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Distributed and Distribution-Robust Meta

Reinforcement Learning (D?-RMRL) for Data
Pre-Storage and Routing in Cube Satellite Networks

Ye Hu"”, Xiaodong Wang

Abstract—In this paper, the problem of data pre-storage and
routing in dynamic, resource-constrained cube satellite networks
is studied. In such a network, each cube satellite delivers requested
data to user clusters under its coverage. A group of ground gate-
ways will route and pre-store certain data to the satellites, such that
the ground users can be directly served with the pre-stored data.
This pre-storage and routing design problem is formulated as a de-
centralized Markov decision process (Dec-MDP) in which we seek
to find the optimal strategy that maximizes the pre-store hit rate,
i.e., the fraction of users being directly served with the pre-stored
data. To obtain the optimal strategy, a distributed distribution-
robust meta reinforcement learning (D2-RMRL) algorithm is pro-
posed that consists of three key ingredients: value-decomposition
for achieving the global optimum in distributed setting with mini-
mum communication overhead, meta learning to obtain the optimal
initial to reduce the training time under dynamic conditions, and
pre-training to further speed up the meta training procedure. Sim-
ulation results show that, using the proposed value decomposition
and meta training techniques, the satellite networks can achieve a
31.8% improvement of the pre-store hits and a 40.7 % improvement
of the convergence speed, compared to a baseline reinforcement
learning algorithm. Moreover, the use of the proposed pre-training
mechanism helps to shorten the meta-learning procedure by up to
43.7%.

Index Terms—Actor-critic, cube satellite network, data pre-
storage, meta learning, multi-agent reinforcement learning,
routing, value decomposition.

I. INTRODUCTION

QUARE-SHAPED miniature cube satellites operating on
low earth orbit (LEO) can provide an endurable, reliable,
and accessible data service to users in wireless disadvantaged
areas. Compared to traditional large satellites on mid earth
and geosynchronous orbit, cube satellites are more affordable,
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flexible, and can provide wireless service with speeds of up
to hundreds of megabits per second [1] and [2]. However,
deploying cube satellites for low latency information access is
still an important open problem, because satellites have to serve
unforeseeable data requests with their limited available on-board
resources. In particular, it is challenging for cube satellites to
serve unpredictable, diverse data needs from users around the
globe using only limited contact chances in the network.

A. Related Works and Their Limitations

Prior works [3], [4], [5] studied a number of problems re-
lated to routing design in resource constrained cube satellite
networks. The work in [3] studied the problem of contact plan
design in LEO satellite networks while jointly considering the
satellites’ on-board energy capacity and their stochastic solar
energy infeed. The authors in [4] designed a contact plan for a
resource constrained LEO satellite network to deliver the satel-
lites’ data to a fixed ground base station. In [5], the problem of
scalable battery aware contact plan design in mega LEO satellite
constellations was treated using mixed integer linear program-
ing. Despite their promising results, these existing on-demand
routing solutions [3], [4], [5] started routing data only after that
data is requested, which required extra processing time within
the satellite communication system. To reduce such processing
time, some works [6], [7], [8] applied in-network caching in
satellite networks. The authors in [6] proposed a cache-enabled
satellite-UAV-vehicle system for energy efficient data delivery
services, and formulated the cache placement problem as an
optimization problem. In [7], the problem of cache placement
within information-centric satellite networks was investigated
based on a profile of users’ interests in different topics. The work
in [8] proposed a stochastic model to predict content popularity
to help the satellite system feed caches in advance. However,
these works only considered known, fixed service requests.
Indeed, the optimization-based solutions in [3], [4], [5], [6], [7],
[8] may not be suitable for the design of contact plan or cache
placement in real-world, highly dynamic satellite networks with
dynamic, unpredictable user requests.

More recently, there has been significant interest in realizing
dynamic resilient satellite networking by employing machine
learning tools [9], [10], [11], [12], [13], [14], [15]. In particular,
the work in [9] employed a machine learning method to predict
the future service needs in satellite communication networks.
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The authors in [10] developed a centralized machine learning
algorithm that enables real-time estimation of the environment,
specifically, the ever-changing rain intensity on broadband satel-
lite communication links. In [11], a deep reinforcement learning
(DRL) solution was developed for intelligent satellite communi-
cations within the national aeronautics and space administration
(NASA)’s space communication and navigation testbed. Yet
when managing operations on different satellites, a centralized
solution such as the one in [11] can cause significant communica-
tion overhead, especially for high latency satellite systems. Thus,
distributed solutions are more desirable [16]. In this regard, the
authors in [12] developed a distributed hierarchical classification
solution using deep learning to intelligently classify the dynamic
Internet traffic flows on satellites with low overhead. The work
in [13] employed a distributed extreme learning machine solu-
tion to route data among LEO satellites based on the forecasted
dynamic traffic density. In [14], the authors developed a multi
agent reinforcement learning (MARL) solution that enables
multiple satellites to cooperatively manage their spectrum use.

Even though the machine learning based solutions developed
in [9], [10], [11], [12], [13], [14] are capable of accomplishing
certain networking tasks with unknown service needs or un-
known communication environments, the developed solutions
were mostly designed in a way to overfit to the target tasks.
In particular, in the learning solutions of [9], [10], [11], [12],
[13], [14], the models were trained to serve specific data needs
within specific communication environment. When serving new
and unseen data needs, the models must be retrained, which
incurs excessive computational costs. As the data needs change
constantly in practical applications, the satellite networks must
spent a great amount of time and energy on training the machine
learning based networking solutions.

To reduce such cost for dynamic resilient operations, the
notion of meta learning was introduced to generalize the ma-
chine learning solutions for a family of tasks that specified by
a certain distribution [17]. In particular, a meta-learning model
was trained over sample tasks from this distribution that serves as
the initial during the regular model training for a specific unseen
task, such that the regular training can be accomplished within
a small number of epochs [15], [17], [18]. In this paper, we
will employ such meta learning technique to reduce the training
cost. However, the satellite communication system is deployed
to serve users around the globe, whose needs are different,
dynamic and may follow diverse distributions, which motivates
generalized meta-learning solutions that can efficiently obtain
meta initials for a large number of tasks distributions. We will
develop such a cost effective solution for the satellite networks.

B. Contributions

The main contribution of this paper is a novel meta reinforce-
ment learning framework for dynamic resilient pre-storage and
routing design in cube satellite networks. While prior works such
as [6], [7], [8] used in-network caching to provide on-demand
data service with satellite networks, they have not considered
the resource constraints and environmental dynamics within
the network. In contrast, here, we propose a dynamic resilient
solution tailored to the cube satellite system whose goal is to

optimize the service hit rate under unpredictable user requests
when accounting for the resource budget of each satellite. Our
key contributions include:

® We develop a novel framework to pre-store and route data

in cube satellite networks. In particular, we consider a cube
satellite communication system in which the satellites must
serve ground users with dynamic and unpredictable needs.
Within this system, the ground gateways will selectively
store data to satellites, by either directly uploading data
to the target satellites, or by routing data through neigh-
boring satellites. Subsequently, the satellites can provide
data service to the target users once the data is requested.
To achieve a high pre-store hit rate, a policy needs to be
designed for determining what data should be stored on
each satellite and how the data is routed from the gateway
to the destination satellite using the limited contact chances
in the system. We formulate this pre-storage and routing
design problem as a decentralized Markov decision process
(Dec-MDP), and seek to find the optimal pre-storage and
routing strategy which maximizes the fraction of user
requests being directly served with the pre-stored data.

