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Abstract

For alleviating arterial congestion, most control strategies provide progression for
through and turning traffic. A prerequisite input is the arterial origin-destination (OD)
flow pattern, which can be estimated based on connected vehicle (CV) trajectories.
However, the existing estimation methods require the ground-truth historical OD flow,
which is difficult to obtain. To address this issue, this paper develops a method to
estimate real-time OD flow along a signalized arterial without ground truth. A model
based on the Generative Adversarial Network (GAN) network is proposed, which
incorporates long short-term memory (LSTM)), attention mechanism, and convolutional
neural network (CNN) to capture the temporal and spatial correlations between OD
flow patterns. This model is trained with the proposed self-supervised without historical
OD flow. The proposed model is extensively tested based on a realistic signalized
arterial, and the results indicate sufficient accuracy for progression control.
Keywords: Signalized arterial, Origin-destination flow, trajectory, Generative
Adversarial Network, self-supervised learning

1. Introduction

Origin-Destination (OD) flow estimation on arterials over space and time can achieve
insights into traffic patterns and assists traffic management. For example, the
conventional two-way progression frequently causes an overflow at turning bays,
resulting in network gridlock. Considering this situation, a multi-path signal
progression control system is investigated (Yang et al., 2015; Arsava et al., 2016; Wang
et al., 2021). Some studies have demonstrated that providing progression to multiple
path with heavy traffic volume can improve the arterial control efficiency and vehicle
operational efficiency (Yang et al., 2015; Arsava et al., 2016;). In addition, Wang et al.
(2021) proposed a traffic signal control system which incorporated adaptive traffic
signal control at the intersection level and multi-path progression control at the corridor
level. Their study has demonstrated that signal coordination was provided not only for
through traffic but also other critical paths, which could improve the performance of
the network. One of the key questions is how to identify real-time critical paths which
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are defined as paths with high traffic flows. Therefore, the most fundamental and
critical information for such a control system is the time-varying distribution of the
origin-destination (OD) flow along the signalized arterial. To illustrate the arterial OD
flow, Fig. 1 shows an arterial layout in Chupei, Taiwan, including three intersections,
which connect the urban road network and a congested freeway. The numbers near the
arrows represent the traffic volume of the movement. It can be observed that turning
volumes from-or-to the on-ramps and off-ramps are heavy.
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Fig. 1. An illustrative example of an arterial segment in Chupei, Taiwan (Yang et
al., 2015)

Very limited studies have been conducted on estimating arterial OD flow
patterns along signalized arterials. Conventionally, the arterial OD flow is estimated
based on traffic counts according to several conservation laws. Specifically, the link
flows should be the summation of all path flows traveling through the link (Chang and
Wu, 1994; Lin, 2006), which can only be applied to a simple transportation network
(Rao et al., 2018). Lou and Yin (2010) proposed a framework to dynamically estimate
ODs along a signalized arterial by using link counts. They decomposed this problem
into two sub-problems at the intersection level and the corridor level. They firstly
inferred the turning movements at each intersection with link counts and then treated
them as observations. However, their study did not consider the impact of the signal
timing plan exerted on time-varying link flows, which consequently results in low
accuracy. Yang and Chang (2015) proposed three models for estimating signalized
arterial OD flow. The first model was based on the relationship between link counts
and OD. The second model focused on modeling the interrelationships between OD
flow patterns and intersection turning counts. Considering the impacts of traffic signal
timing plans, the third model, incorporating time-varying queue length information, is
proposed to increase the estimation accuracy. However, computing efficiency and
tractability are challenging due to a large number of unknown parameters.

With the increasing data availability, data-driven OD flow estimation has been
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investigated to address this problem, such as license plate recognition (LPR) data
(Castillo et al., 2013; Chiou et al., 2011; Sun et al., 2011, Mo et al., 2020), automatic
vehicle identification (AVI) data (Van Der Zijpp, 1997; Asakura et al., 2000; Dixon
and Rilett, 2002; Antoniou et al., 2004; Dixon and Rilett, 2005; Zhou and Mahmassani,
2006; Chen et al., 2011; Hadavi and Shafahi, 2016; Cao et al., 2021), cellphone data
(Sohn and Kim, 2008; Igbal et al., 2014), and probe vehicle data (Matsumoto et 1., 2005;
Yamamoto et al., 2009; Asmundsdottir et al., 2010; Baek et al., 2010; Cao et al., 2013;
Yang et al., 2017;). The basic idea of those methods is to boost estimation accuracy by
supplementing information which is unavailable before. Despite the lack of arterial OD
flow estimation, the previous studies on flow estimation on the road network can be
categorized as maximum likelihood models (Geva et al., 1983; Irving et al., 1986;
Cascetta and Nguyen, 1988; Spiess, 1987); Generalized least squares (GLS) model
(Bell, 1983; Cascetta, 1984; Bell, 1991; Cascetta et al., 1993; Sherali and Park, 2001;
Cascetta et al., 2013), Bayesian-based model (Geva et al., 1983; Maher, 1983; Hazelton,
2008; Perrakis et al., 2012; Wang and Mirchandani, 2013; Castillo et al., 2008b, 2014),
state-space models (Okutani and Stephanedes, 1984; Ashok and Ben-Akiva, 2002;
Zhou and Mahmassani, 2007; Alibabai and Mahmassani, 2008; Lu et al., 2015), and
simple neural networks (Kikuchi et al., 1993; Yang et al., 1998; Gong, 1998; Mussone
et al., 2010; Padinjarapat & Mathew, 2013; Remya and Mathew, 2013; Zhao et al.,
2017). However, these methods are developed for network OD estimation. Most of
those studies are traffic-assignment-based methods, which are based on several
assumptions. For example, it assumed traffic information is available to all traffic users
and they always select the shortest path, which is not in consistent with the reality.
Besides, there is only one path for each OD pair along the arterial. Therefore, those
existing methods may not be applicable for the signalized arterial OD estimation.

