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Abstract—Corpuses of unstructured textual data, such as text
messages between individuals, are often predictive of medical
issues such as depression. The text data usually used in healthcare
applications has high value and great variety, but is typically
small in volume. Generating labeled unstructured text data
is important to improve models by augmenting these small
datasets, as well as to facilitate anonymization. While methods
for labeled data generation exist, not all of them generalize
well to small datasets. In this work, we thus perform a much
needed systematic comparison of conditional text generation
models that are promising for small datasets due to their unified
architectures. We identify and implement a family of nine
conditional sequence generative adversarial networks for text
generation, which we collectively refer to as cSeqGAN models.
These models are characterized along two orthogonal design
dimensions: weighting strategies and feedback mechanisms. We
conduct a comparative study evaluating the generation ability
of the nine cSeqGAN models on three diverse text datasets
with depression and sentiment labels. To assess the quality and
realism of the generated text, we use standard machine learning
metrics as well as human assessment via a user study. While the
unconditioned models produced predictive text, the cSeqGAN
models produced more realistic text. Qur comparative study lays
a solid foundation and provides important insights for further text
generation research, particularly for the small datasets common
within the healthcare domain.

Index Terms—natural language processing, text classification,
sentiment detection, digital phenotype, transfer learning

I. INTRODUCTION
A. Motivation.

With the growing global mental health crisis [1], digital
phenotype data — moment-by-moment quantification of
individuals’ behavior using data from personal digital devices
[2] — is being explored as a strategy to make mental illness
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Fig. 1: A conditional text generation model inputs real labeled
data instances to generate similar new labeled data instances.
This is particularly important for healthcare applications like
depression detection where the datasets tend to be small.

screening less burdensome and more universal. In particular,
unstructured text data such as text messages [3] and transcripts
[4] have demonstrated usefulness in screening for depression.

Unfortunately, it is challenging to collect large labeled
datasets in certain domains such as healthcare where datasets
must be carefully anonymized [5], [6]. Consequently, existing
publicly available digital phenotype datasets only have between
48 and 369 participants [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17]. At the same time, unstructured text exhibits
great variety. For instance, different individuals may have very
different styles when composing text messages. The small
volume combined with high variety is a serious issue, as data
with more variety typically requires greater sample sizes to
produce statistically significant results [18].

To advance critical diagnostic and prognostic modeling
innovations, it is thus important to generate data realistic
synthetic data [19]. In addition to increasing data quantity
[20], data generation can help balance classes, amplify the
class signal, and anonymize real data [21]. As labeled text data
is required to train text classifiers, such healthcare applications
would greatly benefit from conditional text generation so that
class-specific data can be synthesized [22].

B. State-of-The-Art.

Generative adversarial networks (GANs) [23] revolutionised
data generation with an architecture that involves a generator
and discriminator. While the original GANs focused on images,
text generation has received increased attention in recent years.
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Most approaches perform unconditioned text generation [24],
[25], [26], [27], [28], [29], [30], where the generated data
is unlabeled. Sequence GAN, known as SeqGAN [24], is a
particularly popular approach.

When data quantities are large, a separate unconditioned
generative model could be trained for each class. However,
there are multiple advantages to conditional text generation
where the generated text can be controlled to match specific
classes. Notably, conditional models are trained with data from
all classes which allows for the sharing of parameters, resulting
in better language learning and applicability to smaller datasets.

The initial approaches for conditional text generation relied
on multiple generators [31] or discriminators [32], which
negates many benefits of conditional modeling by limiting
parameter sharing. Also, these approaches do not scale well
for use cases with many classes. There are a few other
promising text generation methods [33], [6], [34] with a unified
architecture containing only one generator and discriminator.
However, some fundamental conditional approaches for images
such as conditional GANs [22] have yet to be adapted and
assessed for text generation.

C. Problem Statement.

A strategic assessment and comparative study of fundamental
conditional text generation approaches is needed. The goal of
conditional generation models, depicted in Figure 1, is to
input a small labeled dataset to generate a large quantity of
realistic labeled data with samples for each class. To work well
for small datasets, such conditional generative models should
have unified architectures that allow for parameter sharing
across class labels during training. While there are a few
conditional text generation approaches that leverage a unified
architecture [33], [6], [34], there has been no identification nor
categorization of fundamental conditional design approaches.
Further, it is unknown which designs will be most effective
for small datasets.

D. Our Approach.

We are the first to conduct an extensive study of unified
text generative architectures, namely, those that have a single
generator and a single discriminator. These unified architectures
are not only appropriate for small healthcare datasets, but
also easily scale for any number of classes, increasing their
utility. By analyzing existing methods in the literature [22],
[31], [32], [33], [6], [35], we identify two core orthogonal
design dimensions compatible with unified sequence generation
architectures; namely, three weighting strategies and three
feedback mechanisms.

To tackle the problem of assessing different conditional text
generative approaches, we thus compose each of the alternate
weighting strategies and feedback mechanisms into a total of
nine fundamental conditional text generation models. While
implemented with the popular SeqGAN architecture, these
approaches could be integrated with any recurrent generative
adversarial model.

