieve the equilibrium, the two participants require to 

sequentially learn and optimize themselves to boost their generation capability and 

discrimination capability, respectively. The performance of 𝐺 and 𝐷 can be gradually 

improved by such an adversarial optimization process. Eventually, when 𝐷  cannot 

correctly identify if the input data is generated by 𝐺 or is real, we can say that the 

generator 𝐺 has captured the distribution of real data and can be used to estimate. The 

above adversarial learning process can be formulated as the following min-max 

function (Vaswani et al., 2017): 

 

 min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = E𝑥∼p𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + E𝑧∼p𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] (24) 

 

Note that 𝐺 and 𝐷 can be represented by any differentiable function. Thus, it 

is a question of whether GAN can capture the implicit distribution of the arterial OD. 

It has been demonstrated that the optimal discriminator enables the divergence between 

the distribution of samples from the generator and the distribution of real data to be 

minimal, as shown in Eq. (25). Thus, the implicit distributions of the arterial OD flow 

can be captured by GAN.  

 

𝑉(𝐷∗, 𝐺) = −2log2 + ∫ p𝑑𝑎𝑡𝑎(𝑥)log
p𝑑𝑎𝑡𝑎(𝑥)

(p𝑑𝑎𝑡𝑎(𝑥) + p𝐺(𝑥))/2
𝑑𝑥

 

𝑥

 

 +∫ p𝐺(𝑥)log
p𝐺(𝑥)

(p𝑑𝑎𝑡𝑎(𝑥)+p𝐺(𝑥))/2

 

𝑥

  

= −2log2 + 𝐾𝐿(p𝑑𝑎𝑡𝑎(𝑥)||
p𝑑𝑎𝑡𝑎(𝑥) + p𝐺(𝑥)

2
+ 𝐾𝐿(p𝐺(𝑥)||

p𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝐺(𝑥)

2
) 

 = −2log2 + 2𝐽𝑆(p𝑑𝑎𝑡𝑎(𝑥)||p𝐺(𝑥)) (3.25) 

 

Then, the critical problem is how to design an appropriate structure of the 

generator and the discriminator. The proposed structures of generator and discriminator 

are presented in the following subsection. 

3.4.1 Structures of the Generator and the Discriminator 

The generator is designed to create realistic arterial OD flow from random repair. 

ODs are correlated temporally and spatially. More specifically, the arterial OD flow 
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within a time interval may correlate with the last several time intervals because the path 

between each OD pair is composed of several links and each link flow comes from the 

upstream link flows at the last moment and distributes to the downstream link at next 

moment. Moreover, OD flows also show spatial correlations because paths between all 

OD pairs along a signalized arterial may intertwine together and interact with each other 

in a complicated way. The framework of generator is shown in Fig. 6., the input data is 

processed by the structure of LSTM, attention mechanism, and CNN, the generator can 

generate outputs. 
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Fig. 6. The structure of the customized generator of GAN 

 

The discriminator is designed to classify the true and the fake generated arterial 

OD matrix. The generated outputs from generator will be fed into the discriminator for 

training. The structure of the discriminator is the same as the generator, which means it 

also consists of LSTM, attention mechanism, and CNN. The difference between them 

is the output and the inner components of each deep neural network, such as layers and 

neurons, may vary. 
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Fig. 7. The structure of the customized discriminator of GAN 

3.4.2 Structures of neural network components 

Long short-term memory 

LSTM is frequently applied in time-dependent traffic problems (Hochreiter 

and Schmidhuber, 1997; Ma et al., 2015). We integrate LSTM in GAN to capture 

nonlinear temporal correlations to a large extent. LSTM can model highly nonlinear 

dynamic patterns and encapsulate the information of previous time periods to learn 

long time dependencies for sequential data. For each LSTM cell, the computation 

process can be formulated as follows: 
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 𝜏𝑖
𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (25) 

 𝜏𝑓
𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (26) 

 𝜏𝑜
𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (27) 

 𝑎𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊𝑐[𝜏𝑓 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (28) 

 ℎ𝑡 = 𝜏𝑜
𝑡 ∗ (𝜏𝑢

𝑡 ∗ 𝑎𝑡̃ + 𝜏𝑓
𝑡 ∗ 𝑎𝑡−1) (29) 

 

where 𝜏𝑖, 𝜏𝑓, 𝜏𝑜 represents the input gate, forget gate, and output gate, respectively; 

𝑎𝑡̃ is the candidate cell state which is used to update the cell state at the current time 

step; ℎ𝑡 is the state at current step; 𝑥𝑡 is the input at the current time step; 𝑊𝑖, 𝑊𝑓, 

𝑊𝑜 , 𝑊𝑐  are weights; 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 , 𝑏𝑐  denote biases; 𝜎  and 𝜏  are activation 

functions.  