To leverage trajectory data in OD flow estimation, Ou et al. (2019) proposed a
framework to dynamically estimate arterial OD flow with prior information, which is
barely applicable. Huang et al. (2019) constructed a deep learning model based on
Recurrent Neural Network to learn the evolution pattern of OD flow. This method
requires that all links in the road network are equipped with camera detectors to capture
vehicle information, which may result in high installation and maintenance costs.
Considering the large dimensional difference between the observed traffic information
and OD flow to be estimated, Tang et al. (2021) proposed a convolution-based deep
neural network to learn the relationship between features extracted from AVI-based
information and OD flow. This study applied transfer learning to mitigate the obstacle
in obtaining ground-truth OD flow information, but still needs some prior OD flow
information. In sum, three critical issues of the state-of-art data-driven methods lie in
the literature: (a) Prior information and historical arterial OD flow are required to obtain
acceptable results; (b) Recognition and identification systems are required to get traffic
information (e.g., link counts), resulting in high installation and maintenance costs; (c)
The malfunctions of detectors will contribute to serious estimation inaccuracies.

To address these issues, this paper first proposes a novel framework for learning
real-time OD flow estimation without ground truth. A self-supervised learning method
is proposed to leverage partial trajectory data from connected vehicle (CV) to estimate
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the OD flow of both CV and regular vehicles. More specifically, we firstly obtain a
partial OD matrix simply by aggregating the collected CV data. Then an original matrix
is obtained by dividing the partial OD matrix by the global market penetration rate and
such matrix is considered to be flawed. Second, this study customizes a generative
adversarial network (GAN) model to repair the OD matrix. This study integrates the
long short-term memory (LSTM), attention mechanism, and convolutional neural
network (CNN) into the customized Generative Adversarial Network (GAN) model to
capture both temporal and spatial patterns of OD flow. Third, the proposed self-
supervised learning method trains the customized GAN for estimating arterial OD.

The remainder of the paper is organized as follows. Section 2 states the problem
of signalized arterial OD flow estimation. Section 3 describes the training method
without ground truth data and introduces the model to estimate OD flow. Section 4
conducts an experimental study and presents the results. The last section summarizes
the conclusions and recommendations for future research directions.

2. Problem Statement

This research considers a signalized arterial with several intersections,
represented by G = (N,L), where N denotes the node set, specified by N =
{1,2,...,n}; n represents the node where two roads intersect (i.e., the red nodes in Fig.
1) or the node that vehicles enter to and exit from the intersection (i.e., the blue nodes
in Fig. 2). L denotes the link set in which each component is the link between two
adjacent nodes, specified by L = {1,2,...1}. Blue nodes in Fig. 2 are considered as
origin nodes and destination nodes. By connecting each origin node and destination
node, a set of OD pairs, represented by I, can be constructed, [ = {1,2,...i}. Let T
denote the analysis period and dividing it into k uniform intervals, the set of time
intervals is denoted by K = {1,2,..., k}.
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Fig. 2. A simplified signalized arterial structure

Based on the above notation definition, the traffic pattern along a signalized
arterial during the analysis period can be represented by an OD matrix, M, as follows:
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where x¥ denotes the number of vehicles traveling between OD pair i within time
interval k. The OD matrix M is the output of this problem.

This research assumes two types of vehicles, regular vehicles and CV, travel
along this signalized arterial. Since CV broadcasts real-time locations, it is easy to
obtain the number of CV traveling between each OD pair, namely CV OD matrix,
within each time interval. The CV OD matrix M, is the input of this problem:
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To further illustrate the problem, Fig. 3 shows the signalized arterial with 6
origins, 6 destinations, and 30 OD pairs. The path between each OD pair is composed
of several links: (a) only partial paths have common links. For example, path 1 shares
link 1 with path 3 while they do not have common links with path 2; (b) The number of
shared links is different for paths, e.g., path 1 and path 3 only have one shared link, link
1, but path 1 and path 4 have two shared links, link 1 and link 7. For those paths with
shared links, the turning directions of vehicles on shared links are uncertain, resulting
in different path flows. This may contribute to complicated dependencies between
different OD flows. Such relationships are highly time-dependent.
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Fig. 3. An illustrative case of a signalized arterial



3. Methodology

3.1 Notation

To help the understanding of the proposed model, the used notations are listed
in the following table.
Table 1. Notations

Arterial
M Number of intersections
G Signalized arterial structure
N Node set
L Link set
I Set of OD pairs
T Analysis period
K Set of time interval
M OD matrix of all vehicles
xk Number of vehicles traveling between OD pair i within time
interval k
Me OD matrix of CV
XK Number of CV traveling between OD pair i within time
interval k
General deep neural network
X; Inputs of deep neural network
Vi Ground truth data
fo Parametric vector
n Number of training samples
Lg Empirical risk
J-invariant function
mr Original OD samples
M€ Ground truth OD matrix
b Flaw
m Dimensions of each matrix
J A given partition of dimensions of a matrix
] Sub-dimensions of J
X; Values of a matrix on dimension J
fu); Values of a function on dimension |
L(f) Self-supervised loss function
J¢ Complement of |
fo Denoising function
Jo Classical function
h(u) Function replacing the values on the location |
q(u) Neighborhood of an element in a matrix
L w Random value of an element in a matrix
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r ‘ Width of the surrounding window of an element in a matrix
Specific deep neural network structure
P(.),Q() Certain distribution
r(),q(.) Probability function
G Generator of GAN
D Discriminator of GAN
T Input gate of LSTM
Tr Forget gate of LSTM
To Output gate of LSTM
a; Candidate state of LSTM
he State of step t in LSTM
Xt Input of step t in LSTM
Wi, We, W,, We Weights in LSTM
b, bs, by, b, Bias in LSTM
o,T Activation functions
Q Query vector
K Key vector
|4 Value vector
we, wkwVv Weights of attention mechanism
dj Dimension of the key vectors of attention mechanism
Veonwv Output of convolutional layer
b Bias in convolutional neural network