We leverage this family of nine models to generate text. In
addition to two datasets with depression screening labels, we
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also demonstrate our methods on a publicly available dataset in
the related domain of sentiment detection [36]. These datasets
exemplify the variety and value emblematic of big data [37].
The variety comes from the fact that the text in each corpus
was generated by many different individuals, each with a
unique style of writing. The value comes from the depression
labels associated with two of the datasets; passively detecting
depression from text would provide immense value towards
automatic screening systems [38].

We perform a comprehensive comparative study to evaluate
the ability of the cSeqGAN and non-conditional SeqGAN
models to generate realistic and predictive text. We evaluate
the performance of all models through machine evaluation by
using a pretrained BERT language model [39]. Additionally,
we also designed a user study to obtain human assessment of
the generated text.

E. Our Contributions
Contributions of our research include:

1) Identifying and adapting three weighting strategies and
three feedback mechanisms for conditional text generation.

2) Assembling nine scalable cSeqGAN models that are
applicable to small datasets that are common in healthcare.

3) Implementing of our models within a text generation
benchmarking platform to assist future researchers.

4) Evaluating the nine cSeqGAN models on three real-world
datasets with depression and sentiment labels.

II. RELATED WORK IN GENERATIVE MODELING

GANSs [23] involve a minimax game between a generator and
discriminator to continually improve the quality of generated
text. Variational autoencoders (VAEs) [40] are also often used
to generate data; an encoder maps the real data to a latent input
space and a decoder uses this latent space to construct new data
instances. As VAEs perform probabilistic sampling, the data is
much more uniform than that generated by GANs. For many
healthcare applications, the more realistic and diverse output
of GANSs is preferable. Conditional GANs [22] proposed the
first conditional generative approach for images; the one hot
encoded class labels were concatenated with the input to both
the generator and discriminator.

SeqGAN [24] was first to adapt GANs for text. Notably,
SeqGAN employed a sequential decision making process and a
Monte Carlo search to approximate state-action value pairs [24].
These adaptations were vital to overcome the limited dictionary
space inherent from using tokens rather than continuous values
and reduce the sparsity of rewards.

Since then, there have been other proposed GANs
for text generation: MaliGAN with Maximum Likelihood
Augmentation [25], GSGAN which uses a Gumbel-softmax
Distribution [26], RankGAN with adversarial ranking [27],
TextGAN with adversarial feature matching [41], LeakGAN
which improves long text generation with leaked information
[29], and RelGAN with a relational memory based generator
[30]. All but the last are encompassed in the Texygen
benchmarking platform [42] which aims to standardize text
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generation research; SeqGAN and LeakGAN performed best,
motivating our use of SeqGAN in this research.

There have been a few recent attempts at conditional
text generation. The first approach [32] involves introducing
adversarial training to a VAE by incorporating a discriminator
for each class option. Meanwhile, SentiGAN [31] proposes
an architecture with a separate generator for each class option
but a single discriminator. These approaches unfortunately do
not scale well. While category sentence generative adversarial
network (CS-GAN) [33] introduces an auxiliary classifier,
only one classifier, one discriminator, and one generator are
required regardless of the number of class options. Medical
Text Generative Adversarial Network (mtGAN) [6] introduces
a conditional constraint to SeqGAN by including features as
additional input at every step of the sequence generation process.
Most recently, category-aware GAN (CatGAN) [34] uses a
hierarchical evolutionary learning algorithm to generate text
in an approach that deviates far from the traditional SeqGAN
architecture. Some of these text generation approaches are
quite promising, but no strategic comparative study has been
conducted to compare fundamental conditioning strategies.

ITI. TEXT GENERATION METHODOLOGY

We compare the three weighting strategies and three feedback
mechanisms we identified for conditional text generation. The
weighting strategies refer to design choices for how the
previously generated word along with the class of the overall
text determine the subsequently generated word. The feedback
mechanisms refer to architectural choices for the critic that
determines the realism of the data for the given class.

These two design dimensions are orthogonal, in that each
of the possible choices along one dimension can be integrated
with all the other choices of the second dimension. That is,
a model can be designed to support one of the weighting
strategies and one of the feedback mechanisms. In this work,
we embed both types of strategies within the popular SeqGAN
model architecture [24], thus constructing a total of nine
unique conditional sequence generative adversarial networks
(cSeqGAN) architectures. Given the unified architecture of
these nine cSeqGAN models, we anticipate that they can be
trained to generate text with relatively small datasets.

A. Sequence GANs

As with traditional GANs [23], SeqGANSs [24] consist of
a generator and a discriminator involved in a minimax game
that iteratively improves text quality. However, SeqGAN alters
the generation process to make it applicable for sequences of
discrete tokens. For text generation, the tokens are words.

SeqGAN leverages a recurrent neural network (RNN) with
Long Short Term Memory (LSTM) [43] as the generator. The
LSTM maps each embedded word z; € x1,..., 27 to a hidden

state h; to create a sequence of hidden states hqy,...,hp.
Notably, the LSTM implements the update function g in
hy = g(htflvxt) (D

to prevent the vanishing and exploding gradient problem. A
softmax output layer then maps these hidden states into an
output token distribution.
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The SeqGAN generator [24] has the objective of maximizing
an expected end reward given the starting state so. This
expected end reward is calculated using an action-value function
of a sequence. Specifically, the REINFORCE algorithm [44]
is used to estimate the action-value function. Further, seqGAN
[24] evaluates the intermediate state action-value pairs to
provide more frequent rewards. This is accomplished using
a Monte Carlo search with a roll-out policy that samples the
remaining 7' — t tokens in the sequence. The roll-out policy is
repeated to reduce variance and improve the reward estimations.

