
Computation-Centric Networking
Yuhan Deng, Angela Montemayor, Amit Levy∗, and Keith Winstein

Stanford University, ∗Princeton University

Abstract

We propose putting computation at the center of what net-

worked computers and cloud services do for their users. We

envision a shared representation of a computation: a determin-

istic procedure, run in an environment of well-specified depen-

dencies. This suggests an end-to-end argument for serverless

computing, shifting the service model from “renting CPUs by

the second” to “providing the unambiguously correct result

of a computation.” Accountability to these higher-level ab-

stractions could permit agility and innovation on other axes.

� A˝ 1, Scene 1 �

CECILY: Gwendolen, I love that paper you wrote last year!

How did you make Figure 3? I’d like to reproduce it.

GWENDOLEN: Happy to help, Cecily! Reproducibility is my

jam. Just go to GitHub, clone our repo, and it’s all in there.

CECILY (to computer): git clone repo; cd repo; ls

The computer prints:
data.csv graph.svg make-graph.py
result-new.csv graph.tiff real-data.csv
graph.eps gwen-grapher.py results-dir

extract-old.sh draw-plot.py result1.txt

CECILY: Hmm, this isn’t very helpful. It might all be here

somewhere, but I don’t know what to run, which of these

files is the real data, or how anything relates to anything else.

Gwendolen, do you remember how you generated this figure?

GWENDOLEN: Huh, I forget. It’s weird how Git is so good

at recording compositional relationships—what files are in

which directory trees, what tree each commit points to—but

there’s no way to record computational relationships like “this

file is the output of this computation, given this input.” Hmm.

Scene 2

LADY BRACKNELL: Algernon, I was amazed to learn how

networked filesystems use complex algorithms to losslessly

recompress image and video files on the backing storage [3,

12]. Aren’t they worried that a bug, or pathological file, could

make them unable to recover the exact original contents?

ALGERNON: Indeed, which is why they don’t throw away

the original file until after they’ve decompressed their own

compressed output and checked that the result is identical.
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BRACKNELL: But what if the decompression program is

nondeterministic? They could get the right answer once, but

never be so lucky again. It’s hard to enforce reproducibility

on an arbitrary program without a big slowdown [19]. Hmm.

Scene 3

LANE: Oh no, we’ve been pwned! Three months ago, attack-

ers broke in and modified our code.

CHASUBLE: What are the consequences? If we had been

running the right code, how would our output have differed?

LANE: How should I know? There’s no way to tell. Hmm.

Scene 4

JEFF BEZOS: Man, AWS Lambda is bumming me out. Our

users will invoke a function with an HTTP request, and we

feed that to a Linux program they uploaded. We can get that

running within 100 ms, and burst to thousands of concurrent

executions, which is great. Except: most functions spend 90%

of their time idling the CPU, waiting on dependencies from S3

and elsewhere. We’re wasting a lot of expensive infrastructure,

which hurts us and ultimately our customers.

MERRIMAN: Why? Can’t we just overprovision by 10×?

BEZOS: Maybe, but that’s still inefficient—we’ll tie up a ton

of RAM while the functions block on I/O—and still slow.

MERRIMAN: Can we cleverly schedule functions to run on

the same nodes as their dependencies? This could be a great

place for us to innovate and outperform the other clouds.

BEZOS: Not easily, because we don’t know the dependencies;

the function fetches whatever it wants after it starts. And we

aren’t strongly incentivized to make jobs complete earlier

when users pay us for each millisecond of runtime. Hmm.

Scene 5

JACK WORTHING: Man, AWS Lambda is bumming me out.

My function spends 90% of its billed time blocked on I/O.

PRISM: What do you expect? It’s an opaque program to them;

they have no ability to make it run faster.

JACK: I just want to tell them what I’m trying to compute,

with what inputs, and let them be smart about how it’s done.

We could split any efficiency savings. All I really care about

is getting the right answer! It doesn’t even have to be AWS, as

long as somebody reputable stands behind the result. Hmm.
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2 Introduction

The stories you just read were a fib, but the issues are real.

While classical “infrastructure-as-a-service” cloud computing

involves renting a virtual server and paying by the second,

current “function-as-a-service” offerings provide almost the

same service model: renting an x86 or ARM worker and pay-

ing by the tenth of a second until a task completes. Providers

have little visibility into client dataflow, which translates into

inefficient placement and poor utilization. When most jobs

spend most of their time waiting for bytes to arrive from

across the network, even a clever provider has little ability (or

incentive) to improve the situation.