3.2 Novel Framework of the Self-supervised Learning Model

This research aims to mine the real-time trajectory data from M to estimate
time-dependent OD flows of a signalized arterial (e.g., elements in M). We can view
this estimation problem from a probabilistic perspective. Considering the spatio-
temporal relationship, each OD, x{‘, can be viewed as a random variable depending on
the collected CV OD flow of all OD pairs within historical time intervals and the
conditional probability P(x/|x.}:x.¥7*) follows a certain distribution. Here, we use
xcg: xczn"l to indicate the historical CV records for all OD pairs. Then probabilistic
inference methods can be adapted to solve the unknown distribution. Conventionally,
the unknown distribution can be obtained by a model Q(xF |xci: xci.‘_l, 6) controlled
by several parameters 6 and then let this model approximate the real data distribution
P(xf|xct:x.%71), as shown in Eq. (3).

QU |xct: x k=1, 0)~P(xf|xct: x k7t) (3)

The difference between these two distributions is usually measured by
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951):
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Then the optimal parameters can be obtained by minimizing the KL divergence,
as shown in Eq. (5).

0" = argmein KL(q(xﬂxc%: xc?_l)”p(xﬂxc%: xcﬁc_l' )) Q)

There are two challenges to solving the transformed divergence minimization
problem. First, the concrete formulations of the two distributions are unknown. It is
difficult to measure the divergence between them theoretically (Park et al., 2008; Sun
et al., 2004). Second, previous methods require ground-truth data to get meaningful
numerical output. To tackle the two problems, we customize GAN, which can train a
generative machine that is associated with an implicit experimental distribution to
capture the temporal and spatial relationship of ODs, and propose a self-supervised
training model to train the GAN without ground truth.

Conventional GANs are under the supervised learning framework, where the
ground-truth outputs are required. However, the historical OD flow is not accessible in
this problem due to the low penetration rate of CV. To address this issue, this study aims
to propose a self-supervised learning technique to training GAN without ground truth.
The architecture of GAN is shown in Fig. 4 and the detailed network structures of the
generator and discriminator are introduced in the following part. Fig. 4 shows the
overall framework of arterial OD flow estimation. CVs that equipped with on-board
units (OBU) can transmit vehicle trajectory information to roadside unit (RSU) in real-
time. CV OD flow information can be achieved by processing trajectory data within
each time interval. Based on this and considering the features of OD flows, we design
two different models as the generator and the discriminator to capture the temporal and
spatial correlations of OD flows. General approaches to train the generator and
discriminator are based on fully observed OD flows. However, the only available
information we can leverage is CV OD flow. Hence, a self-supervised training method
only based on the CV OD flow is proposed.
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Fig. 4. Pipeline of the proposed self-supervised learning with no ground truth



3.3 Learning Without Ground Truth Method

Unlike traditional methods that explicit a priori statistical modeling of
estimation, recent advances in deep neural networks have sparked significant interest
in mapping flawed observations to the unobserved variables. This happens by training
a regression model with a large number of pairs (x;,y;) of inputs x; and ground truth
data y; and minimizing the empirical risk

argmin 3" L(fo (), %) (6)

where fy is a parametric vector, and n is the number of training samples.
The empirical risk can typically be defined as the type of mean square error
(MSE) as follows:

Le = = X (fo () — y)? (7

Apart from MSE, other optimization functions, such as mean absolute error
(MAE), mean bias error (MBE), can also be applied. Regardless of which function,
ground truth data is essential. However, it is difficult to access the ground truth data
(i.e., ODs along the signalized arterial) in this paper. Therefore, it is challenging to
estimate without ground truth data by using the typical empirical risk. In this paper, we
propose a new empirical risk.

To better elaborate our model, we treat the inputs to the model, the original OD
matrix estimated from trajectories, as a matrix and each component (i.e., each estimated
path flow) is estimated by dividing the CV OD flow by global CV market penetration
rate (e.g., 20%). Let M/ represents the original OD matrix and we name it flawed
matrix. M¢ represents the ground truth OD matrix and we name it clear matrix. Then
a flawed matrix can be represented by

M =M°+b ®)
where b denotes flaw. M, M/ € R™, where m = h* w * ¢ depends on the spatial
and channel dimensions.

Since the flaw matrix is obtained by dividing the CV OD flow matrix by the
global market penetration rate, thus, we furthermore assume the flaw to be zero-mean
E(b) =0 )

Then

E(M]) = mf (10)



Eq (9) and Eq (10) mean that if we obtain multiple flawed matrices of the same
true matrix based on different flaws, the result shall reach the true matrix by averaging
those flawed matrices.