As is the case with GAN [23], SeqGAN uses a convolutional
neural network (CNN) [28] as the discriminator. This CNN
is responsible for classifying each input text as real or fake.
Specifically, a convolution operation is applied to the token
embeddings to produce feature maps which are then pooled.
The goal [24] is to minimize the sigmoid cross entropy loss.

B. Design Dimension: Weighting Strategies

We study three different weighting strategies to condition
SeqGAN models for conditional text generation. In particular,
we study sentence weighting which directly adapts conditional
GANSs [22] to be applicable for text instead of images, and
two different unit weighting strategies inspired by mtGAN
[6]. These latter strategies include single unit weighting in
which the generative model is repeatedly conditioned when
generating each word of the sentence, and dual unit weighting
which likewise conditions the generation of each word but
learns separate weights for the words and labels respectively.
These three weighting strategies are applicable for any model
with a recurrent network for a generator.

1) Sentence Weighting: In this first approach, we condition
the generator only once while generating each sentence. The
initial input to the generator is xo, where z is the concatenation
of z and y. z € R" is a draw from a multivariate Gaussian
distribution, and y is the class we aim to generate. The generator
is an LSTM, such that ; = LSTM (z;_1). Thus, the ¢ word
in the sentence is simply the output of the LSTM conditioned
on the previous output, such that the initial input contains
information of the class to be generated. The Generator LSTM
is defined as follows:

Ji=04(Wyay +Ushy—1 + by) )
iy = 0g(Wixy + Uihi—1 + b;) 3)
or = og(Wows + Ushi—1 + b,) 4
¢y = oc(Wexy + Uchy—1 +be) )
¢ = ftoci1+i40¢ (6)
ht = oy o op(cy), @)

where f, iy, 04, and ¢; are the forget gate, update gate, output
gate, and cell input activation vectors respectively, h; is the
hidden state, and c; is the cell state vector.

This means the LSTM generator is only conditioned on
the class once and is then tasked with generating the entire
sentence.
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2) Single Unit Weighting: We modify the previous strategy
by conditioning the LSTM on the desired class at each step of
the generation process instead of once at the start. The Single
Unit Weighting takes the form of z; = LSTM (W (z,—1 ®v)),
where W is a weight on the input and & is the concatenation
operator. Notably, both the word embedding x; and class
embedding y share the same weight .

This is done by replacing z; in Equations 14-17 with ¢ =
x; + ¥y, resulting in an LSTM defined as

fr=0gWpaqe + Uphy—1 + bf) ®)
iy = 0g(Wiqe + Uihy—1 + by) 9
or = 0g(Woqr + Ughi—1 + b,) (10)
¢t = 0c(Weqs + Uchi—1 +be) (11)
¢t =froci1+ito¢ (12)
hi = o¢ o op(cy). (13)

3) Dual Unit Weighting.: We study another weighting
strategy in which the class embedding and word embedding are
separate inputs into the LSTM generator. In this approach, the
generator takes the form of z; = LSTM (Wazi—1 ® Vy). W
and V are separate weight matrices for the word embedding
z¢—1 and class embedding y. This approach with separate
weights is in contrast to the previous approach that used a single
weight for both features and labels. The LSTM is specifically
defined as

fi=04(Wiay + Viy+ Uphe—q1 + by) (14)
iy = 0g(Wizy + Viy + Ushy—1 + b;) (15)
o = 0g(Wowy + Voy + Ushy—1 + b,) (16)
¢ = oc(Wexy + Vey + Uchy 1 + be) (17)
¢t = ftoci1+i40¢ (18)
ht = oy o op(cy), (19)

where the Ws and V's are separate weight matrices for the
word embedding x and class embedding .

C. Design Dimension: Feedback Mechanisms

We study three feedback mechanisms to adapt SeqGAN
models for conditional generation. These feedback mechanisms
can coexist with any of the aforementioned weighting strategies.
The first feedback mechanism, which we refer to as single task
feedback, directly adapts the conditional GANs discriminator
[22]. The other two feedback mechanisms involve two separate
tasks: assessing realness and assessing class appropriateness.
We refer to the mechanism that only uses one critic as dual
task feedback and the mechanism that uses two critics as dual
critic feedback. This latter strategy is modeled after the dual
critics in CS-GAN for text generation [33] and GAN-control
for image generation [35]. While we use a CNN discriminator
like SeqGAN, these three feedback mechanisms are applicable
for any generative adversarial model that uses a discriminator.