In this study, we stack multiple layers to capture more temporal features of OD 

flows from a higher level. The first LSTM layer receives the estimated OD flow 

according to the collected CV data. Then the following LSTM layers receive the hidden 

state of the previous layer as their input. 

 

Attention mechanism  

As aforementioned, due to the complex structure of the road network 

contributes, different OD pairs in the network exert different impacts on the target OD 

pair, and the weights of impact are highly complicated and dynamic over time. 

Although this spatial correlation can often be solved through graph convolutional 

networks by extending conventional convolutional networks to a graph-structured 

framework, it cannot consider global information to update states and it assigns equal 

weights to OD pairs. Through the attention mechanism, these problems can be solved. 

The attention mechanism is motivated by how we pay visual attention when reading a 

matrix or a sentence. Instead of receiving all information equally, it can assign different 

weights to each element or word. Thus, attention can improve the efficiency of feature 

exploration and information processing. Due to this, the attention mechanism has been 

widely and successfully applied to various domains such as natural language processing. 

The most popular structure of attention mechanism is developed by Vaswani et al. 

(2017). In the traffic region, it was mainly used to adaptively explore the most relevant 

temporal and spatial correlations based on traffic input data and then improve the 

estimation or prediction accuracy (Jia et al., 2019; Zhang et al., 2020; Zheng et al., 2020; 

Yin et al., 2021). In this paper, the core idea is to assign different weights to different 

ODs at each time interval. Up to now, plenty of attention mechanisms have been 

developed, among which self-attention is adapted most. In this paper, we also borrow 

the idea of self-attention to explore the spatial correlations between OD pairs. In detail, 

the attention function softly maps query, keys, and values to outputs, where the query, 

keys, values, and output are all vectors. For each input vector, three vectors, a query 

vector, a key vector, and a value vector, are created by multiplying the embedding input 

vector by three matrices. The three vectors are denoted by 𝑄, 𝐾, and 𝑉. Then the score 
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between the input vectors can be calculated by taking a scaled dot product of the query 

vector, the key vector, and the value vector.  

The flow of all OD pairs has complex and dynamic patterns, which may 

challenge the expression ability of the self-attention mechanism. To alleviate this, we 

apply a multi-head attention mechanism to achieve richer representational information. 

The multi-head attention mechanism obtains several different representations of 

(𝑄, 𝐾, 𝑉)  by mapping 𝑄 , 𝐾 , and 𝑉  through several parameter matrices 𝑊𝑄 , 

𝑊𝐾, 𝑊𝑉
 computes scaled dot product for each representation, and then concatenates 

the results.  

 

Convolutional neural network  

Although LSTM and attention mechanism have been applied to explore 

temporal features and spatial features, respectively. We aim to apply CNN to mine the 

data at the temporal and spatial level deeply and simultaneously to improve the 

estimation performance. CNN was first proposed in the 1960s. Hubel and Wiesel 

proposed the concept of “receptive field” (Hubel and Wiesel, 1962). Based on this, 

Fukushima and Miyake developed the “neocongnitron” in the 1980s (Fukushima and 

Miyake,1982). Later, Krizhevsky et al. (2012) developed a CNN model to classify 

images and achieved an outstanding performance. Since then, more and more attention 

was attracted to CNN. In the transportation region, CNN was applied to predict traffic 

flow (Duan et al., 2018, Bogaerts et al., 2020), traffic speed (Ma et al., 2017, Cao et al., 

2020) In general, the core part of the CNN structure is the convolutional layer and the 

pooling layer. Unlike traditional multi-layer perception in which the nodes in each layer 

are fully connected to nodes in the previous layer, convolutional layers are applied to 

connect neurons to a small region of the previous layer. Typically, multiple 

convolutional layers are usually applied to connect the input data. One layer can filter 

one feature. Therefore, multiple layers will filter multiple features. Thus, the high 

performance of CNN can be achieved. Such a process can be formulated as: 

 

 𝑦𝑐𝑜𝑛𝑣 = 𝜎(𝑊𝑐 ∗ 𝑋 + 𝑏) (30) 

 

where 𝑦𝑐𝑜𝑛𝑣  denotes the output of convolutional layer; 𝑊𝑐  denotes the weights; 𝑋 

denotes the input data which is the output of the attention mechanism layer; 𝑏 denotes 

the bias. 