® We then propose a distributed distribution-robust meta re-

inforcement learning (D?-RMRL) algorithm that is shown
to reach a high pre-store hit rate of dynamic service needs,
with low communication overhead and computation cost.
In particular, to reduces the communication overhead in
distributed learning, we use the value decomposition tech-
nique to reinforce the team benefit on each data flow
without exchanging their action choices and environmental
observation. To reduce the learning cost in the system, we
use the meta training mechanism to initialize the learning
procedure based on the prior information on possible data
needs at different service occasions. Moreover, we use
the pre-training technique to implement a shortened meta
training procedure that obtains the meta initial models for
a large number of service distributions.

Simulation results show that the proposed value decomposi-
tion technique can lead to a 31.8% improvement of the pre-store
rate achieved by the distributed reinforcement learning algo-
rithm. The meta learning technique can find learning initials
that results in a convergence speedup by 40.7%. Furthermore,
the meta learning procedure is shortened by up to 43.7% with
the proposed meta pre-training scheme under multiple service
distributions.

The rest of this paper is organized as follows. The system
model and problem formulation are described in Section II.
In Section III, the proposed algorithm, including the value-
decomposition-based actor-critic reinforce learning algorithm,
the meta training algorithm, and the pre-training algorithm are
presented. In Section IV, simulation results are analyzed. Fi-
nally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cube satellite network (CSN) that consists of Ng
LEO cube satellites, and Ng distributed ground gateways. At
each time slot, the satellites serve Ny user clusters, each of
which represents a group of users that falls within the pre-store
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Fig. 1. Topology of a cube satellite network (CSN).

hits of a satellite, as shown in Fig. 1. Meanwhile, at each time
slot, a gateway or a user cluster can only connect to one satellite.
There are totally Ng content files available in the system. At each
time slot, each user cluster requests its associated satellite to
deliver some content files. At this point, if the requested files are
stored on the associated satellite already, users in the cluster can
directly download them. Otherwise, the satellite must seek the
requested files from neighboring satellites or ground gateways,
such that the content requests can be served, although with higher
latency. Thus, the CSN system will pre-store the content files of
interest on the satellites to serve user requests with minimum
latency.

In the considered system, the gateways determine the content
files that should be pre-stored on the satellites, and optimize
routing path of these content files. Note that, when pre-storage
content files to the satellites, the gateways do not know which
files will be requested by the user clusters. This is not only
because that the user requests happen in the future, but also
the users’ interests on content files are highly dynamic (i.e.,
the interests follow unknown distributions, which also change
over time and user locations [19]). On the other hand, due
to the limited storage capacity, the satellites cannot store all
content files that are of probable interest to the users. Thus, the
gateways must selectively pre-store content files on satellites.
Yet, the orbiting satellites may not be able to receive all content
files of interests either, as they only have limited chances to
communicate with the gateways. Then, the gateways should
store some content files on the neighboring satellites that can
be offloaded to the target satellites as in Fig. 1. That is, when
there are enough chances for the gateways and the target satellite
to communicate, the gateways can directly store all files of
interest on the target satellites. Otherwise, the gateways store
some of the content files of interest on the target satellite, and
the rest on the neighboring satellites while specifying how they
are routed to the target satellite. In summary, the gateways in
the CSN system determine how the content files are pre-stored
on and routed to the satellites, based on the time-evolving CSN
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topology, network resource limitations, and user needs. Next, the
transmission opportunities with storage limitations in the CSN
system are modeled as an time-unrolled directed graph. Then,
the problem formulation is given.

A. Data Transmission Graph

We use a time-unrolled graph to characterize the transmission
graph evolution and storage limitations within the CSN system.
As shown in Fig. 2, the ¢-th layer of this graph represents the
transmission opportunities at time slot ¢. The vertices at the ¢-
th layer, i.e., U(t) U S(t) U G(t), correspond to the replicas of
user clusters, satellites and gateways at time slot ¢. In particular,
u€U(t), s€ S(t) and g € G(t) denote, respectively, a user
cluster, satellite and gateway in the CSN system at time slot ¢.

An edge in the graph connects a node at layer ¢ to another
node at layer ¢ + 1, representing either transmitting or stor-
ing a file during time slot ¢. In particular, the set of edges
ES(t)={g € G(t) = g € G(t + 1)} implies that a file that re-
sides in a gateway g at the beginning of slot ¢, will remain
in this gateway during slot ¢, and therefore, it remains in the
same gateway g, at the beginning of slot ¢+ 1. Similarly,
the set of edges £3(t) = {s € S(t) — s € S(t + 1)} denotes
that a file stays in a satellite s during time slot ¢. There are
three types of file transmissions during time slot ¢: the set
of edges £95(t) = {g € G(t) — s € S(t + 1)} denotes that a
file is transmitted from gateway ¢ to satellite s; the set of
edges £55(t) = {s € S(t) — s’ € S(t + 1)} models that a file
is transmitted from satellite s to a neighboring satellite s; while
the set ESY(¢) = {s € S(t) — u € U(t + 1)} models that a file
is transmitted from satellite s to user cluster u. Note that, the
communication opportunities in the CSN system are constrained
by the communication range, and transponders on the satellites.
Thus, a device can only communicate with a target satellite
when it falls within this satellite’s communication range, and
the target satellite is not transmitting or receiving content files
at current time slot ¢. In the considered CSN system, the cube
satellite constellation can provide globally seamless coverage,
which means that, at any time slot ¢, for any satellite s € S(t),
there always exists one and only one incoming edge g — s from
a gateway g € G(t — 1), as well as one and only one outgoing
edge s — w to an user cluster u € U(t + 1). An inter-satellite
communication edge s — s’ exists only when the two satellites,
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s € S(t) and s’ € S(t + 1), orbit within each other’s commu-
nication range. There is no edge linking two different gateways,
two different user clusters, or a gateway and a user cluster.
Moreover, associated with each satellite s € S(¢) there is a
variable storage capacity I's, which denotes the number of files
that are stored in s at the current time slot. Since each satellite
has limited storage, we have 0 < I'y; < I'jax. Meanwhile, at any
time slot, if a node is the source or destination of more than one
edges, only one of these edges can be active. Also, notice that
the data rates of the communication edges are determined by
the surrounding propagation environment [20], and we assume
that a communication edge guarantees the completion of a file
transmission within one time slot.

B. Pre-Store Hit

Given that the goal of the CSN system is to reduce service
latency by pre-storage interesting content files on the satellites,
the system performance is evaluated by the pre-store hit, which
is defined as the number of user content requests being directly
served with the files pre-stored on satellites. In particular, a user
cluster can be served with content files on satellites only if its
content files of interest are already pre-stored on its associated
satellite, by the time it requests these content files. For each user
cluster u, define an Ng x 1 vector @, (t) = [zL(t),..., 2N (1)),
where

zf

_ |1, if wrequests file f at the beginning of time slot ¢
~ 10, otherwise

)

We assume that if a file f is transmitted to a satellite s in time
slot ¢, then it is stored in s, at the beginning of time slot ¢ 4 1.
For each satellite s, define an Ng x 1vectory, = [yL, ..., yF],
where y/ denotes the “age” of file f at s, i.e.,

ks
S OO,

with k = 1,2, .... Then, the total hits at time slot ¢ is

Np
MO=> > D Vudmeryizey O

f=1ucl(t) seS(t),
s—uegSU(t)

if f is stored on s at the beginning of time slot k
if f is not stored on s,

2

with 1, =1 when x is true, otherwise, 1, = 0. Thus,
1 (2d (t)=1,y] o0} = 1 represents that user cluster v can directly
download content file f from satellite s, at slot ¢. The pre-storage
and routing process in the considered CSN system aims at the
highest number of pre-store hits, under the network topology
evolution and resource limitations. This pre-storage and routing
process is modeled in the next subsection.