1) Single Task Feedback.: In this feedback mechanism, a
single discriminator network is responsible for deciding whether
the generated text is realistic and whether the generated text
matches the condition y as a single task. Specifically, the
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Fig. 2: The three feedback mechanisms include: (a) a
discriminator that performs a single task, (b) a discriminator
that performs two tasks, and (c) a discriminator that performs
a single task and a classifier that performs a single task. The
realism prediction in (b) and (c) only consider the text while
the consistency prediction in (a) considers the realness of the
concatenated text and label.

discriminator D is a CNN that is trained with the following
cross entropy loss function Lp:

Lp = Edgw(y,z)[_log(l - D<G(yv Z)v y))}
+ Edrwdata [ZOQ(D(dra y))]

Thus, D is trained to distinguish between real and generated
data given knowledge of the class label, allowing for it to reject
text that may otherwise be realistic but does not match the
conditioning label. In this case, the generator G is trained with
the loss Lg:

La =B,y [log(D(G(y, 2),y))] 2D

2) Dual Task Feedback.: In this feedback mechanism, a
single discriminator network performs two separate tasks:
it determines whether the generated text is realistic and it
determines whether the generated text matches the class label.
Let D}(#) be D’s prediction probability for y = i, and let

(20)
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D?(%) be D’s prediction for whether 7 is real or generated.
D is trained with the loss Lp:

Lp =Eg,(y,2)[—log(1 — D*(G(y, 2)))]
+ Ed, ~data [ZOQ(DQ (dr))]
+ E(z,y)~data [IOQ(D;(@)]
In this case, the discriminator is trained to distinguish

between real and generated text, while also being trained to
correctly classify text. The generator is trained with Lg:
Lg = ]Edgw(y,z) [log(DQ (G(ya Z)7 y))]
+Eu )~ (y,) [l0g(Dy ()]
In this setting the generator is trained to fool the discriminator
into classifying it as real, while also being given the correct
class by the discriminator.

3) Dual Critic Feedback.: This mechanism aims to separate
the tasks of determining real text from fake text and correctly
predicting classes. To this end, we utilize a dual critic approach
in which the discriminator D only determines real text from
fake text while a completely separate classifier C' performs the
classification. The discriminator D is thus trained as follows:

Lp = Edgw(y,z)[_log(l - D(G(y7 z)))]
+ Ed, ~datallog(D(d;))]
Thus, D is trained to determine real text from fake text with

no information regarding the class. Meanwhile, C' is trained
to predict classes on the real data with loss L¢:

(22)

(23)

(24)

Lo = E(z )y, [log(C(2))] (25)

Lastly, the generator G is trained to generate realistic enough
text to fool D while achieving accurate classification of the
generated text from C:

Lg = EdQN(y,z) [lOg(D(G(y’ Z)))]

(26)
+ E(z y)~(y.2)[l0g(C(2))]

D. Combining Strategies

As mentioned, each of the three weighting strategies
can be combined with each of three feedback mechanisms
for conditional text generation. There are thus nine unique
c¢SeqGAN architectures that can be constructed. Notably, not
all combinations of the weighting strategies and feedback
mechanisms exist in the related literature.

E. Software and Availability.

The code for our cSeqGAN models, implemented within
the Texygen [42] framework, will be made available
at https://github.com/mltlachac/cSeqGAN upon publication.
Additionally, we will make the evaluation metrics for each
individual model available. Due to sharing restrictions and
privacy concerns, we are unable to share the raw transcripts
or text messages. However, we have included examples of
generated texts from our user study surveys in Tables IV - VL.
While we focused our analysis on BLEU-2 due to the short
lengths of the texts, we also include BLEU-3 and BLEU-4
scores of the generative models in Tables I - III. We will post
research updates at emutivo.wpi.edu.
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IV. EXPERIMENTAL DESIGN
A. Datasets with Labeled Text

In this research, we leverage two datasets containing text
with depression labels that have previously proved most
useful for depression screening [4], [3]. Similar to many
healthcare datasets [5], these datasets are small and would likely
benefit from generative modeling to increase data quantity.
Additionally, we demonstrate our methods on a popular publicly
available dataset [45] in the related domain of sentiment
detection [36] for replicability purposes.

Clinical Interviews. The Distress Analysis Interview Corpus
Wizard-of-Oz (DAIC-WQZ) dataset [46], [47] contains clinical
interview transcripts labeled with Patient Health Questionnaire-
8 (PHQ-8) depression screening scores. Available to academics
upon request, these interviews are common for depression
screening research [48]. A PHQ-8 score of at least 10 out of the
possible 24 is interpreted as screening positive for depression
[49]. Each of the 189 participants were asked a subset of
core clinical interview questions by a virtual interviewer with
followup questions as needed. For this research, we consider
each of the 3774 sentences in the transcripts to be separate
data instances.

Text Messages. The SMS text messages in the combined
Moodable and EMU datasets [3], [9], [12] are labeled with
PHQ-9 depression screening scores. While the PHQ-9 contains
one more question than the PHQ-8, they share the same
moderate depression screening cutoff of 10 [49]. These text
messages were obtained from crowd-sourced study participants.
Since the text messages capture real communications and
are not in response to clinical prompts, we consider only
texts from the participants with more polarizing PHQ-9 scores.
Specifically, we use the 5360 text messages sent within the prior
two weeks by the crowdsourced participants with PHQ-9< 5
and PHQ-9> 15.

Movie Reviews. The publicly available Stanford’s Large
Movie Review Dataset [45], commonly referred to as the
Internet Movie Database (IMDb) Movie Review Dataset, is
popular for binary sentiment classification. The notably brief
reviews are highly polarized. While this is a large dataset, we
only use 4503 reviews to mimic the size of the other two
datasets that have depression screening labels.