Here, we borrow the concept of | — invariant function (Baston and Royer,
2019), as follows:

Definition 1. Consider a clean matrix M€ and its flawed measurement M/, M€, M/ €
R™,where m = h *w * ¢ depends on the spatial and channel dimensions. For a given
partition J = {1,2,3,...,m} of the dimensions of a matrix u € R™. Let J € J. A

function f:R™ — R™ is ] — invariant if f(M/) ; does not depend on the value

of x;. where f(Mf)] and x; denote values of f(M") and u on J.Foreach J € J,

if the function is | — invariant, then f is J — invariant.

We use Fig. 5 to explain the specific meaning of J — invariant in the
application of OD flow estimation. Fig. 5 is an example original OD matrix x.J is a
subset of the matrix, and f is a J — invariant function. It has the property that the
value of f(x) does not dependent on the value of x restricted to J, x/.

DY
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Fig. 5. An example OD flow matrix
Then we propose the self-supervised loss function over J — invariant
function f as follows:

LF)=ElfM)—-M|? (11)

Based on this, consider a flawed matrix M/ € R™ and its ground truth M¢ €
R™. Assume the flaw is zero mean and independent on the input data, the actual optimal
estimator through any class of J — invariant functions to estimate the true value
from flawed data alone by minimizing the self-supervised loss function L(f).

Eys I f(MT) = MT 117= Epr e | fF(MT) = M€ 124 Epyr e | MT — M€ |12~
2 < f(MF) = MS, f(M) — M€ > (12)
Since f is J— invariant , then f(M') ; and M/ ; are independent

variables for all J € J. Then the third term can be reduced to
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< f(M7) = M, f(MF) = M >= Eye < Epypi [f (M) = M€, Eyyp [M/ — M€] >

= Enc(Eprppe[f (M7) = MEIE 1 e [M) — M€]) (13)
Because the noise is zero mean, then
Eme(Eppripc[f (MT) = MEIE7,pc[MT — M€]) = 0 (14)
Then

Eys I f(MT) = M7 112= Epyr e | fF(MT) = MC 1124 Epyr e 1| M7 — ME |2

(15)

In the above equation, the first term is ground truth loss. The second term is
noise variance, which is in particular independent on f. Therefore, when f is J —
invariant, minimizing the self-supervised loss E,r Il f(M') — M7 ||? indirectly

minimizes the supervised loss Eyr e Il f(M7) — M€ ||,

According to definition 1, the output of f(x); inthose J coordinates does not
depend on its input in those coordinates. Intuitively, J — invariant means f
only uses the complement of J, J¢, to repair x;. Thus, any J — invariant function
can be treated as a set of functions f;: R/ 5 R/. Then, the self-supervised loss
function can be changed to

L(f) =g EN (M) ) — M) 112 (16)
The J — invariant function f; minimizing Eq. (12) satisfies
f7 (M), = E(M)|M jc) (17)

foreach J € J.

This means that the optimal J — invariant estimator for M in dimensions
] refers to their expected value conditional on M’ in the dimensions out of J. We aim
to apply the aforementioned methods to obtain the optimal parameter 6 for the
denoising function fy, the denoising function requires to be J — invariant function.
Then the optimal parameters can be achieved by minimizing the proposed self-
supervised loss function. Therefore, we propose a masking scheme to modify a classical
repair to J — invariant function. Specifically, J is regarded as a subset sampled
from the flawed matrix and the masking scheme to create a blind spot. Then the [J —
invariant function is used to predict the values of the blind spot. Generally, let gg

11



be the classical repair; h(M’) be the function replacing the values on the location J.
Then the J — invariant function fy can be defined by

fo(MP))i= go(1) * R(MP) + 1c + MT), (18)
where 1; and 1c are the indicator functions of the set / and J C. This means the
element-wise multiplication of 1, with a matrix will be masked and the element-wise
multiplication of 1,c retain element values.

To achieve this, this study proposes a masking scheme named random element
selection (RES), which estimates a local distribution q(M’) in the neighborhood of an
element and then replaces that element with a sample from the distribution. More
specifically, we replace the value of element [ with a random element value w from
its 7 *r surrounding window. Note that if the value of element h is also used,
information about this element may leak, resulting in a function which is not J —
invariant. Therefore, we replace it with a random neighbor when estimating the local
distribution.

The self-supervised loss function can be written as

Eyr I f(RPS (M), — M7, 112 (19)

According to the above stated, minimizing the loss function in Eq. (19) satisfies
fr(M7)p, = E s [M7,|RPS,(M7))] (20)

Let gy (u) represents the vector u with the value u, replaced by uy. Then
frM, = EMfEk[thIQhk(Mf)] (21)

Eq. (3.21) can be converted to

Fr (M), = = S EIMY | one(MP)] = = Efup|onn (M)] +

T T2

= Tien E[Mj|one (M) (22)

Since we replace the value h with its random neighbor, we can regard this
value as the element belong to —h which represents the complement of value h. Then

frM7)y = ZE[MS W [MT_] = (1= ) f; (M), (23)

3.4 Customized Generative Adversarial Networks

GAN was first proposed by Goodfellow et al. (2014) and was introduced to
solve traffic problems, such as traffic state estimation (Liang et al., 2018) and traffic
data imputation (Chen et al., 2019; Zhang et al., 2021). Due to the flexible framework,
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GAN is capable of incorporating different structures to capture traffic spatio-temporal
features. Besides, unlike other neural networks which requires a deterministic input to
achieve meaningful outputs, GAN can be trained while interacting only indirectly with
the data distribution by sampling from it (Goodfellow et al, 2014). The core idea of
GAN is derived from a two-player game model, where one generator G and one
discriminator D are involved in the game. The generator aims to learn the distribution
of real data and then generates fake data with random flawed variables z. The
discriminator attempts to determine whether the input data is real data or generated data.
If the input data is real, D is supposed to classify it to be 1. Otherwise, it should be
classified to be 0. To achieve the equilibrium, the two participants require to
sequentially learn and optimize themselves to boost their generation capability and
discrimination capability, respectively. The performance of G and D can be gradually
improved by such an adversarial optimization process. Eventually, when D cannot
correctly identify if the input data is generated by G or is real, we can say that the
generator G has captured the distribution of real data and can be used to estimate. The
above adversarial learning process can be formulated as the following min-max
function (Vaswani et al., 2017):

mGinmng(D,G) = Exepyarqao[108D ()] + E;op, () [log(1 — D(G(2))] (24)