C. MDP Modeling for a Single Content File

In our system model, the gateways make plans on how each
content file is pre-stored and routed within a CSN system. In
particular, only the content files that are deemed of interest to

the ground users should be pre-stored on the target satellites,
or neighboring satellites, using the limited communication and
storage opportunities in the system. However, the resulting pre-
store hits is partially determined by the gateways’ decisions,
and partially determined by the dynamic, and unforeseeable user
requests in the system. The routing process of a given content
file f can be formulated as a Markov decision process (MDP)
(QF, AT, RT)[21]. We next describe the state space 2/, the
action space A/ and the reward function R/ .

1) State: Q/ is the state space of content file f. The state is
apair o/ (t) = [v, ], where for a regular state v € G(t) |JS(t),
and z € {0, 1, 0}. Specifically, v denotes the location of file f at
time t. If v = g € G(¢), i.e., file f is in gateway g, then z = ().
On the other hand, if v = s € §(¢), i.e., file f is in satellite
s at time ¢, then = = x{(¢) indicates whether or not file f is
requested by the user cluster u currently connected to s, i.e.,
{s = u} € E5Y(t). Moreover, there is an initial state denoted as
[I,0] and a terminal state denoted as [T, ()]. A file always starts
from the initial state and stays there until it is picked by a gate-
way, and it terminates when the satellite that stores it decides to
discard it.

2) Action: Af is the action space of content file f. The
possible actions a/(t) corresponding to the state of(¢), and
the resulting state o/ (¢ + 1) are as follows; and we denote the
corresponding probabilistic policy as 7/ (a” (t)|of (t)).

e For the initial state o/ (¢) = [l, 0], there are two possible

actions:

a) af(t) = {l — 1}, i.e., the file stays at the initial state,
and hence o/ (t + 1) = [I,0].

b) af(t) = {l = g} € G(t),i.e., the file is picked by gate-
way ¢, and hence o/ (t + 1) = [g, 0)].

e For a regular state o/ (t) = [g, (], there are two possible

actions:

a) af(t) = {g — g} € £9(t), i.e., file f stays in gateway
g, leading to the next state o/ (¢ + 1) = [g, 0].

b) af(t) = {g — s} € E95(¢), i.e., file f is transmitted
from gateway g to satellite s, leading to the next state
ol (t+1)=[s,zf(t +1)], with {s = u} € GSY(t +
1). As part of this action, we record the time file f is
stored in satellite s with y;‘ + t + 1, and update the oc-
cupancy of s as 'y <— I's 4+ 1. Now, if 'y = I'jux, 1.€.,
the storage capacity is reached, then the oldest file on s
is discarded, i.e., y/ + oo, where f = argminscry/,
and 'y < I'y — 1. Moreover, the file f reaches the ter-
minal state, i.e., o/ (t + 1) = [T, ()]. Hence, the action

af (t) of file f can affect the state o/ (¢ + 1) of another
file f
e For a regular state o/ () = [s, 2], there are three possible
actions:

a) If x = 1, 1.e., file f is requested by user cluster u that is
connected to s, then a/ (t) = {s — u} € E3Y(¢), ie.,
file f is transmitted from satellite s to user cluster
u, leading to the next state o/ (t + 1) = [s, zf (¢ + 1)],
with {s — u} € ESY(t + 1).

b) Ifz = 0, then a” (t) canbe {s — s} € E3(t),i.e., file f
stays in satellite s, leading to the next state o/ (t + 1) =
[s,2f(t + 1)], with {s — u} € ESU(t + 1).
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¢) Orif z =0, a/(t) can also be {s — s’} € £55(t), i.e.,
file f is transmitted from satellite s to its neighbor-
ing satellite s', leading to the next state o/ (t + 1) =
[s, 2L (t +1)], with {8’ — u} € ESU(t +1). As part
of this action, we record the time file f is stored in
satellite s’ with y < t+1, and set y! + oo, since
file f is moved out of satellite s. We update the occu-
pancy of s as I'y < I'y — 1, and the occupancy of s’
as 'y + I'y + 1. Now, if I'y = [, i.e., the storage
capacity is reached, then the oldest file on s’ is dis-
carded, i.e., yf, < 00, where f = argmingcr yf,, and
Iy Ty - 1. Moreover, the file f reaches the terminal
state, i.e., of (t + 1) = [T, 0].

e TFor the terminal state o/ (t) = [T, ()], no action is needed

and the state remains terminal.

3) Reward: The reward function R/ (t) = R/ (af (1), 0/ (t))
evaluates action choices a/ (t) € A/ at different states o/ () €
Q7. Since the system performance metric is the total number of
hits in (3), we get a unit reward at time ¢ corresponding to a hit
if and only if the action is a file transmission from a satellite to
its user cluster, i.e., RY(t) = 1,7 (1)—(s,1}-

D. Problem Formulation

The routing process in the CSN system considers multiple
content files. The routing decisions on one file f can directly
affect those on some other content files, since the files compete
for the communication or storage resources of the satellites.
Thus, the routing of multiple content files should be coopera-
tively arranged by the gateways. To model these interdependent
decision making processes, we formulate a Dec-MDP defined
by (F,Q, A, R)[21], where

e F={1,..., Ng} is the set of content files to be routed in
the CSN system.
e 0=0'x x QVF is the state space. The state of the

multiple content routing process at time slot ¢ is captured

as o (t) = (al(t),...,oNe(t)).

e AcC A x --- x AMFisthe action space. The action of the
multiple content routing process at time slot ¢ is captured as
a(t) = (a'(t),...,a™"(t)). Note that, due to the possible
conflicts in the system, e.g., multiple routing processes
compete for one communication or storage chance, the
action space A is a strict subset of A" x ... x AN, and
captures only the viable action choices under resource
limitations. In particular, at time slot ¢, if every file f
follows its own local policy 7/ (a/ (t)|o7 (t)), then for any
give file f, its action a’ () € A/ might be in conflict with
the action a/’ (t) € A/ of another file " based on its local
policy 7/ (af (t)|o/ (t)), as follows.

— For the initial state o/ () = [I, ], the two possible ac-
tions | — l and | — ¢ are not in conflict with the action
of any other file.