B. Experimental Setup

We implement our nine cSeqGAN architectures within
the Texygen benchmarking platform [42] for unconditioned
text generation. Additionally, We also generate text with
unconditioned SeqGAN models as baselines for comparison; a
different SeqGAN model is required for each class. To train
the generative models, we down sample each dataset to the size
of the minority class: 2133 for movie reviews, 1207 interview
replies, and 2680 for text messages. The discriminators are
pretrained for 50 epochs before the 50 adversarial training
epochs. Each model generate 4480 labeled texts. We run each
model five times to obtain a confidence interval. The models
were run on an internal cluster using NVIDIA V100 or T4
GPUs with at most 64 megabytes of RAM.
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C. Machine Experimental Evaluation Approach

We evaluate the generated text quality with two established
and popular text generation metrics [42]. The first of these
metrics is the negative log-likelihood (NLLge,) which is
an output of the recurrent generator. A lower NLL ., is
indicative of better generated sentence diversity. In contrast, the
Bilingual Evaluation Understudy (BLEU) score [50] assesses
the similarity of the generated sentences with the real sentences.
Effectively, a higher score is indicative of more realistic text.
Given the short length of our input data, we focus our analysis
on the BLEU-2 scores which assesses 2-gram matches, though
we also report on BLEU-3 and BLEU-4 scores.

We further compare the predictive value of the real text
and generated text. Bidirectional Encoder Representations
from Transformers (BERT) [39] is a pretrained language
representation model that can be fine-tuned for many tasks.
The pretraining on a large corpus allows BERT to create useful
feature embeddings for smaller datasets. Previously, BERT
classifiers have proven effective at classifying short texts, such
as sentiment from movie reviews [51], disaster events from
tweets [52], and depression from clinical interview transcripts
[4]. Thus, we use BERT classifiers with the parameters
successful in related research [51]: learning rate of 22107°, 4
training epochs, and batch size of 32.

We only consider texts with at least two words for BERT
input. We reserve 300 positive and 300 negative instances from
each real dataset to use as testing data. As only four of the 135
conditional generative model runs failed to generate instances
of each class with sufficient length, we proceed with 1200 (or
the minimum class count) randomly sampled instances from
each class as training data. For the real data and SeqGANs
output, we also randomly sample 1200 instances of each class.

As we ran each conditional model five times, we have five
NLLg.,, BLEU-2, BLEU-3, BLEU-4, and accuracy scores.
The average and standard deviation of these scores are reported
in Tables I-III. For the unconditioned SeqGAN models, we
average the NLL ., scores for all ten models (5 positive and
5 negative). To calculate BLEU-2 for SeqGAN, we combine
the positive and negative output from two models.

D. Human Experimental Evaluation Approach

We further conduct Turing tests to evaluate the texts by
having humans rate the text samples. While the related literature
[24], [29] only uses Turing tests to assess text quality, we also
have humans assess the text predictiveness. Thus, in addition
to determine if text samples seemed realistic, evaluators were
also tasked to determine what class they believed the sample
belonged to; i.e., whether a sample of generated text originated
from someone who screened positive for depression or not. We
expect determining predictiveness to be difficult for the text
with depression labels, due to ascertaining depression from
only text message data is naturally expected to be a difficult
task for human evaluators.

For each dataset, we construct five surveys consisting of
66 text samples. Only samples with more than two words
were eligible for the surveys. In addition to the real data, we
randomly sample three positive texts and three negative texts
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from the output of each of the ten generative models. As we ran
each model five times, we thus form five surveys per dataset.
Given the five surveys and six text samples per model, each
model configuration was assessed by 30 text samples.

For each sample in the surveys, we ask two binary questions.
The first assesses the predictive quality and the second assess
the realism. For example, the first question for text messages
asked “Is the writer of this text message depressed or not
depressed?" with options “depressed” or “not depressed". The
second question asked “Was this message created by a human
or a computer?” with options “human" or “computer".

We recruited 32 university students to evaluate the texts
under WPI IRB 00007374. Each of the 30 samples was rated
by 3 students, resulting in 90 assessments for each model
configuration. Text examples from these surveys are in Tables
IV-VIL In each survey, we calculate the accuracy of responses
for each model. The average of these five accuracies for each
model configuration are reported in the aforementioned Tables.

V. COMPARATIVE STUDY RESULTS

The results of our machine evaluation are in Tables I-III
while the results of our human evaluation are in Tables IV-
VI. Unlike for the conditioned models, we needed a separate
unconditioned SeqGAN model for each class. While the other
machine evaluation metrics were not applicable for the real text,
we did calculate the accuracies of the real text for comparison.

A. Machine Evaluation: Text Quality and Diversity

From the results, we observe that the average BLEU-
2 scores are higher for all of the cSeqGAN models than
the unconditioned SeqGAN models for each dataset. The
differences are largest for the clinical interviews in Table I
where each of the conditional models have an average BLEU-2
score more than 0.3 higher than the unconditioned models. This
indicates that the conditioned models produced more realistic
text, likely due to parameter sharing.

When considering only the impact of weighting strategies and
feedback mechanisms on the evaluation metrics, some patterns
emerge. Notably, the lowest NLL ., score was achieved by
the models using the sentence weighting strategy. In contrast,
the feedback mechanisms that yield the lowest NV L Lg.,, scores
for all weighting strategies are different for each dataset: single
task for the movie reviews, dual task for the clinical interviews,
and dual critic for text messages.