Pooling layers are used to downsampling the convolution layers and decrease 

the dimensionality of each feature map to achieve spatial and scale invariance, lower 

computation, and control overfitting. In this paper, the pooling layer is not applied since 

the dimension of the input data is not large. Finally, the extracted traffic features through 

convolutional and pooling layers are concatenated into a dense vector and then 

transformed into model outputs through a fully connected layer.  

 

3.5 Simple toy example 

To better understand the estimation process, we use a simple example to explain. 

There is an arterial with 6 OD pairs. We assume that human-driven vehicles and CVs 
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travel along this arterial. Roadside units (RSU) are installed to collect the information 

CV broadcasts. And RSU constantly transfers the information to the central computer. 

At the end of the time period, the central computer will calculate the CV OD flow for 

each time interval during the time period. We assume a time of 30 minutes with intervals 

of 5 minutes and a CV market penetration rate of 20%. The collected CV OD flow is 

shown in Table 2. 

 

Table 2 Collected CV OD flow 

 0 – 5 min 5- 10 min 10- 15 

min 

15 – 

20min 

20- 25 

min 

25- 30 

min 

1 13 20 16 15 25 22 

2 12 22 20 18 22 20 

3 14 22 16 18 26 26 

4 12 24 18 20 22 24 

5 10 26 22 22 24 22 

6 12 24 22 24 30 26 

 

Since the CV market penetration rate is 20%, the roughly estimated OD flow 

(i.e., flawed OD matrix) can be calculated as shown in Table X. 

 

Table 3 Roughly estimated OD flow based on collected CV OD flow 

 0 – 5 min  5- 10 min 10- 15 

min 

15 – 

20min 

20- 25 

min 

25- 30 

min 

1 65 100 80 75 125 110 

2 60 110 100 90 110 100 

3 70 110 80 90 130 130 

4 60 120 90 100 110 120 

5 50 130 110 110 120 110 

6 60 120 110 120 150 130 

 

Then this flawed OD matrix is then fed into the developed GAN network. 

Through LSTM, pay attention to the network and CNN, generator will produce an 

output that will be fed into the discriminator. Based on the proposed loss function and 

GAN loss, the generator and discriminator interact to improve their performance. 

Finally, the performance of generator will be greatly improved, and then output the 

estimated OD flow. 
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4 Numerical Example 

4.1 Experimental Design 

To evaluate the effectiveness and to assess the potential for field applications of 

the proposed model, this study selects a segment on Redwood Road in Salt Lake City, 

Utah for study. Fig. 8 shows its geometric layout and its topology. This arterial consists 

of four intersections, 72 OD pairs. Due to the difficulties in collecting ground-truth OD 

flows from the real world, we used the simulation platform, VISSIM, to replicate the 

field traffic conditions. Since the simulation system is useful and meaningful only if it 

can faithfully reflect the realistic driving environment, the simulator is calibrated with 

field data. The field data is collected from the Automated Traffic Signal Performance 

Measures (ATSPM) system which uses Wavetronix SmaterSensor Matrix detectors 

located at traffic signal stop-bar to collect and restore lane-by-lane turning counts and 

uses Wavetronix SmartSensor Advance detectors located approximately 300 ft 

upstream of signalized intersections to provide total through traffic counts.  
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(a) Topology 

Fig. 8. The geometric layout of the studied site 

 

Based on the calibrated simulation arterial, simulation can be used to generate simulated 

scenarios for model evaluation. In the simulation, we define two types of vehicles, CV 

and regular vehicles. The trajectory of each CV can be collected through running the 

simulation and those CV trajectories can directly yield the CV OD flow. We use 160 

different seeds to run simulations to collect data. The simulation period for each seed 

is set as 3 hours. Then we further divide it into 18 identical intervals (each interval is 

10 minutes) to achieve CV OD flow based on trajectory data. The minimum time frame 

for collecting CV data depends on the arterial scale. To ensure the accuracy of the 
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proposed model, it is required that most paths along the arterial are traveled by at least 

one CV. That means for most OD pairs, the OD flow should be more than 0. To obtain 

more data for training, we set the time period as three hours, while one-hour time frame 

or less also works well technically.  