— For a regular state o/ (t) = [g, 0],

a) Action af(t) = {g — g} € EG(¢) is not in conflict
with others.

b) Actiona’(t) = {g — s} € £95(¢)isin conflict with
actions a/ (t) of another file f' that take gateway g
or satellite s as the transmitter or receiver, i.e.,

{9 — s} €£5(), ifal(t) = [g.0]
{9 = s} € €5(), it o <t> —g,/0
af'(t) = { {s' = s} € E5(1), if o' (t) =[5, 0]
{s = &'} € ES(t), ifol(t) =[s,0]
{s —u} €&V, ifal'(t) =[s,1]
“)

forall f' € F\{f}.
— Foraregularstate o/ (t) = [s, 1], the only possible a/ (t) =
{s — u} € &5Y(t)isin conflict with the following actions:

{9 — s} € E5(1), ifal'(t) = [9,0]
of (1) = {s' — s} € E55(t), ifof'(t) =[5, 0)
{s = &'} € (1), ifal'(t)=[s,0]
{s —u} €&V, ifal'(t) = [s,1]
(&)
forall f' € F\{f}.

— For a regular state o/ (t) = [s,0],
a) Actiona’(t) = {s — s} € £5(¢) is notin conflict with
others.
b) Action af(t) = {s — s'} € £55(¢), is in conflict with
the following actions:
{g — s} € £95(¢), if ol (t) = [g, 0]
{g— s} e&®), ifal(t)=g,0]
{s" — s} € E5(t), if ol (t) = [s," 0]
{s" — '} € E5(t), if ol (t) = [s," 0]

o (1) = {s — 5"} € E5(t), ifol'(t) =[5,0]
{s' = 5"} € E5(t), ifol (t) = [s, 0]
{s = u} € &Y(), ifol(t) = [s,1]
{s' —u} € &V(t), ifal'(t) = [s,1]
(6)

forall /' € F/{f}.

* R(a(t),o(t))=2scr BT ()= ter Lios (n)=lses(t).1])
is the reward function that evaluates the action choice a ()
at state o (t), which simply counts the number of hits at
time slot ¢.!

Here, our goal is to find a global policy mw(a(t)|o(t)) that
provides a probabilistic mapping from each joint state o (¢) to the
corresponding joint action a(t) that is conflict-free. However,
since the number of content files Ng is typically large, the
underlying MDP is very high-dimensional and hard to solve
or implement in practice. Therefore, in this work, we target
at distributed probabilistic policies together with a conflict
resolution scheme. In particular, associated with each file f

'Note that, here, R(a(t), o (t)) = h(t), since state §(t) captures the exis-
tence of each file on every satellites, and the MDP formulation will directly push
the requested files to the target user cluster w if these files are available on the
serving satellite s.
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there is a local policy 7/ (a/(t)|o/(t)) that is a probabilistic
mapping from a local state o7 () to the corresponding action
a’ (t) € Af. Note that, such distributed policies may result in
actions a(t) = [a'(t),...,a™?(¢)] that are in conflict, which
must be resolved when being implemented in the considered
CSN system. Since our goal is to maximize the pre-store hits, we
should retain as many “{s — wu}” actions, and disable the routing
actions that are in conflict with “{s — u}”. Hence, given the
probabilistic local policies 7/ (af (t)|o7 (t)), f = 1, ..., Nr and
the states o (t) = [o*(t), ..., ™V(t)], the procedure for resolv-
ing the conflicts is summarized in Algorithm 1. The procedure
incrementally form the conflict-free action set 7. First, in Lines
1-9, T consists of all {s — u} actions and here the only possible
conflict is that one satellite may be scheduled to transmit more
than one file to the user cluster it connects to. In that case, we
allow only one file to be transmitted and let the other files remain
on the satellite. Then in Lines 10-15, we examine each action
not in 7. If it is in conflict with any action in 7, it must be either
{g — s} corresponding to (4), or {s — s’} corresponding to (6),
and we simply keep the in-conflict files on their current location,
i.e., gateway g, or satellite s.

Remark 1: Note that from the view point of MDP, in our ap-
proach, the global policy is decomposed into independent local
policies, i.e., m(a(t)|o(t)) = H;\il 7t (af (t)|o7 (t)). Then for
each file f, the conflict-resolving Algorithm 1 plays the role of
the environment that determines the next state given the current
state and action, i.e., p(a/ (t + 1)o7 (t), a’ (t)).

Our problem is then to design the local probabilistic policies
such that when employed by the above distributed routing algo-
rithm, the maximum pre-store hit rate can be achieved.

In the considered CSN system, the gateways have access to
all content files in F as they are connected to the core network.
Targeting at the highest number of pre-store hits, we solve the
Dec-MDP to obtain the optimal policy for the routing of content
files. Then, the gateways will transmit the files to the satellites,
along with the commands on these files’ routing strategies. How-
ever, we notice that the user requests are hard to satisfy, since
1) the user requests X = {[x1(t),...,xn, (D), t =1,....T},
are unknown at the time when the gateways make decisions
on the routing processes; 2) the user requests X are dynamic,
as they follow some unknown distributions, p(X); and 3) the
user requests are unpredictable, as their distribution p(X) may
vary. Thus, traditional MDP solutions such as decision tree
search or dynamic programming can not solve this Dec-MDP.
The reinforcement learning (RL) algorithms such as Q learning,
policy gradient, and echo state networks [22], [23], [24] can help
learn routing strategies in the unknown environment, but are still
not suitable for solving this high dimensional Dec-MDP. This
is because for each possible realization of user requests X, we
need to run the RL algorithm to obtain the corresponding optimal
pre-storage and routing strategy, which makes such a solution
approach prohibitively complex. Thus, to solve the time sensitive
pre-storage and routing problem for dynamic, unpredictable
content needs, we propose a distributed distribution-robust meta
reinforcement learning (D2-RMRL) solution with pre-trained
meta learning capability.

Algorithm 1: Procedure for Resolving Conflicts Among
Actions Produced by Local Policies.

Input: Joint state o (t) = [o1(t), ..., 0N, (1)], local
policies 7f (af (t)|c7 (t)), f = 1,..., Ng.

Init: 7 = (.

I: forf=1,...,Ngdo

2:  Generate local actions a/ (t) according to

l(al (t)]o! (1)).

if af (t) = {s — u} then
T=TU{r}
end if

Check all files in 7

if more than one file f1, ...
same satellite s then

8: Randomly select one file f; to be moved to u, and
the rest stay on s,, i.e.,

oli(t+1) =u,oli (t +1) = s,

e {L kN

AR O

, [x are located on the

9: end if
10:  for each file f ¢ T do
11 if af (¢) is in conflict with any action in 7 then
12: if a/ (t) = {g — s} then
13: File f stays on gateway g,i.e. o/ (t +1) = g.
14: else if a/ (1) = {s — s’} then
15: File f stays on satellite s, i.e. o/ (t + 1) = s.
16: end if
17: else
18: T=TU{f}
19: end if
20: end for
21: end for

22: return Next state o (¢t + 1) resulting from actions
a(t) = [a(t),...,aF(t)], at state o (t).

III. DISTRIBUTION ROBUST META REINFORCEMENT
LEARNING ALGORITHM

We now introduce the D2-RMRL algorithm, which integrates
the techniques of value decomposition [25], model agnostic
meta-learning [26], pre-training [27], with the actor-critic RL
framework. The value decomposition effectively converts the
original problem of finding the global policy 7(a(t)|o (t)) to the
one of finding the set of local policies {r] (a/ (t)|o7 (t)), f =
1,..., Ng}, thus significantly reduces the computational com-
plexity. The meta training scheme further reduces the cost of
computing the optimal policy for every possible service request
realization X, by first computing a meta policy that can serve
as a good initialization for service requests following distri-
bution p(X), and then the optimal policy for any realization
X ~ p(X) can be obtained by a small number of gradient
updates. Finally, to address varying user request distributions,
the pre-training scheme is adopted that employs the meta training
procedure with a parameter transfer technique. In what follows,
we first explain how to apply the actor-critic RL algorithm to
solve the Dec-MDP using the value decomposition technique.
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Then we explain how this RL solution is meta-trained for
faster convergence on serving different user requests. Finally,
we introduce the pre-training scheme to make the performance
of the proposed D?-RMRL robust to different user request
distributions.