Comparing the BLEU scores of the nine cSeqGAN
architectures also reveal some patterns. Dual unit weighting
paired with dual task feedback has very high average BLEU-
2 scores for clinical interviews and movie reviews while
single unit weighting and single task feedback has very high
average BLEU-2 scores for text messages and movie reviews.
For BLEU-3 and BLEU-4, the single unit weighting strategy
produced the most realistic text, especially when paired with
the dual critic feedback mechanism.

B. Machine Evaluation: Text Predictiveness

Unfortunately, the generated text from the cSeqGAN models
were not particularly predictive. For all three datasets, the
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TABLE I: Clinical Interviews: Machine evaluation average & standard deviation. Accuracy is obtained with BERT classifiers.

Weighting Feedback | NLL | BLEU-2 BLEU-3 BLEU-4 |  Accuracy

Unconditioned  Unconditioned | 0.710 4+ 0.084 | 0.203 £ 0.008 0.284 + 0.008 0.164 4+ 0.005 0.548 + 0.004
Sentence Single Task 0.723 £0.013 | 0.544 £0.013 0.255+£0.020 0.143 £0.025 | 0.500 £ 0.008
Sentence Dual Task 0.720 £0.020 | 0.550 £0.046 0.291 £0.032 0.163+0.017 | 0.500 £ 0.008
Sentence Dual Critic 0.708 £0.024 | 0.504 £0.029 0.271 £0.008 0.155+0.005 | 0.504 + 0.007
Single Unit Single Task 0.733 £0.032 | 0.527£0.040 0.262 +0.023 0.158 +£0.015 | 0.512 £+ 0.006
Single Unit Dual Task 0.767 £0.032 | 0.516 &0.028 0.298 & 0.040  0.172 £ 0.026 | 0.512 4 0.009
Single Unit Dual Critic 0.756 £ 0.018 | 0.539 £0.037 0.279 £0.027 0.163+0.012 | 0.498 + 0.004
Dual Unit Single Task 0.740 £0.026 | 0.518 £0.023 0.282 +0.038 0.164 +0.024 | 0.506 £ 0.004
Dual Unit Dual Task 0.768 £ 0.074 0.556 +=0.035 0.270 £0.021 0.163 +0.015 | 0.504 £+ 0.007
Dual Unit Dual Critic 0.757 £0.030 | 0.504 £0.028 0.081 £0.002 0.051 £ 0.000 | 0.494 + 0.006

TABLE II: Text Messages: Machine evaluation average + standard deviation. Accuracy is obtained with BERT classifiers.

Weighting Feedback | NLL | BLEU-2 BLEU-3 BLEU-4 |  Accuracy

Unconditioned  Unconditioned | 0.247 +0.052 | 0.223 +0.060 0.155+0.021 0.100 £0.012 | 0.674 + 0.018
Sentence Single Task 0.216 £0.005 | 0.335+0.035 0.153£0.012 0.105+ 0.009 | 0.487 £ 0.033
Sentence Dual Task 0.214 + 0.012 | 0.3154+0.018 0.146 +0.010  0.096 £+ 0.006 | 0.520 #+ 0.029
Sentence Dual Critic 0.220 £0.004 | 0.317+£0.032 0.1534+0.012 0.098 £0.009 | 0.478 £ 0.039
Single Unit Single Task 0.229 +0.006 | 0.340 + 0.019 0.156 £0.013  0.102 £0.007 | 0.469 £+ 0.041
Single Unit Dual Task 0.225 +0.009 | 0.326 +0.014 0.134 +£0.018 0.086 +0.015 | 0.515 + 0.039
Single Unit Dual Critic 0.234 +0.009 | 0.306 +0.034  0.160 + 0.005 0.105 £ 0.005 | 0.506 £+ 0.036
Dual Unit Single Task 0.230 +0.008 | 0.3254+0.020 0.146 £0.013 0.100 £0.014 | 0.503 £ 0.036
Dual Unit Dual Task 0.225 +0.003 | 0.305+0.033 0.152+0.008 0.101 £0.008 | 0.509 £ 0.023
Dual Unit Dual Critic 0.235+0.004 | 0.336 +0.018 0.083 £0.018 0.054 £0.011 | 0.506 £+ 0.031

TABLE III: Movie Reviews: Machine evaluation average + standard deviation. Accuracy is obtained with BERT classifiers.

Weighting Feedback | NLL | BLEU-2 BLEU-3 BLEU-4 |  Accuracy

Unconditioned = Unconditioned | 1.736 4+ 0.073 | 0.269 £ 0.021 0.155 £ 0.01 0.088 £0.004 | 0.773 £ 0.016
Sentence Single Task 2.072 +£0.055 | 0.370+0.017 0.157 £0.007 0.087 £ 0.003 | 0.490 £ 0.019
Sentence Dual Task 2.055 +0.065 | 0.371+0.025 0.156 £ 0.014 0.09 £ 0.007 0.519 £ 0.016
Sentence Dual Critic 2.016 +£0.071 | 0.384 +0.019 0.158 £0.016 0.09 £ 0.007 0.496 + 0.042
Single Unit Single Task 2.286 +0.120 | 0.3954+0.009 0.151 £0.009 0.083 £ 0.006 | 0.506 £ 0.032
Single Unit Dual Task 2.185+0.044 | 0.387 £0.008 0.1634+0.004 0.092 + 0.003 | 0.489 + 0.043
Single Unit Dual Critic 2.229+£0.031 | 0.359+0.033 0.167 4+ 0.009  0.093 + 0.004 | 0.516 + 0.030
Dual Unit Single Task 2.266 +£0.024 | 0.380 £0.025 0.1454+0.014 0.083 £+ 0.005 | 0.483 + 0.032
Dual Unit Dual Task 2.254+0.053 | 0.397 +£ 0.011 0.1574+0.003 0.087 +0.003 | 0.492 + 0.033
Dual Unit Dual Critic 2.174+0.075 | 0.374+0.016 0.091 +0.013 0.056 +0.006 | 0.479 + 0.019