Considering the only available information is CV trajectory data, we conduct 

comparisons between the following models to evaluate the performance of the proposed 

model. Cases 2-5 are compared to fine-tune the structure of GAN. 

(1) Simple scaled model (SSM): The OD flow is estimated by scaling up the CV OD 

flow with the corresponding global CV market penetration rate. 

(2) GAN framework incorporating LSTM (GL): The generator and discriminator of the 

GAN network is the LSTM network. 

(3) GAN framework incorporating attention mechanism (GA): The generator and 

discriminator of the GAN network is the attention network. 

(4) GAN framework incorporating CNN (GC): The generator and discriminator of the 

GAN network is the CNN network. 

(5) GAN framework incorporating LSTM, attention mechanism, and CNN (GLAC): 

The generator and discriminator of the GAN network embed with LSTM, attention, 

and CNN. 

Three error indicators are used to measure the loss: mean absolute (MAE), mean 

absolute percentage error (MAPE), and mean square error (MSE). The smaller value of 

the metric means the better accuracy. The definitions of those performance indicators 

are summarized in the following equations. 

 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1  (31) 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁

𝑖=1
 (32) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|

𝑁

𝑖=1
 (33) 

 

where 𝑦𝑖 and 𝑦𝑖̂ denote the ground-truth value and estimated value, respectively; 𝑁 

denotes the number of samples. 

 

4.2 Result Analysis 

The training process of the GLAC model, with 500 iterations, costs 7780 

seconds on a workstation equipped with NVIDIA GeForce RTX 2080 Ti GPU. In the 

testing phase, the estimation time of the model is about 0.8 seconds. Note that the 

computational complexity of the model is largely influenced by deep neural network 

structures, such as the number of LSTM layers, attention heads, and convolutional 

layers. The influence of the number of nodes on the computational complexity is 

minimal as the number of nodes along the arterial only affects the size of the network 

input. Our developed GAN network includes LSTM, Attention mechanism, and CNN. 

The input size has much less influence on the computational complexity of the LSTM 

network and attention mechanism due to the fixed number of layers, neurons in each 
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layer, and heads. Before feeding into the CNN, the output of the attention mechanism 

will be reshaped into a matrix that has the same dimension as the input. Therefore, as 

the number of nodes increases, the computational complexity increases. This is because 

more nodes mean more paths along this arterial, leading to a larger input size. When we 

keep other hyperparameters as the same, such as kernel size, padding, stride, etc., a 

larger input size means more operations including multiplications and summations. The 

market penetration rate only affects the value of input data and therefore has no impact 

on the computational complexity. 

Table 4 summarizes the performance of those models in the same dataset when 

the CV market penetration rate is 25%. It can be observed that the GLAC model 

performs the best. It can yield 13.25 veh/10min of MSE, 33.69% of MAPE, and 2.73 

veh/10min of MAE for OD. Compared to the SSM, this model could bring a 45.51%, 

16.22%, and 29.27% improvement in those three metrics, respectively. This model also 

outperforms GL, GA, and GC in terms of those metrics. This demonstrates that 

proposed structure of GLAC can capture richer temporal and spatial information. 

Moreover, GL, GA, and GC indicate some improvements in those performance 

indicators compared with SSM. 

 

Table 4 Performance comparison of various models 

Model MAE MSE MAPE 

SSM 3.86 24.32 49.91% 

GL 3.39 20.54 38.08% 

GA 3.4 19.46 40.64% 

GC 3.4 19.42 40.61% 

GLAC 2.73 13.25 33.69% 

 

An extended comparison of those five models is shown in Table 5 and Fig. 9. 

Table 3 summarizes the aggregate performance of the five models for all test OD pairs. 