A. Actor Critic Method for Computing the Global Policy for a
Given User Request Realization X

The goal of RL is to find a probabilistic policy 7*: Q — A
that provides a mapping from the CSN system’s states to the
actions yielding the highest cumulative discounted reward, i.e.,
T = argmax, E[Zthl Y'R(a(t),o(t))m(a(t)|o(t))] where
~y is the discount factor and [o(0),a(0),0(1),a(1),...] is a
state-action trajectory generated by the policy 7. Thus, the action
choices in the CSN system must consider the instantaneous
reward and the discounted future rewards. So, here we define
the (state) value function with a given policy 7 as

Vi(e(t) =K ZVTR(G(T)J(T))W(G(T)IU(T)) ;
- 7

which encodes the expected cumulative reward when starting
in state o (t) and following the policy 7 thereafter. The optimal
value over all possible policies is

Vi (a(t)) = max V7 (o(?)). ®)

Then the optimal policy 7* can be obtained by always picking
actions a*(t) that are greedy with respect to V*, i.e., a*(t) =
arg maxq(y)ed R(a(t), o(t)) +yV*(a(t +1)).

In the actor-critic RL (ACRL) method, both the policy func-
tion mg and value function Vy, are deep neural networks pa-
rameterized by 6 and 1), respectively. Recall that under the
conventional RL, for each realization of user request X =
{[z1(t),..., &N, ()], t =1,...,T}, we need to compute the
corresponding policy 7. Starting with randomly chosen parame-
ters #(%) and +/(?), the i-th epoch of the ACRL training algorithm
consists of the following steps:

1) Sampling: First, using the policy myi-1) from the previ-
ous epoch, the algorithm records a sampled state-action-reward
trajectory and stores it as n = {o(t),a(t), R(a(t),o(t)),t €
[1,....7]}.

2) Computing the Learning Error: The temporal difference
(TD) error is defined as [28]

Ala(t),o(t)) = R(a(t),o(t))

+Vyin (o (t+1)) = Vyan (a(t)),
©

which measures the difference between the achieved reward
based on the samples in 77 and the estimated reward, and reveals
how actions in a(t) are better than other action choices at the
current state o (t). Meanwhile, the error on the routing policy is
set as the expected advantage with policy @) as in

T
> Ala(t), o t) mo (alt) |o(t)). (10)

3) Updating Networks: The critic network Vw“‘)’ i.e., the
value function, is updated toward the opposite direction of the
gradient of the squared TD error, A%(a(t), o (t)), for accurate
future reward estimation, as

T
P == — a0V, N~ A% (a(t), o (1))
t=1

T
=90 420l " A(a(t), o (t) Vi Vi (o(t)),

1D
with agf) being the value update step size at the ¢-th iteration.
Notice that, R(a(t),o(t)) + fyf/wm (o(t+ 1)) is a supervised
term whose partial derivative will not be counted in the gradient
update step defined in (11) [29].

At the same time, based on the the policy gradient the-
orem [24], the ACRL algorithm updates policy function
Ty (a(t)|o(t)) by updating ) in the direction of the gradient
of expected advantage as defined in

e — gli-1)
T
+al™V Y Ala(t), (1)) Vologmeen (alt) o (1)),
t=1 1)
where a((f) is the policy update step size, at the ¢-th iteration of

ACRL update. Note that, the ACRL algorithm updates policy
and value functions with a mini-batch training procedure, i.e., it
implements update after collecting a whole action-state-reward
trajectory to reduce the variance on the system’s learning perfor-
mance caused by the action sampling, and the need on storing
a big dataset in the system. The ACRL will repeat this trial,
error and update procedure until a convergence to the optimal
policy mp- is reached. However, as we noticed, solving the
high dimensional Dec-MDP in such a centralized way has high
computational complexity. In the next subsection, we explain
how our proposed D?-RMRL algorithm solves the Dec-MDP
with distributed routing policies 7y, on each file f € F, using
the value decomposition technique.

B. Value Decomposition for Computing the Local Policies for
a Given User Request Realization X

Our goal is to obtain optimal local policies 7y, at each file f,
which is a deep neural network parametrized by ;. Each policy
function g, takes file f’s local state o/ (t) € 2/ as input, and
outputs the probability of action a/(t) € A/ at current state.
To update these distributed policies locally for each file f, we
decompose the original value function V(o (t)) as the sum of
local value functions, given by

Vo (o(t) =D Vo, (7(1))

feF

13)

where VW (o/(t)), parametrized by y, is the local
value function associated with file f. Moreover, 71y =
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{al (), 0! (t), R (a!(t),07(t)),t =1,...,T} is the action-
state-reward trajectory generated by the single file routing pro-
cess at file f under current policy 7y, . Then the update of each
value function is given by

MO sz )

i =yl

(l D —|—20t (1) ZA wavw 1) ( f(t)).

(14)

Thus, using the value decomposition assumption in (13), the
gradient of each individual value function consists of a local
term that depends on the local state o/ (¢) and a global term
A(a(t), o (t)) that depends on the global actions a(t) and states
o (t). It is through this global term that the updates of all local
value functions are coupled. Even though the update of value
function at file f still requires the routing process to know the
value of the team advantage A(a(t), o (t)), the proposed mini-
batch training procedure allows the satellite system to calculate
the team advantage value, by collecting the value of the collected
teamreward R(a(t), o (t)) and original value function V, (o (1))
without knowing the global states and actions at each time step £.
This is because the system only have to update their policies after
serving one service occasion. Also, note that, R(a(t), o (t)) +
Y ojer \N/w;ifl) (o7 (t + 1)) is a supervised term whose partial
derivative will not be counted in the gradient update step defined
in (14). Moreover, based on the the policy gradient theorem [24],
the update on file f’s policy function parameters is given by

(i) _ gli-D)
0 =6\

T
(’L 1) ZA
t=1

nglogﬂ'e(l 1)( t)‘o‘f(t)).
(15)

Again we see that the updates of these local policies are coupled
due to the global terms A(a(t), o (t)).

In the considered system, the distributed policy and value
functions are stored and optimized on a central controller. The
resulting routing policy of file f will be distributed to gateway
g, if the routing process of file f starts at gateway g. As sum-
marized in Algorithm 2, starting with initial policy functions
7T9§c0) and value functions V/ )5 the algorithm uses the achieved

overall pre-store hits (i.e., a{:hieved reward) and the estimated
reward (i.e., values of Vy, (7 (1)) to calculate the TD error
A(a(t),o(t)). It then uses a mini-batch training mechanism
to update policies and reward estimations (value functions) on
each file f, independently, with (14) and (15), based a sample
trajectory ny.> Such trial, error, then update procedure will
be repeated, until the convergence is reached. Recall that the
training process needs to be performed for each realization of the

2The proposed VD-RL algorithm updates the policy and value functions at
each file’s routing process based only on this routing process’ individual action
and state with dimension of |4| and ||, respectively, which effectively reduces
the time complexity of the considered multi-agent problem.