Note that G and D can be represented by any differentiable function. Thus, it
is a question of whether GAN can capture the implicit distribution of the arterial OD.
It has been demonstrated that the optimal discriminator enables the divergence between
the distribution of samples from the generator and the distribution of real data to be
minimal, as shown in Eq. (25). Thus, the implicit distributions of the arterial OD flow
can be captured by GAN.

* Paata(X)
V(0°,6) = 21082 + | Pua(Dog S e
* fx Pq(x)log (pdam(ic);fga /2
= —210g2 + KL(puara ()| 2222 (x)2+ P | KL (pell pd“m("); Pe (),
= —2log2 + 2JS(paata (¥)||ps (%)) (3.25)

Then, the critical problem is how to design an appropriate structure of the
generator and the discriminator. The proposed structures of generator and discriminator
are presented in the following subsection.

3.4.1 Structures of the Generator and the Discriminator

The generator is designed to create realistic arterial OD flow from random repair.
ODs are correlated temporally and spatially. More specifically, the arterial OD flow
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within a time interval may correlate with the last several time intervals because the path
between each OD pair is composed of several links and each link flow comes from the
upstream link flows at the last moment and distributes to the downstream link at next
moment. Moreover, OD flows also show spatial correlations because paths between all
OD pairs along a signalized arterial may intertwine together and interact with each other
in a complicated way. The framework of generator is shown in Fig. 6., the input data is
processed by the structure of LSTM, attention mechanism, and CNN, the generator can
generate outputs.
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Fig. 6. The structure of the customized generator of GAN

The discriminator is designed to classify the true and the fake generated arterial
OD matrix. The generated outputs from generator will be fed into the discriminator for
training. The structure of the discriminator is the same as the generator, which means it
also consists of LSTM, attention mechanism, and CNN. The difference between them
is the output and the inner components of each deep neural network, such as layers and
neurons, may vary.
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Fig. 7. The structure of the customized discriminator of GAN
3.4.2 Structures of neural network components

Long short-term memory

LSTM is frequently applied in time-dependent traffic problems (Hochreiter
and Schmidhuber, 1997; Ma et al., 2015). We integrate LSTM in GAN to capture
nonlinear temporal correlations to a large extent. LSTM can model highly nonlinear
dynamic patterns and encapsulate the information of previous time periods to learn
long time dependencies for sequential data. For each LSTM cell, the computation
process can be formulated as follows:
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Tit = o(Wilhe—1, x:] + by) (25)

T,E = 0(Welhe-1, x¢] + bp) (26)

Tg = o(Wy[h¢—1,x¢] + by) (27)

a; = tanh(W[tr * hy_y, x¢] + bc) (28)
he = 76 * (T4 * @ + Tf * ap_q) (29)

where 7;, 77, T, represents the input gate, forget gate, and output gate, respectively;
a; is the candidate cell state which is used to update the cell state at the current time
step;, h; is the state at current step; x; is the input at the current time step; W;, Wy,
W,, W, are weights; b;, by, b,, b. denote biases; o and 7 are activation
functions.

In this study, we stack multiple layers to capture more temporal features of OD
flows from a higher level. The first LSTM layer receives the estimated OD flow
according to the collected CV data. Then the following LSTM layers receive the hidden
state of the previous layer as their input.

Attention mechanism

As aforementioned, due to the complex structure of the road network
contributes, different OD pairs in the network exert different impacts on the target OD
pair, and the weights of impact are highly complicated and dynamic over time.
Although this spatial correlation can often be solved through graph convolutional
networks by extending conventional convolutional networks to a graph-structured
framework, it cannot consider global information to update states and it assigns equal
weights to OD pairs. Through the attention mechanism, these problems can be solved.
The attention mechanism is motivated by how we pay visual attention when reading a
matrix or a sentence. Instead of receiving all information equally, it can assign different
weights to each element or word. Thus, attention can improve the efficiency of feature
exploration and information processing. Due to this, the attention mechanism has been
widely and successfully applied to various domains such as natural language processing.
The most popular structure of attention mechanism is developed by Vaswani et al.
(2017). In the traffic region, it was mainly used to adaptively explore the most relevant
temporal and spatial correlations based on traffic input data and then improve the
estimation or prediction accuracy (Jia et al., 2019; Zhang et al., 2020; Zheng et al., 2020;
Yin et al., 2021). In this paper, the core idea is to assign different weights to different
ODs at each time interval. Up to now, plenty of attention mechanisms have been
developed, among which self-attention is adapted most. In this paper, we also borrow
the idea of self-attention to explore the spatial correlations between OD pairs. In detail,
the attention function softly maps query, keys, and values to outputs, where the query,
keys, values, and output are all vectors. For each input vector, three vectors, a query
vector, a key vector, and a value vector, are created by multiplying the embedding input
vector by three matrices. The three vectors are denoted by Q, K, and V. Then the score
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between the input vectors can be calculated by taking a scaled dot product of the query
vector, the key vector, and the value vector.