generated text from the unconditioned models performed better
in the BERT classifiers than the text from the conditioned
models. Interestingly, the depression screening ability of the
generated interview transcripts from all models exceeded that
of the real interview transcripts which achieved an unexpectedly
low accuracy of 0.48540.004; this indicates that the generative
models amplified the signal for the class label. However, this
is not true for the text messages and movie reviews where the
real data achieved respectable accuracies of 0.711 £ 0.027 and
0.831 £+ 0.015, respectively. Thus, the real data proved more
predictive than the generated data for these two datasets.

C. Human Evaluation

As is the standard in unconditioned text generation research
[24], [29], [27], [30], we tasked our human evaluators with
assessing the realness of the generated texts. For each dataset,
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our evaluators understandably achieved the highest accuracy on
the real data: 0.80040.056 for clinical interviews, 0.856+0.044
for text messages, and 0.767+0.108 for movie reviews. Further,
the samples from the unconditioned models were not rated
the most or least realistic. Notably, for the depression datasets,
the text from the sentence weighting strategy paired with the
single task feedback mechanism was rated least realistic.

We also tasked our human evaluators with assessing the
predictive value of the generated texts, which we anticipated to
be very difficult for depression detection. This hypothesis was
validated, as the highest accuracies were 0.60 and 0.57 for the
depression datasets. Unexpectedly, the accuracies on the real
data was even lower with 0.567 £ 0.089 for clinical interviews
and 0.522 + 0.097 for text messages. Thus, for the real text
messages, BERT classifiers were able to detect a depression
signal that the human evaluators were not.
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TABLE IV: Clinical Interviews: Accuracy average + standard deviation for the human evaluation tasks and survey examples.

| Realness Predictiveness | Not Depressed Example Depressed Example
Unconditioned  Unconditioned | 0.689 4+ 0.143  0.578 2 0.044 | whats a valuable lately um end i bad awake reading
Sentence Single Task 0.500 £ 0.136  0.467 £0.232 | and i dont know i am um a person of different thing
Sentence Dual Task 0.600 £ 0.206  0.567 £ 0.065 | oh sniff that you know or not much how so
Sentence Dual Critic 0.745 £ 0.129  0.589 £ 0.109 | uh the first one ive been feeling pretty um
Single Unit Single Task 0.622 £0.231  0.544 £ 0.108 | ten imaginable consultant part uh that was about
Single Unit Dual Task 0.622 +0.065 0.456 £ 0.082 | hanging with friends so so im sorry
Single Unit Dual Critic 0.522 +0.083  0.444 +£0.121 | uh two ago more stress in my mother
Dual Unit Single Task 0.645+0.156  0.444 £0.035 | every few years ago i dont felt members and groups
Dual Unit Dual Task 0.622 +0.187 0.500 £0.117 | just dont be more uh i dont dont like
Dual Unit Dual Critic 0.711 +£0.181  0.600 £ 0.102 | im really really good for me i think like down

TABLE V: Text Messages: Accuracy average + standard deviation for the human evaluation tasks and survey examples.

| Realness Predictiveness | Not Depressed Example Depressed Example
Unconditioned ~ Unconditioned | 0.500 £0.099 0.533 £0.125 | im gon na ease up it how like they want you too
Sentence Single Task 0.278 £ 0.182  0.533 = 0.156 | i am home it wasnt a bad table
Sentence Dual Task 0.400 £0.223  0.433 £0.065 | i was text u up miss u too stumbling
Sentence Dual Critic 0.511 £ 0.177  0.567 + 0.042 | its going to seaside lol sure call about 200 lol
Single Unit Single Task 0.433 £0.178  0.500 £ 0.070 | them gon na control oh we was gon na play
Single Unit Dual Task 0.456 +0.249  0.522 £ 0.147 | ill ask some for dakota your still waiting on it
Single Unit Dual Critic 0.511 +0.154 0.533 +0.075 | do im sure love u u want to be there
Dual Unit Single Task 0.444 4+ 0.126  0.500 & 0.070 | much better but if im ok last way is not ok
Dual Unit Dual Task 0.589 + 0.178  0.511 +£0.042 | it went had a wonderful birthday ~ yeah babe just getting mad than
Dual Unit Dual Critic 0.478 £0.120  0.500 £ 0.061 | idk if ill be out then it warm had is sad

TABLE VI: Movie Reviews: Accuracy average + standard deviation for the human evaluation tasks and survey examples.