In this paper, we argue that the root issue behind each of

these vignettes is an underconstrained notion of networked

computation. We propose a research agenda centered around

what we call “computation-centric networking”1: the idea that

a networked service’s job is primarily to provide answers to

computations and would benefit from (1) fine-grained visibil-

ity into application dataflow, (2) an objective, common notion

of correctness, and (3) a separation between I/O and compute,

with delineated nondeterminism.

In our view, successfully realizing this vision would:

• let networked systems track the computational relation-

ships between artifacts, so that sharing a reproducible

pipeline is as simple as a git push / git pull / “git

reproduce” (Scene 1),

• guarantee reproducibility of server-side algorithms that

process data on a user’s behalf (Scene 2),

• allow rerunning a computational pipeline with modified

code or data, to discover the consequences of, and clean

up after, an intrusion (Scene 3), and

• benefit “serverless” providers and customers (Scenes 4

and 5). Providers would have the flexibility to schedule

and place jobs in a way that minimizes dataflow and

maximizes utilization, as long as they reach the correct

answer. If the customer chooses to double-check a re-

sult and finds the provider was mistaken, they’d be able

to collect from the provider’s insurance. That, in turn,

might free the customer to bid jobs out to competing

providers. Our theory here is akin to an end-to-end argu-

ment [21]: accountability to one high-level abstraction

(correctness) can create agility on other axes.

1We call it “computation-centric” by analogy to content- or information-

centric networking [10, 14], which argues for refactoring the network service

away from messaging and towards retrieval of identified content, however

sourced. We propose a similar refactoring, towards evaluation of named

computations however executed. (We don’t take a position on what layer of

the stack should be modified to achieve this and aren’t seeking to replace IP.)

Summary of results. We have begun to design and imple-

ment a framework for computation-centric networking, which

we call Fixpoint. We are defining a low-level, lightweight

representation for deterministic computations-on-named-data,

known as “Fix.” To represent the relationships between code

and data, Fix defines an addressing scheme that allows data to

be identified either in terms of its contents (similar to systems

like Git, BitTorrent, and IPFS) or by referring to a deter-

ministic computation that computes it. The Fixpoint system

includes a compiler that transforms Fix into raw machine

codelets, and runtime engines that evaluate such codelets on

various platforms: multicore computers, clusters, and server-

less computing platforms.

Our preliminary benchmarks have found that these abstrac-

tions are lightweight enough to let Fixpoint provide isolation

and reproducibility with overhead close to an ordinary virtual

function call. On a recent x86-64 CPU and Linux kernel, Fix-

point’s invocation overhead is about 37× faster than vforking a

process, and about 531× faster than record-replay techniques

such as rr. The raw invocation overhead is roughly 50 ns,

about 5× as slow as a virtual function call in C++.

Computation-centric networking is about constraining com-

putation and exposing its dataflow, in order to free the network

to innovate in how it produces results. We hypothesize that

it will be possible to fit most software into these strictures

without significant penalty, to create a world where most

computations are reproducible-by-default and amenable to

efficient outsourcing to oceans of cores in the cloud, supplied

by competing providers who bid for the work, innovate to find

better ways to run customer jobs, and guarantee correctness.

Whether we’re right about that remains to be seen.

3 Central hypotheses of the research

Before we dive into Fixpoint’s design, we’d like to discuss

four assumptions that will probably need to hold for the dream

of computation-centric networking to be realized.

Separating I/O and compute is widely achievable. A

key assumption is that many useful programs can be feasibly

separated into I/O and compute, so that each stage of a compu-

tation can declare its dependencies before execution, and then

execute deterministically (given those inputs) to make some

forward progress before discovering a need for additional

inputs. This model works well for many tasks (exploratory

data analysis, compilation and testing, 3D rendering, machine

learning), but is less applicable to software that involves mul-

tiple users interacting concurrently with a service with tight

synchronization (e.g., a concurrent RDBMS or lockserver).

Nondeterminism can be delineated. When we refer to

“I/O,” we expect that almost all inputs can be identified deter-

ministically, that is, pre-specified in a way that locks down
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algorithm remains confidential for the foreseeable fu-

ture? E.g. should each credit denial, or stock-exchange

trade, or search results page, be accompanied by the

hash of a Thunk that computed it?