The flow of all OD pairs has complex and dynamic patterns, which may
challenge the expression ability of the self-attention mechanism. To alleviate this, we
apply a multi-head attention mechanism to achieve richer representational information.
The multi-head attention mechanism obtains several different representations of
(Q,K,V) by mapping Q, K, and V through several parameter matrices W9,

WX, WY computes scaled dot product for each representation, and then concatenates
the results.

Convolutional neural network

Although LSTM and attention mechanism have been applied to explore
temporal features and spatial features, respectively. We aim to apply CNN to mine the
data at the temporal and spatial level deeply and simultaneously to improve the
estimation performance. CNN was first proposed in the 1960s. Hubel and Wiesel
proposed the concept of “receptive field” (Hubel and Wiesel, 1962). Based on this,
Fukushima and Miyake developed the “neocongnitron” in the 1980s (Fukushima and
Miyake,1982). Later, Krizhevsky et al. (2012) developed a CNN model to classify
images and achieved an outstanding performance. Since then, more and more attention
was attracted to CNN. In the transportation region, CNN was applied to predict traffic
flow (Duan et al., 2018, Bogaerts et al., 2020), traffic speed (Ma et al., 2017, Cao et al.,
2020) In general, the core part of the CNN structure is the convolutional layer and the
pooling layer. Unlike traditional multi-layer perception in which the nodes in each layer
are fully connected to nodes in the previous layer, convolutional layers are applied to
connect neurons to a small region of the previous layer. Typically, multiple
convolutional layers are usually applied to connect the input data. One layer can filter
one feature. Therefore, multiple layers will filter multiple features. Thus, the high
performance of CNN can be achieved. Such a process can be formulated as:

Yeonw = 0(W, * X + b) (30)

where y.,n, denotes the output of convolutional layer; W, denotes the weights; X
denotes the input data which is the output of the attention mechanism layer; b denotes
the bias.

Pooling layers are used to downsampling the convolution layers and decrease
the dimensionality of each feature map to achieve spatial and scale invariance, lower
computation, and control overfitting. In this paper, the pooling layer is not applied since
the dimension of the input data is not large. Finally, the extracted traffic features through
convolutional and pooling layers are concatenated into a dense vector and then
transformed into model outputs through a fully connected layer.

3.5 Simple toy example
To better understand the estimation process, we use a simple example to explain.
There is an arterial with 6 OD pairs. We assume that human-driven vehicles and CVs
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travel along this arterial. Roadside units (RSU) are installed to collect the information
CV broadcasts. And RSU constantly transfers the information to the central computer.
At the end of the time period, the central computer will calculate the CV OD flow for
each time interval during the time period. We assume a time of 30 minutes with intervals
of 5 minutes and a CV market penetration rate of 20%. The collected CV OD flow is
shown in Table 2.

Table 2 Collected CV OD flow

0—5min | 5- 10 min | 10- 15 15— 20- 25 25-30

min 20min min min

1 13 20 16 15 25 22

2 12 22 20 18 22 20

3 14 22 16 18 26 26

4 12 24 18 20 22 24

5 10 26 22 22 24 22

6 12 24 22 24 30 26

Since the CV market penetration rate is 20%, the roughly estimated OD flow
(i.e., flawed OD matrix) can be calculated as shown in Table X.

Table 3 Roughly estimated OD flow based on collected CV OD flow

0—5min | 5- 10 min | 10- 15|15 —120- 25125 30

min 20min min min
1 65 100 80 75 125 110
2 60 110 100 90 110 100
3 70 110 80 90 130 130
4 60 120 90 100 110 120
5 50 130 110 110 120 110
6 60 120 110 120 150 130

Then this flawed OD matrix is then fed into the developed GAN network.
Through LSTM, pay attention to the network and CNN, generator will produce an
output that will be fed into the discriminator. Based on the proposed loss function and
GAN loss, the generator and discriminator interact to improve their performance.
Finally, the performance of generator will be greatly improved, and then output the
estimated OD flow.
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4 Numerical Example

4.1 Experimental Design

To evaluate the effectiveness and to assess the potential for field applications of
the proposed model, this study selects a segment on Redwood Road in Salt Lake City,
Utah for study. Fig. 8 shows its geometric layout and its topology. This arterial consists
of four intersections, 72 OD pairs. Due to the difficulties in collecting ground-truth OD
flows from the real world, we used the simulation platform, VISSIM, to replicate the
field traffic conditions. Since the simulation system is useful and meaningful only if it
can faithfully reflect the realistic driving environment, the simulator is calibrated with
field data. The field data is collected from the Automated Traffic Signal Performance
Measures (ATSPM) system which uses Wavetronix SmaterSensor Matrix detectors
located at traffic signal stop-bar to collect and restore lane-by-lane turning counts and
uses Wavetronix SmartSensor Advance detectors located approximately 300 ft
upstream of signalized intersections to provide total through traffic counts.

Redwood Rd

ﬂ'i.'g:{

3100 S

™ N
Lu L. (a) Topology

Fig. 8. The geometric layout of the studied site

Based on the calibrated simulation arterial, simulation can be used to generate simulated
scenarios for model evaluation. In the simulation, we define two types of vehicles, CV
and regular vehicles. The trajectory of each CV can be collected through running the
simulation and those CV trajectories can directly yield the CV OD flow. We use 160
different seeds to run simulations to collect data. The simulation period for each seed
is set as 3 hours. Then we further divide it into 18 identical intervals (each interval is
10 minutes) to achieve CV OD flow based on trajectory data. The minimum time frame
for collecting CV data depends on the arterial scale. To ensure the accuracy of the
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proposed model, it is required that most paths along the arterial are traveled by at least
one CV. That means for most OD pairs, the OD flow should be more than 0. To obtain
more data for training, we set the time period as three hours, while one-hour time frame
or less also works well technically.