Algorithm 2: Value Decomposition-Based ACRL Algo-
rithm for Computing the Local Policies for a Given User
Request Realization X.

Input: User service requests x,(t),t =1,...
u = 1, ceey NU. B
Init: Initialize value functions Vw“”’ and policy functions
§
’/Ta(o),fOI"f = 1,...,NF.
s

1: for D2-RMRL training epochi = 1 : I do
2: Generate sample trajectories of state-action-reward
r=A{o!(t),al (t), R (a! (1), 07 (1)), ¢
=1,...,T}foreach f = 1,..., Ng using the local
pohcles Tyt v (af (t)|o/(t)) and Algorithm 1.
3:  Calculate TD errors A(a(t),o(t)),t=1,...,
9).

7T9

T in

4: for each file f = 1: Np do

5: Update the local value function parameters wff)
using (14).

6: Update the local policy function parameters ng)
using (15).

7 end for

8: end for

9: return Optimal value and policy functions, i.e., 1/)},

and 0}.

user request trajectory X . To make the training process more ef-
ficient, we next resort to the technique of meta learning, to obtain
a good initial network parameters {9 0), 1/}(0 ,f=1,...,Ng},
for all X that follow a certain dlstnbutlon p(X), such that
starting from such meta-trained iniital parameters, Algorithm
2 will converge in just a few gradient iterations for any user
request realization X ~ p(X).

C. Meta Training of Model Initials for a Given User Request
Distribution p(X)

In the previous subsection, we gave the ACRL algorithm for
a given realization of the user request X. In reality, X follows
certain statistical distribution p(X). It is certainly not feasible
to compute the policy for each possible realization of X. To
that end, we resort to meta learning. The basic idea is to train
the networks’ initial parameters (67,%¢), f =1,..., Ng, for
the given distribution p(X), such that for any user request
realizations X ~ p(X), the corresponding optimal networks
can be obtained from (07,), f =1,..., Ng, through a few
gradient update steps with a small amount of training data.
In particular, the meta training procedure finds the learning
initials, i.e., initial policy functions 7 . and value functions f/{, -
f=1,..., Ng, that are already close to the optimal strategies
and value estimations of all user request realizations following
the distribution p(X'). Starting from such learning initials, given
a user request realization X, the corresponding optimal policy
and value functions can be obtained by a few actor-critic updates.

At each meta training update epoch, we use J samples of user
request X, ie., X1,...,X ; ~ p(X), to update 1/_)f, and §f in
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a similar way as in (14) and (15), except that now J state-action-
reward trajectories are used, one for each X ;. In particular, we

can write, for f = 1,..., Vg,
J T
by by 20030 Alas(t), 05(0) Vg, Vi, (o] 1))
j=1t=1 06
b éf
+%ZZA a;(t), (1)) Vg, logs, , (o] () |0 (1) .
j=1t=1 .

where 1) ;, and 0y ; are, respectively, the value and policy

function parameters updated at each user request X ;. O’; (t),and
a; (t), are the state and action sampled at time slot ¢ correspond-
ing to user request X ;, respectively. To obtain the network pa—
rameters 7,[1 Iz 0 t,5> and the state-action-reward trajectory )y ; =
{O-j ( )7 j( )7Rf( j( )7 ]f(t))at - 17 R aT} for each X]’
we proceed as follow. First, we sample the state-action-reward
trajectory using the current policy function 7, and user re-
quest X ; to obtain 7y ; = {6Jf(t), ELJf-(t), Rf(d;(t), 6{(1&))715 =
1,...,T}. Then we update the model parameters using one-step
gradient descent as, for, f = 1,..., Ng

T
by = +200 Yy Aa(t)

t=1

a;(t) Vy, Vg, (5‘;@)) 7
(18)

éf,j = éf

+OéaZA a;(t

j(1) V5, logm, (a{ (t) ‘&j (t)) .
(19)

Next, we generate sample trajectory 77 ; using the updated
policy 75, , 80 as to update learning initials with (16), and (17).
As summarized in Algorithm 3, at each meta training iteration,
J user request realizations are sampled from p(X). Using each
realization, X ; ~ p(X), for each file f, we obtain the sample
trajectory 7y,; using the current policy 74, and then perform
one-step update on the value and policy functions using (18)
and (19). Next, using the updated policy TG, s We obtain the
sample trajectory 7y ;. Finally, the initial pohcy function 7y
and value function VW; ; are updated based on (17) and (16),
respectively.

In essence, the above meta training procedure seeks to find the
optimal learning initializations, i.e., T50) = Mg, and V@m =
Vi - that are close to the optimal policies and values for all
user request realizations. Starting from these initializations, the
proposed D2-RMRL solution, i.e., Algorithm 2, takes only a
few iterations to reach convergence for every possible user
requests X ~ p(X). Given the meta trained policies 75 ; and
value functions V;_, in order to obtain the optimal policy for
any given X ~ p(X), we simply run Algorithm 2 by initializing

., Ng. Then the number

of training epochs needed for reaching convergence is typically
small.

71'(;?)) =T, and VJ);O) = Vu;f, f=1

Algorithm 3: Meta Training for Optimal Learning Initials
for a Given User Request Distribution p(X).

Input: User request distribution p(X).
Init: Initialize value functions ViZf’ and policy functions
7T9‘f,f01'f =1,...,NNg

1: for Meta training epoch¢ =1 : I do

2: forj=1:Jdo

3: Sample user request realization X ; ~ p(X).

4: Generate sample trajectories of state-action-reward
il = {ol (0] (1), B (@] (1), 0] (1), ¢ =
1,...,T} using the initial policy functions 7 ;
and Algorithm 1, for f = 1,..., Ng.

5: Calculate A(a(t),a(t)) in (18) and (19),
t=1,...,T using (9).

6: for Each file f =1 : Npdo

7 Perform one-step update on the value and policy

functions using (18) and (19), to obtain 1 t.5> and
0.
8: Generate the state-action-reward trajectory 77; =
{o] (1), a] (t). R (a] (1), 0] (1))t = 1,....T}
using the updated pohcys mg, , and Algorithm 1.
9: end for
10: Calculate A(a;(t),o;(t))in (16) and (17),
t=1,...,T using (9).
11: end for
12: for Each file f =1 : Ng do
13: Update initial value parameters 1) ¢ using (16), and
policy parameters 6 + using (17).
14: end for
15: end for

16:  return Optimal initial policy functions 7 ) = 74 T
f

and initial value functions V. (0 = V@ , for
by i
f=1,...,Ng

D. Pre-Training for Distribution Robust Meta Learning

In practice, the user request distribution may vary, e.g., it de-
pends on different times of the day. Assume that there are totally
K user request distributions p; (X), ..., px (X). Then we can
simply apply Algorithm 3 to perform meta training for each
one of these distributions to obtain the corresponding initials.
However, such independent meta training is time-consuming and
we would like to make use of the initials already meta trained for
some distributions, to speed up the entire meta training process
for all distributions. Specifically, suppose meta training is se-
quentially performed for p1 (X), ..., px (X). At the beginning
of meta training for py (X)), we already have the meta trained
initials (¥t 0% for £ =1,. k 1, where o' = [¢f, f =

, Np],and 0° = [0, f ., NFr]. Then, when we per-
form meta training for pj, (X ) using Algorithm 3, instead of
randomly initializing ) and 6, we start with one of the previous
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Algorithm 4: Pre-Training for Shortened Meta Training for
Different User Request Distributions.