\ Realness Predictiveness | Positive Sentiment Example Negative Sentiment Example
Unconditioned  Unconditioned | 0.656 +0.089  0.700 + 0.188 | a moving big drama with cool we both scary
Sentence Single Task 0.622+0.022 0.411+0.114 | and theyre not an actor eerily accurate depiction of admission
Sentence Dual Task 0.500 £0.149  0.611 £0.208 | just like how bad great movies have no documentary
Sentence Dual Critic 0.500 £0.099 0.511+£0.133 | i hate a sound movie its too bad to watch
Single Unit Single Task 0.589 £ 0.075  0.322+£0.155 | all in a terrific thing but it feels strangely diverting
Single Unit Dual Task 0.689 + 0.155 0.5114+0.074 | its really dull but it never is really funny
Single Unit Dual Critic 0.611 £0.157 0.478 £0.171 | the pool drowned me dull or tuned and entertaining
Dual Unit Single Task 0.467 £0.167 0.411£0.264 | you like the first enjoyable movie — a modernday point
Dual Unit Dual Task 0.567 £0.124 0.378 £0.108 | a pleasure of fiction who are boring
Dual Unit Dual Critic 0.533 £ 0.152  0.567 & 0.226 | pompous and good documentary its not too immature and unpleasant

Our evaluators were better at classifying the intentionally
polarizing movie reviews with an accuracy of 0.811+0.097 on
the real text, which is similar to the 0.831 & 0.0015 achieved
by the BERT classifiers. Of the generated movie reviews, the
unconditioned models had the highest accuracy of 0.70.

VI. DISCUSSION, LIMITATIONS, & FUTURE WORK
A. Contributions

In this research, we identified three weighting strategies and
three feedback mechanisms for conditional adversarial text
generation. These approaches combine to create nine unique
c¢SeqGAN architectures. We further conduct a comprehensive
comparative evaluation of these conditioning approaches on

three small text datasets with depression and sentiment labels.

As the first comparative study for fundamental conditional
text generation strategies, we provide a valuable resource to
inform future text generation applications and research. Our
study is particularly useful for the healthcare domain where
datasets tend to be small [5] and can therefore benefit from
augmentation.
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B. Data Limitations

The BERT classifiers were unfortunately unable to classify
the real clinical interview sentences. Unlike prior work that
successfully classifies DAIC-WOZ transcripts with BERT [4],
[53], [54], we made the task more difficult by combining the
responses to all questions in a single corpus and treating each
sentence as a separate instance. Despite this preprocessing to
increase the number of data instances, the clinical interviews
remained the smallest dataset. Additionally, the clinical
interviews were the least polarized dataset, as the movie reviews
were intentionally polarized [45] and our preprocessing of the
text messages involved only using texts sent by participants
with the most polarizing depression screening scores. Unlike for
the transcripts, the BERT classifiers were able to classify movie
review and text message datasets which achieved accuracies
of 0.831 and 0.711 respectively.

Additionally, the variety of the data we worked with
exacerbated the issue of small dataset size. Prior work on
short-text stylometry has shown that authors can be identified
from even short messages, such as emails and texts [55]. This
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indicates that individuals have unique styles when composing
text messages and movie reviews. Thus, considering there
were only a handful of samples from each user, the models
struggled to generalize and accurately recreate their styles. This
problem may be lessened if the vocabulary size was limited.
Future work on the trade-off between vocabulary size and the
dataset volume needed to train effective generative models is a
promising direction for future work to build off of our results.

C. Performance Trade-off

It is unfortunate that the machine evaluation metrics indicate
that there is a trade-off between generating realistic texts
and generating predictive texts. While we selected a BERT
classifier based on its use in prior depression detection research
with small datasets [4], [16], it is possible that a different
classifier would not result in this trade-off. This in in fact
a research direction unto itself. Given our results, neither
the unconditioned nor conditioned models currently perform
sufficiently for their generated texts to be useful in augmenting
the small existing real datasets for the purpose of depression
screening. Yet, our comprehensive comparative study promises
to help further research in this domain and can be built off of
to yield a more viable solution in the future.

D. Future Opportunities

In this paper, we focused on generating text for depression
detection. Thus, we demonstrated the conditional models on the
small datasets available in this domain. Yet, our conditioning
strategies are also applicable for larger labeled text datasets.
While we implemented our nine cSeqGAN architectures to
generate data with binary labels, all of the proposed conditional
models are also easily scalable for more labels as there are
no extra components that are required for extending the label
set. Further our weighting strategies can be applied to any
generative model with a recurrent network as a generator and
our feedback mechanisms can be applied with any discriminator.
Since we implemented the cSeqGAN architectures within the
Texygen benchmarking platform [42], it would be easy to apply
our conditioning approaches to the other generative networks.

VII. CONCLUSION

Due to small datasets being very common within healthcare
[5], generating labeled text data for augmentation has the
potential to greatly improve diagnostic and prognostic modeling.
To this end, we conduct the first comparative study of
conditional adversarial networks for generating small text
datasets typical of the healthcare domain. In particular, we
assembled a family of nine cSeqGAN models with unified
architectures that make them applicable for smaller datasets
and scalable regardless of the number of classes. We then
use our cSeqGAN models to generate labeled transcripts, text
messages, and movie reviews. In addition to determining quality,
we also use both machine and human assessments to determine
the usefulness of the generated text to detect depression and
sentiment. As we implemented all of our cSeqGAN models
within a unified text generation benchmarking platform, they are
a valuable resource for both machine learning and healthcare
researchers.
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