Considering the only available information is CV trajectory data, we conduct
comparisons between the following models to evaluate the performance of the proposed
model. Cases 2-5 are compared to fine-tune the structure of GAN.

(1) Simple scaled model (SSM): The OD flow is estimated by scaling up the CV OD
flow with the corresponding global CV market penetration rate.

(2) GAN framework incorporating LSTM (GL): The generator and discriminator of the
GAN network is the LSTM network.

(3) GAN framework incorporating attention mechanism (GA): The generator and
discriminator of the GAN network is the attention network.

(4) GAN framework incorporating CNN (GC): The generator and discriminator of the
GAN network is the CNN network.

(5) GAN framework incorporating LSTM, attention mechanism, and CNN (GLAC):
The generator and discriminator of the GAN network embed with LSTM, attention,
and CNN.

Three error indicators are used to measure the loss: mean absolute (MAE), mean
absolute percentage error (MAPE), and mean square error (MSE). The smaller value of
the metric means the better accuracy. The definitions of those performance indicators
are summarized in the following equations.

MAE = ~%¥, |y; - 5| 31)
1 N ~

MSE == 3 (i = %) (32)
N .

MAPE = %zizl |y‘y—iy‘| (33)

where y; and ¥, denote the ground-truth value and estimated value, respectively; N
denotes the number of samples.

4.2 Result Analysis

The training process of the GLAC model, with 500 iterations, costs 7780
seconds on a workstation equipped with NVIDIA GeForce RTX 2080 Ti GPU. In the
testing phase, the estimation time of the model is about 0.8 seconds. Note that the
computational complexity of the model is largely influenced by deep neural network
structures, such as the number of LSTM layers, attention heads, and convolutional
layers. The influence of the number of nodes on the computational complexity is
minimal as the number of nodes along the arterial only affects the size of the network
input. Our developed GAN network includes LSTM, Attention mechanism, and CNN.
The input size has much less influence on the computational complexity of the LSTM

network and attention mechanism due to the fixed number of layers, neurons in each
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layer, and heads. Before feeding into the CNN, the output of the attention mechanism
will be reshaped into a matrix that has the same dimension as the input. Therefore, as
the number of nodes increases, the computational complexity increases. This is because
more nodes mean more paths along this arterial, leading to a larger input size. When we
keep other hyperparameters as the same, such as kernel size, padding, stride, etc., a
larger input size means more operations including multiplications and summations. The
market penetration rate only affects the value of input data and therefore has no impact
on the computational complexity.

Table 4 summarizes the performance of those models in the same dataset when
the CV market penetration rate is 25%. It can be observed that the GLAC model
performs the best. It can yield 13.25 veh/10min of MSE, 33.69% of MAPE, and 2.73
veh/10min of MAE for OD. Compared to the SSM, this model could bring a 45.51%,
16.22%, and 29.27% improvement in those three metrics, respectively. This model also
outperforms GL, GA, and GC in terms of those metrics. This demonstrates that
proposed structure of GLAC can capture richer temporal and spatial information.
Moreover, GL, GA, and GC indicate some improvements in those performance
indicators compared with SSM.

Table 4 Performance comparison of various models

Model MAE MSE MAPE
SSM 3.86 24.32 49.91%
GL 3.39 20.54 38.08%
GA 3.4 19.46 40.64%
GC 3.4 19.42 40.61%
GLAC 2.73 13.25 33.69%

An extended comparison of those five models is shown in Table 5 and Fig. 9.
Table 3 summarizes the aggregate performance of the five models for all test OD pairs.
Comparison of the three measures regarding all statistical indicators indicates that the
GLAC model outperforms all other models. Fig. 9 visualizes the distribution of the five
measures of all test OD pairs and reiterates that the proposed GLAC model shows the
best performance.

Table S The overall performance of the five models

Model Statistical MAE MSE MAPE
indicator
Minimum 3.69 22.22 47.63%
25th percentile 3.82 23.75 49.49%
50th percentile
SSM (Median) 3.88 24.36 50.10%
75th percentile 3.94 25.08 50.81%
Maximum 5.02 39.97 69.53%
GL Minimum 2.75 13.63 34.76%
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25th percentile 3.25 19.03 37.26%
50th percentile
(Median) 3.43 20.81 38.32%
75th percentile 3.57 22.44 39.32%
Maximum 3.99 27.05 42.15%
Minimum 3.12 16.17 38.14%
25" percentile 3.28 18 39.65%
50 percentile
GA (Median) 3.36 18.85 40.28%
75th percentile 3.50 20.61 41.33%
Maximum 4.17 28.41 54.99%
Minimum 3.09 16.17 38.14%
25" percentile 3.28 17.93 39.65%
50™ percentile
GC (Median) 3.36 18.85 40.32%
75th percentile 3.49 20.56 51.52%
Maximum 4.16 28.35 55.02%
Minimum 2.35 10.22 31.53%
25" percentile 2.64 12.40 33.25%
50 percentile
GLAC (Median) 2.75 13.24 33.82%
75th percentile 2.85 14.43 34.45%
Maximum 3.23 17.80 38.56%

GLAC
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Fig. 9. Violin plots comparing the overall performance of the five models