We expect many open questions will need to be solved

before these dreams might be realized, e.g.:

- How should nondeterministic I/O be handled?

- How and when should garbage collection occur?

- Should there be a second language of “execution strat-

egy” hints to guide the network’s placement and sched-

uling of evaluations, in order to maximize locality?

- How should users share reproducible computations

with one another—through a Git-like repository?

- What’s the right API for higher-level languages to ex-

pose constructs like “a parallel map that compiles into

a Fix program that can run in parallel on 10,000 cores”?

- What should a “visual debugger” look like to aid incre-

mental development and inspect the computation flow

and provenance of computed outputs?

- How should this type of “serverless computation” be

billed—perhaps based on CPU runtime (with no block-

ing for I/O, since it’s the provider’s job to position

dependencies in place before execution begins) with

discounts for collocation and other efficiencies?

8 Related work

This paper’s vision of computation-centric networking has

many antecedents: container frameworks such as Nix [6] and

Docker [17]; cluster-computing systems like Hadoop [22],

Dryad [13], Spark [23], CIEL [18], or Scanner [20]; burst-

parallel software for “serverless” platforms, such as ExCam-

era [9], PyWren [16], gg [7], and R2E2 [8]; reproducible and

deterministic execution systems such as rr [19] and Determi-

nator [4]; and content-addressed and -centric networked sys-

tems, including BitTorrent, Git, IPFS, and NDN [10, 15, 25].

Given this substantial literature, the reader might reason-

ably wonder “what’s new here,” why “this time it’s different,”

and what this has to do with networking as traditionally un-

derstood. In our view, none of the above systems is equipped

to tackle the vignettes that opened this paper. The approach

we propose here is well-predicated, but we suspect different

enough to bear fruit in the areas we focus on.

An objective notion of correctness probably requires re-

producibility, even with adversarial input. For a distributed

version-control user to be able to ask “why” an artifact has the

contents it does and be assured of a correct answer (Scene 1),

or for a networked filesystem to throw away the original copy

of a file, knowing it can reproduce it on demand (Scene 2),

or for an insurance company to underwrite the correctness

of a cloud service’s results and pay out for wrong answers

(Scene 5), we’d like the system to enforce reproducibility on

arbitrary, perhaps buggy or adversarial, software. Few of the

systems above are intended for this, the closest being replay

debuggers (such as rr) that impose a substantial overhead,

in terms of slowdown and space to record a trace of machine-

generated nondeterministic inputs to be replayed later.

Fine-grained visibility into dataflow suggests an evolv-

ing AST, rather than a static DAG, may be necessary to

express “everyday” computations. Many cluster-computing

systems express jobs as a directed acyclic graph of func-

tions, and work to schedule functions efficiently on a cluster.

This model has proved extraordinarily helpful in large-scale

data processing, but less-so for general software whose data-

dependencies are only revealed at runtime—running such

tasks requires “over-capturing” inputs of which only a frac-

tion are used. We believe that fine-grained visibility into appli-

cation dataflow will be crucial for forensic inquiry (Scene 3)

and efficient use of shared infrastructure (Scene 4), which

suggests a more fine-grained model of computation. Fix’s

evolving computation (a DAG at any snapshot, but similar to

Lisp or lambda calculus in its dynamicity) is more amenable

to expressing the gamut of heterogenous computing tasks.

Difference in overheads. The latency required to start a

Docker container or Hadoop job is generally measured in

milliseconds at least—meaning nobody is threading these

types of modularity and isolation deeply into their software.

Fixpoint’s vastly lower overhead may help this sort of modu-

larity become more pervasive. And Fixpoint’s ability to run

arbitrary machine codelets (most of which will have come

from Wasm, itself a well-tested LLVM target alongside x86

and ARM) will likely make it easier to run arbitrary software.

9 Conclusion

In this paper, we presented a research agenda to put compu-

tation at the center of what networked computers and cloud

services do for their users. We argue that providing infrastruc-

ture with fine-grained visibility into application dataflow, an

objective notion of correctness, and a separation between I/O

and compute will open up new models of serverless “account-

ability” and enable agility and innovation on other axes. Many

open questions remain before these dreams might be realized,

but we are excited about opportunities to make progress and

hopeful that others will join in some of these directions.
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