Comparison of the three measures regarding all statistical indicators indicates that the 

GLAC model outperforms all other models. Fig. 9 visualizes the distribution of the five 

measures of all test OD pairs and reiterates that the proposed GLAC model shows the 

best performance. 

 

Table 5 The overall performance of the five models 

Model 
Statistical 

indicator 
MAE MSE MAPE 

SSM 

Minimum 3.69 22.22 47.63% 

25th percentile 3.82 23.75 49.49% 

50th percentile 

(Median) 
3.88 24.36 50.10% 

75th percentile 3.94 25.08 50.81% 

Maximum 5.02 39.97 69.53% 

GL Minimum 2.75 13.63 34.76% 
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25th percentile 3.25 19.03 37.26% 

50th percentile 

(Median) 
3.43 20.81 38.32% 

75th percentile 3.57 22.44 39.32% 

Maximum 3.99 27.05 42.15% 

GA 

Minimum 3.12 16.17 38.14% 

25th percentile 3.28 18 39.65% 

50th percentile 

(Median) 
3.36 18.85 40.28% 

75th percentile 3.50 20.61 41.33% 

Maximum 4.17 28.41 54.99% 

GC 

Minimum 3.09 16.17 38.14% 

25th percentile 3.28 17.93 39.65% 

50th percentile 

(Median) 
3.36 18.85 40.32% 

75th percentile 3.49 20.56 51.52% 

Maximum 4.16 28.35 55.02% 

GLAC 

Minimum 2.35 10.22 31.53% 

25th percentile 2.64 12.40 33.25% 

50th percentile 

(Median) 
2.75 13.24 33.82% 

75th percentile 2.85 14.43 34.45% 

Maximum 3.23 17.80 38.56% 

 

 

 
(a)  MAE  
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(b)  MAPE  

 

 

(c)  MSE  

Fig. 9. Violin plots comparing the overall performance of the five models 

 

To evaluate the performance of the proposed GLAC model better and further in 

estimating OD flows, we select a set of OD pairs with the best 3 and worst 3 

performance (in MAPE sense) to compare the estimated and actual OD flow (samples 

of one week), as shown in Fig. 9. Among them, Fig 10 (a), (b), and (c) are time-

dependent OD flows with the best performance. Fig 10 (d), (e), (f) are those with worst 

performance. All those figures indicate that the proposed GLAC model can yield 

sufficient reliable estimates. Although for the condition with the worst performance, 

this model still produces acceptable estimates compared with the scaled model.  

 

(a) Time-dependent flows for OD pair 1-6 (best) 
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(b) Time-dependent flows for OD pair 18-11(best) 

 
(c) Time-dependent flows for OD pair 1-6 (best) 

 

(d) Time-dependent flows for OD pair 15-2 (worst) 

 
(e) Time-dependent flows for OD pair 15-17 (worst) 
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(f) Time-dependent flows for OD pair 15-13 (worst) 

Fig. 10. Time-dependent flows for OD pairs with the best and worst performance 

 

In the design of a multi-path progression traffic signal system, it is essential to 

determine the path-flow patterns. Therefore, we then check the reliability of the 

proposed model for identifying path-flow patterns. For each time interval, we firstly 

sort those paths in the descending order based on the estimated volumes and we can 

obtain an initial path sequence. The path sequence will later be updated based on the 

actual volumes. Then, we can access how many critical paths can be identified 

accurately by the proposed model and count the number of time intervals the proposed 

model performs successfully. An accuracy ratio can be calculated by dividing the 

number of successes and the total number of time interval. 

 

Fig. 11 shows the ratio of the proposed model for determining the five critical paths 

within each time interval during those days. It can be observed that the ratio that the 

proposed model identifies all five critical paths is 66.32%, and the ratio that it identifies 

three and four of the five actual critical paths are 22.24% and 6.38%, respectively. The 

number of critical paths is determined by our developed model according to the 

geometry of the arterial. The model shows that when the number of critical paths is 5, 

this arterial can have the best coordination performance. Therefore, this indicates that 

the proposed model could produce a satisfying estimation of path-flow patterns with 

correct rankings. 
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Fig. 11. Ratio of identified critical paths from the proposed model 

 

4.3 Sensitivity Analysis 

In this section, we conduct sensitivity analysis to evaluate the effectiveness of 

the proposed model in estimating OD flows with various CV market penetration rates, 

which range from 10% to 25%. The SSM is conducted using those market penetration 

rates for comparison. The results are shown in Table 6. As the CV market penetration 

rate rises, all three performance indicators for both the scaled model and GLAC 

improve. This is because a higher CV market penetration rate will result in input data 

with less flaw. Table 4 shows that when the CV penetration rate is 15%, the MAPE of 

GLAC can be about 40%, which indicates reliable estimation results. 