Input: User request distributions pq (X), ..., px (X).
Init: £ = 1: Run Algorithm 3 to obtain the meta trained
initial (0%, 6") for p; (X).

I: fork=2:Kdo

2 for environment sampling epoch j =1 : J do

3: Sample a user request realization X ; ~ Py (X).

4 for treated user request distributions £ =1 : k — 1
do

5: Generate sample trajectories of

state-action-reward

p; = {05, (1), a5, (1), R(@} ;(t),05 (1), t =
., T'} using the initial policy functions g

and Algorithm 1, for f =1,..., Ng.

6: Calculate A(@f(t),a5(t)) in (20) and (1),
t=1,...,T,using (9).

7 for Each file f = 1: Nrdo

8: Perform one-step update on the value and

pohcy functions using (20) and (21), to obtain
Pl 7,j»and 6" Iye
9: Generate the state-action-reward trajectory
npy =
{U;,j (t), af‘-’j(t), R(afﬁj(t) Uf J ().t =
., T} using the updated policy functions

7r9z ~and Algorithm 1.
10: end for
11: Calculate A(a(t),of(t)) in (22) and (23),
t=1,...,T using (9).
12: end for
13: end for
14: Compute (22), (23), and then Dy (¢), for all
{=1,....k— 1

15: Compute £*. Run Algorithm 3 using the
initializations (4", #*") to obtain the meta trained
initials (ﬂ'élfc, sz’;)’ for f =1,..., Ng, and pi(X).

16: end for U
17:  return Optimal meta training initials (%, 6%), for
k=1,...,K.

meta trained initials, based on the “distance” between each initial
to the optimum under py (X).

In particular, we obtain J samples of user request
realizations X ; ~ pi(X),j=1,...,J. For each of these
realizations X ;, we apply each available initial policy
functions gt to obtain the state-action-reward trajectories
p; = {05,;(t),a%,; (1), R(@} ;(t), 55 ;(t),t = 1,.... T},

= ., Ng. Then, we update the model parameters using
one-step gradient descent as

O 0f 200 Y A(@(1),55(1)) Ve %fi (35,1), (0)
t=1

0%, 05

+aaZA )Ve’f logwee (afj(t |O'fj ). @D

Random Meta Algorithm Meta Algorithm Meta
—_—*| training training training
start | (aigorithm 3) 4 (Algorithm 3) 4 (Algorithm 3)
Algorithm 2 Algorithm 2 Algorithm 2
pi(X) p2(X) PX)
User request Algorithm 3
O realization Computing learning initials in distribution p«(X)
D Algorithm 2 N
N . Algorithm 4
Computing policy for user request X Computing meta initials for different distributions

Fig.3. The proposed D?-RMRL algorithm.

At the next step, we generate trajectory nfc =

{05 ;(t),a5 ;(t), R(a§ ;(t), 05 ;(1), t =1,..., T}, using
the updated policy gt So as to calculate the “distance”

between each initial (wf 9°) to the optimum under py,(X) as in
9 i Z A
J
¢
dh &Y (R(af e

j=1

o) 7g, , (af;(t) |0 ;(1), (22)

)ots®) = Vg, (Ufj<t)))2. (23)

The distance between the ¢-th initial and the optimum for py, (X))
is then given by Dy ({) = ijvil (dg,f + dfp7f), (=1,.. k-
1. Then, the meta training procedure for service distribution
pr(X) is initialized by (1/*,0°), where £* = arg min, Dy, (¢).

The proposed D2-RMRL with pre-training is summarized in
Algorithm 4. For the first service request distribution p; (X)),
the algorithm randomly starts a meta training procedure, using
Algorithm 3. Then for each subsequent new distributions, the
algorithm can achieve a shortened meta training by choosing
among the learning initials corresponding to distributions that
are already meta trained. In particular, it collects experience
on serving unseen user request distributions using the available
learning initials from treated distributions, then obtains the up-
date with (20) and (21), and evaluates the update with distance
metrics in (22) and (23). Finally, it will use the best one among
the available learning initials to start the meta training procedure
for the current distribution. Through such a transfer process of
learned initials, the overall meta training process over multiple
user request distributions can be expedited.

E. Convergence and Complexity Analysis

Next, we first show how Algorithm 2—4 work together using
Fig. 3. From Fig. 3, we can see that, for the first unseen service
request distribution p;(X), the proposed solution randomly
starts a meta training procedure (i.e. Algorithm 3) to find the
optimal learning initials that are close to the optimal policies
and values for all user request realizations falling within p; (X).
Starting from these initials, the proposed RL solution (i.e.,
Algorithm 2), takes only a few iterations to reach convergence
for every user requests X ~ p;(X). Then, for each subsequent
new distributions p (X)), the proposed solution uses Algorithm
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4 to achieve a shortened meta training (i.e. Algorithm 3) by
choosing among the learning initials corresponding to distribu-
tions that are already meta trained, i.e., p1(X),...,pr-1(X).
For the user requests following px (X ), the proposed solution
will still start Algorithm 2 from the meta trained learning initials,
for a shortened learning curve toward convergence.

We then analyze the complexity of the proposed D?-RMRL
algorithm. First, we observe that the complexity of each step of
policy and value function update in Algorithm 2—4 is, respec-
tively, of O(n.C') and O(n,C), with n., and n,, being, respec-
tively, the number of elements in policy parameters 1) ¢, and value
parameters ;. C'is the time complexity needed to calculate the
gradient of each element in the policy and value functions. Thus,
the complexity of Algorithm 2is O(v(n. + n,)C'), with v being
the number of iterations the algorithm takes to converge. Note
that, this complexity is reasonable because the numbers of policy
and value function elements, i.e., n., and n,, are small. The
proposed distribution-robust meta training mechanism further
reduces this complexity with faster convergence, i.e., smaller v.
In particular, the distribution-robust meta training mechanism
(i.e. Algorithm 3) initializes the RL solution with policy and
value functions that are close to the optimal policies and val-
ues for all possible user requests at the current user request
distribution. The complexity of the distribution-robust meta
training procedure (Algorithm 3 associated with Algorithm 4)
is O(2(ne +na)C(JF + v, J)), with O(2(n. + n,)C) being
the complexity of one step of the meta training on one training
sample (i.e., one service experience collected on the gateways).
JP and v, J are, respectively, the number of service experiences
used for pre-training (i.e. Algorithm 4) and meta training (i.e.
Algorithm 3) for the current user request distribution. Here, v,,,
is the number of iterations that the meta training procedure in
Algorithm 3 needs to reach convergence, which is minimized
by the pre-training procedure in Algorithm 4. This complexity
is reasonable since the offline meta training procedure is imple-
mented only once for every user request distribution py (X ), but
can speed up the convergence of the VD-RL algorithm for every
user requests X € pi(X).