To evaluate the performance of the proposed GLAC model better and further in
estimating OD flows, we select a set of OD pairs with the best 3 and worst 3
performance (in MAPE sense) to compare the estimated and actual OD flow (samples
of one week), as shown in Fig. 9. Among them, Fig 10 (a), (b), and (c) are time-
dependent OD flows with the best performance. Fig 10 (d), (e), (f) are those with worst
performance. All those figures indicate that the proposed GLAC model can yield
sufficient reliable estimates. Although for the condition with the worst performance,
this model still produces acceptable estimates compared with the scaled model.
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In the design of a multi-path progression traffic signal system, it is essential to
determine the path-flow patterns. Therefore, we then check the reliability of the
proposed model for identifying path-flow patterns. For each time interval, we firstly
sort those paths in the descending order based on the estimated volumes and we can
obtain an initial path sequence. The path sequence will later be updated based on the
actual volumes. Then, we can access how many critical paths can be identified
accurately by the proposed model and count the number of time intervals the proposed
model performs successfully. An accuracy ratio can be calculated by dividing the
number of successes and the total number of time interval.

Fig. 11 shows the ratio of the proposed model for determining the five critical paths
within each time interval during those days. It can be observed that the ratio that the
proposed model identifies all five critical paths is 66.32%, and the ratio that it identifies
three and four of the five actual critical paths are 22.24% and 6.38%, respectively. The
number of critical paths is determined by our developed model according to the
geometry of the arterial. The model shows that when the number of critical paths is 5,
this arterial can have the best coordination performance. Therefore, this indicates that
the proposed model could produce a satisfying estimation of path-flow patterns with
correct rankings.
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4.3 Sensitivity Analysis

In this section, we conduct sensitivity analysis to evaluate the effectiveness of
the proposed model in estimating OD flows with various CV market penetration rates,
which range from 10% to 25%. The SSM is conducted using those market penetration
rates for comparison. The results are shown in Table 6. As the CV market penetration
rate rises, all three performance indicators for both the scaled model and GLAC
improve. This is because a higher CV market penetration rate will result in input data
with less flaw. Table 4 shows that when the CV penetration rate is 15%, the MAPE of
GLAC can be about 40%, which indicates reliable estimation results.

Table 6 Sensitivity analysis on various market penetration rates

: Market penetration rate

Metrie Model 10% 15% 20% 25%
MAPE SSM 86.44% 67.54% 57.26% 49.91%
GLAC 45.30% 41.51% 36.73% 33.69%

MSE SSM 70.55 45 32.13 24.32

GLAC 29.83 24.87 19 13.25

SSM 6.7 53 4.44 3.86

MAE GLAC 4.26 3.97 3.29 2.73

An extended comparison of the two models under different market penetration
rates is shown via violin plots (Fig. 12), which visualize the distribution of the three
measures over all test OD pairs and indicate that the GLAC model shows superior
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5 Conclusion

The real-time arterial OD flow is critical for traffic control, but the ground-truth
is difficult to observe. To address this issue, we treated the OD flow simply estimated
from the CV OD as a flawed matrix, and applied a masking scheme to process the
flawed matrix to create a self-learning method incorporating the J — invariant
function. To capture the spatio-temporal correlation of the OD flows, we customized a
nonparametric model based on GAN to estimate the time-dependent OD flows along a
signalized arterial, and trained the customized GAN with the proposed self-supervised
learning method. The proposed GAN consists of three sub-networks: LSTM to learn
the evolution pattern from a temporal perspective, attention mechanism to capture
spatial features, and CNN to bridge both temporal and spatial features. During the
training process, we only used information from collected CV trajectory as training data.

To evaluate the effectiveness of the proposed model and the self-supervised
learning method, a real-world signalized arterial is selected, set up, and calibrated in
VISSIM, based on an arterial in Salt Lake City, Utah, for generating CV trajectory.
Experiments indicate promising results. When the CV market penetration rate is low to
25%, the proposed model GLAC model can yield 13.25 veh/10min of RMSE, 33.69%
of MAPE, and 2.73 veh/10min of MAE for OD. Compared to the SSM, this model
could bring a 45.51%, 16.22%, and 29.27% improvement in MAE, RMSE, MAPE,
respectively. The results also demonstrated that our proposed model could produce a
satisfying estimation of path-flow patterns with correct rankings. More specifically, the
ratio that the proposed model identifies all five critical paths is 66.32%, and the ratios
that it identifies three and four of the five actual critical paths are 22.24% and 6.38%,
respectively. The numerical study implies a reliable estimation accuracy for arterial OD
flow. This could provide more efficient arterial management, such as multi-path signal
coordination which could improve the vehicle operation efficiency when traveling
along the arterial.

Moreover, sensitivity analysis also demonstrates the promising performance is
achieved by the proposed model with various CV market penetration rates. The
sensitivity analysis implies that with the market penetration rates increases, the
performance of the proposed model improves. In addition, to obtain an acceptable
estimation accuracy by applying this method. The minimum CV market penetration
rate should be about 15%.

In this study, the proposed model was only applied to signalized arterials. Future
work could focus on validating the proposed method with field data on the urban road
network. Because traffic conditions and patterns in the urban road network are more
complex. For example, there is only one path between each OD pair along the arterial,
we do not need to make any hypothesis on users’ path choice behavior. In the network-
wide OD flow estimation, there are several paths for travelers to choose between each
OD and it is needed to capture travelers’ path choice behaviors. Future research
should be conducted to further test the effectiveness and efficiency of the proposed
model and method. Using CV data only to estimate network OD flow will be beneficial
for the traffic management, such as route guidance, congestion management.
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