 

Table 6 Sensitivity analysis on various market penetration rates 

Metric Model 
Market penetration rate 

10% 15% 20% 25% 

MAPE 
SSM 86.44% 67.54% 57.26% 49.91% 

GLAC 45.30% 41.51% 36.73% 33.69% 

MSE 
SSM 70.55 45 32.13 24.32 

GLAC 29.83 24.87 19 13.25 

MAE 
SSM 6.7 5.3 4.44 3.86 

GLAC 4.26 3.97 3.29 2.73 

 

An extended comparison of the two models under different market penetration 

rates is shown via violin plots (Fig. 12), which visualize the distribution of the three 

measures over all test OD pairs and indicate that the GLAC model shows superior 
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performance. 

 

 

(a) MAE 

 

 

(b) MSE 

 

 

(c) MAPE 

Fig. 12. The performance metric distributions with various market penetration 

rates 
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5 Conclusion 

The real-time arterial OD flow is critical for traffic control, but the ground-truth 

is difficult to observe. To address this issue, we treated the OD flow simply estimated 

from the CV OD as a flawed matrix, and applied a masking scheme to process the 

flawed matrix to create a self-learning method incorporating the 𝒥 − 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 

function. To capture the spatio-temporal correlation of the OD flows, we customized a 

nonparametric model based on GAN to estimate the time-dependent OD flows along a 

signalized arterial, and trained the customized GAN with the proposed self-supervised 

learning method. The proposed GAN consists of three sub-networks: LSTM to learn 

the evolution pattern from a temporal perspective, attention mechanism to capture 

spatial features, and CNN to bridge both temporal and spatial features. During the 

training process, we only used information from collected CV trajectory as training data.  

To evaluate the effectiveness of the proposed model and the self-supervised 

learning method, a real-world signalized arterial is selected, set up, and calibrated in 

VISSIM, based on an arterial in Salt Lake City, Utah, for generating CV trajectory. 

Experiments indicate promising results. When the CV market penetration rate is low to 

25%, the proposed model GLAC model can yield 13.25 veh/10min of RMSE, 33.69% 

of MAPE, and 2.73 veh/10min of MAE for OD. Compared to the SSM, this model 

could bring a 45.51%, 16.22%, and 29.27% improvement in MAE, RMSE, MAPE, 

respectively. The results also demonstrated that our proposed model could produce a 

satisfying estimation of path-flow patterns with correct rankings. More specifically, the 

ratio that the proposed model identifies all five critical paths is 66.32%, and the ratios 

that it identifies three and four of the five actual critical paths are 22.24% and 6.38%, 

respectively. The numerical study implies a reliable estimation accuracy for arterial OD 

flow. This could provide more efficient arterial management, such as multi-path signal 

coordination which could improve the vehicle operation efficiency when traveling 

along the arterial. 

Moreover, sensitivity analysis also demonstrates the promising performance is 

achieved by the proposed model with various CV market penetration rates. The 

sensitivity analysis implies that with the market penetration rates increases, the 

performance of the proposed model improves. In addition, to obtain an acceptable 

estimation accuracy by applying this method. The minimum CV market penetration 

rate should be about 15%. 

In this study, the proposed model was only applied to signalized arterials. Future 

work could focus on validating the proposed method with field data on the urban road 

network. Because traffic conditions and patterns in the urban road network are more 

complex. For example, there is only one path between each OD pair along the arterial, 

we do not need to make any hypothesis on users’ path choice behavior. In the network-

wide OD flow estimation, there are several paths for travelers to choose between each 

OD and it is needed to capture travelers’ path choice behaviors.  Future research 

should be conducted to further test the effectiveness and efficiency of the proposed 

model and method. Using CV data only to estimate network OD flow will be beneficial 

for the traffic management, such as route guidance, congestion management. 
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