Moreover, we note that the proposed algorithm uses a mini-
batch training mechanism that includes an offline training stage
and an online usage stage. The offline training is implemented on
a central server on the ground. This server knows the coverage
dynamics of all satellites and recognizes new user distributions
based on user location and service time. No exchange is needed
during the offline stage. The ground server runs the algorithm
to obtain the local policy for each file f, which is appended
to the file. Then during the online stage, wherever the file f is
transmitted to a gateway, or a satellite, its host (the gateway or
satellite) will read its policy first, and then based on its state o,
propose the action a . It is at this moment some communication
overhead will be incurred in order to run Algorithm 1 to resolve
the conflicts. Note that, Algorithm 1 can be implemented in two
ways. In a centralized approach, all hosts transmit their proposed
file actions G to a central server, which then runs Algorithm 1
to set the next state for each files on the hosts. On the other
hand, Algorithm 1 can also be implemented in a distributed way

through exchanges among neighboring hosts, since by definition
conflicting actions only occur between adjacent nodes.

IV. SIMULATION RESULTS
A. Simulation Setup

For our simulations, we consider a scenario with Ng =5
gateways serving Ny = 20 user clusters with the help of a LEO
cube satellite constellation at the altitude of 550 km with an
inclination of 53°. In particular, these user clusters and gateways
fall into the service coverage of Ng = 12 satellites on 4 inter-
twined orbits of the constellation. Based on the satellite orbit
information in [30] and ground device locations, we construct
a time-unrolled data transmission graph to capture the contact
chances in the system, within 7" = 100 of 10-second time slots.
Within this graph, a user cluster or a ground gateway can only
contact with its on-duty satellite, i.e., the satellite that is serving
their corresponding active cell asin [31]. Meanwhile, we assume
that two satellites can communicate only when the distance
between them is less than one active cell diameter [30]. More-
over, we assume there are in total Ng = 15 on-request files in
the system. The user request X = {z/(t),u=1,..., Ny, f =

1,...,Np, t =1,...,T} are generated as follows. At each time
slot, each user cluster u generates m,, file requests, where
my € {0,1,..., Np} follows a truncated Poisson distribution

with mean m,,; and these m,, files are random selected out of
the N files for which we set 2 () = 1. Different user request
distributions correspond to different mean values of m.

The value and policy functions of the D>-RMRL algorithm
are both represented by feed forward neural networks, with 2
hidden layers, each is composed of 100 elements. The results
of proposed D?-RMRL algorithm are compared with the ones
of the independent actor-critic (IAC) algorithm [32], randomly
initialized value decomposition RL solution described in Section
III-B (denoted as RL), and meta trained value decomposition
RL described in Section III-C (denoted as MRL). Recall that the
proposed VD-RL algorithm updates policy and value functions
locally at each files based on the global term A(a(t), o (t)), asin
(14) and (15). In contrast, the IAC algorithm replaces this global
term A(a(t),o(t)) in (14) and (15) with the local term given
by RY (a’(t), a7 (1)) + Vs (0! (t + 1)) — Vys (67 (t)). Thus,
the comparison between IAC and the proposed solution can
justify how the proposed value decomposition solution improves
distributed data transmission control in the considered satellite
network. Meanwhile, the results of the proposed algorithm are
also compared to the ones from the RL and MRL solutions,
which demonstrate how the proposed distribution-robust meta
training mechanism shortens the learning based data transmis-
sion design procedures. All statistical results are averaged over
a large number of independent runs.

B. Evaluation of Algorithm 2 — Value Decomposition

We first evaluate the performance of value decomposition
RL solution in Algorithm 2 for one user request realization X.
In Fig. 4, we show the convergence behaviors of Algorithm 2
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and the IAC method, with the shades indicating results of 1000
runs of the algorithms with random initializations for the same
user request realization X. Fig. 4 shows that, on average, the
value decomposition approach proposed in Section III-B yields
a 31.8% higher final pre-store hits than the IAC method, as it
reinforces strategies that benefit the whole team. On the other
hand, the TAC method can only find strategies that maximize
the individual utilities. Moreover, from Fig. 4, we also see that
Algorithm 2 converges much faster than the IAC method.

C. Evaluation of Algorithm 3 — Meta Training

Next we evaluate how the meta training technique in Al-
gorithm 3 shortens the learning procedure of Algorithm 2 for
user requests realizations following X ~ P(X), with m,, =1
foru=1,...,10, my, = 2 for w = 11,...,20. Firstly, Fig. 5
shows the convergence behavior of the meta training procedure,
i.e., Algorithm 3 and it is seen that converge can be reached in
about 1100 iterations on average. The shades in Figs. 5 and 6
indicate results of 1000 independent runs with random sample
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Fig. 7. Convergence of meta training for a family of service distributions by
Algorithm 4, and Algorithm 3 with random initialization for each distribution.

user requests from distribution P(X). Fig. 6 shows that, starting
from the meta trained learning initials given by Algorithm 3,
Algorithm 2 takes about 920 iterations to reach convergence,
which improves the convergence speed by up to 40.7% compared
to random initials. This stems from the fact that, with the meta
training initialization, the RL algorithm can start from policies
that are close to the team optimal strategies for the target service
task. Moreover, by comparing the shaded areas of the two curves,
it is seen that using the meta initial can considerably reduce
the variation of the performance of Algorithm 2, in addition to
speeding up the convergence.

D. Evaluation of Algorithm 7 — Pre-Training

In Fig. 7, we show how Algorithm 4 speeds up the meta
training convergence for a family of distributions. We assume
that there are K = 4 service distributions P;(X),..., Py(X)
and we need to obtain the meta initial for each P;(X). In Fig. 7,
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we compare the convergence behaviors of two approaches: one is
Algorithm 4 and the other is running Algorithm 3 four times one
foreach P, (X ). Recall that in Algorithm 4, for the first distribu-
tion Py (X)), it simply runs Algorithm 3. Hence the convergence
behavior for P; (X)) is the same for both approaches. Then, for
the other service distributions, P> (X ), P3(X), P4(X), by mak-
ing use of the meta initial already obtained for the distribution
that is closest to the current one, Algorithm 4, can converge up
43.7% faster than Algorithm 4 which always starts from random
initials.

V. CONCLUSION

In this paper, we have studied the problem of pre-storage
and routing data to satellites in a cube satellite network. Using
this network, the ground users’ dynamic and unforeseeable data
requests are served by the cube satellites, which pre-store data
from distributed ground gateways, and deliver data service to
users in its coverage areas. The design problem is to determine
the data to be pre-stored in each satellite and how to route it from
a gateway to the satellite. We have formulated this problem as
Dec-MDP and have proposed a D2-RMRL algorithm to solve
this problem. The proposed D?-RMRL algorithm is based on
a multi-agent reinforcement learning approach and makes use
of the value decomposition technique, so that the agents inde-
pendently optimize their strategies toward the maximal overall
pre-store hits, by sharing only their achieved and estimated
reward with each other. To reduce the excessive training cost of
this machine learning based solution for different user service
requests, we have proposed the meta trainging procedure to
obtain initials that can significantly speed up the training process
for a given service request distribution, as well as a pre-training
procedure for further speedup the meta training procedure for
a family of different service request distributions. Simulation
results show that the proposed D?-RMRL algorithm achieves
high rate of pre-store hits with fast convergence. Future work
could include the consideration of the integration of satellite
networks with drone carried aerial networks for extra caching
capabilities.
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