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Abstract—Fair Learning To Rank (LTR) frameworks require
demographic information; however, that information is often
unavailable. Inference algorithms may infer the missing demo-
graphic information to supply to the fair LTR model. In this
study, we analyze the effect of using a trained fair LTR model
with uncertain demographic inferences. We show that inferred
data results in varying levels of fairness and utility depending
on inference accuracy. Specifically, less accurate inferred data
adversely affects the rankings’ fairness, while more accurate
inferred data creates fairer rankings. Therefore, we recommend
that a careful evaluation of demographic inference algorithms
before use is critical.
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I. INTRODUCTION

Ranking algorithms have become increasingly widespread
through their use in job candidate searches, lending, college
admissions decisions, and more [1]. As a result, controlling
for social biases in these algorithms has become an important
area of focus. A considerable amount of work has been
done to integrate fairness into automated systems [2]. A Fair
Learning To Rank (LTR) framework works to reduce bias
against a protected group, a group against which it is illegal
to discriminate [3]. Reducing this bias may create a ranking
that is less relevant to the targeted use of the ranked result list.
Thus, fair LTR models affect both fairness and utility of the
ranking [2].

Fair LTR frameworks need demographic information about
protected groups to control for potential systemic biases in
the training data. However, in practice, such demographic
information is often unavailable [4]. To solve this problem,
Al system developers may use demographic inference methods
to infer the missing information. Such information could then
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be supplied to the fair LTR model, allowing the model to
function [5] [6]. Inference methods make use of the available
data, which could be first names, last names, zip code, images,
and even email addresses, to predict demographic information
such as race or gender of individuals, which is needed by the
model to ensure fairness.

However, misclassifications by Al inference mechanisms
may lead to unintended consequences and inadvertently in-
troducing bias. Santamaria and Mihaljevi¢ [5] have compared
the efficacy of several gender inference methods, finding that
errors are common and accuracy is never guaranteed. This
raises the critical research question: Are “fair” Al algorithms,
such as fair LTR, actually fair when applied to real-world
datasets with potential missing demographic information?

Our Approach. In this research, we investigate how uncer-
tainty in gender inference affects the performance of a trained
fair LTR model. We adopt DELTR, a popular fair LTR model
created in 2020 by Zehlike and Castillo [2]. Furthermore,
we work with three real-world gender inference algorithms:
Facebook Generated Name List [7], Genderize.io [8], and
Gender-API [9].

We then employ the COMPAS dataset collected by
ProPublica [10], which describes Broward County defendants
in 2013 and 2014, as well as ground-truth demographic
information including “male” and “female” assignments! for
each defendant—which is essential for assessing our research
question. This information is used to train both fairness-
aware and fairness-unaware LTR models. We then analyze
the performance of the models in terms of both fairness and
utility.

Deploying these two models on both the data with actual
ground-truth gender and inferred gender, we sought to answer

'While “male” and “female” are typically sex terms, we refer to this
information as “gender’ since we are applying gender inference algorithms.
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the following important research questions:

o When using inferred demographic information, are the
benefits of a fairness-aware LTR model still present
compared to the use of a fairness-unaware LTR model?

o« How does the performance of a fairness-aware LTR
model change when using inferred demographic infor-
mation instead of actual demographic information?

We find that less accurate inferred gender adversely affects
the rankings’ fairness, while more accurate inferred gender
creates fairer rankings. We recommend a careful evaluation
of demographic inference algorithms before use to ensure no
harm is inadvertently done to disadvantaged groups.

II. BACKGROUND AND RELATED WORK

We briefly discuss how fairness has been defined in the
literature, introduce fair ranking methods, and present previous
work in fairness and demographic inference.

A. Algorithmic Fairness

Discrimination is ever present in our world and as such,
often shows up in data-driven modeling. Thus, fairness has
now become a critical concern in the context of applying
machine learning in the real world [11]. Zliobaité [12] defines
fairness as: (1) people that are similar in terms of non-
protected characteristics should receive similar predictions,
and (2) differences in predictions across groups of people can
only be as large as justified by non-protected characteristics.
Additionally, fairness literature has defined group fairness—
as opposed to individual fairness—which seeks to achieve
demographic parity and equalized odds [13].

B. Fair Ranking Algorithms

Fair ranking algorithms can be defined under three cat-
egories: pre-, in-, and post-processing methods [2]. Pre-
processing aims to reduce bias at the training stage. In-
processing learns a model that can control for bias. Post-
processing is instead given an unfairly ranked list, then re-
ranks the list to improve the fairness. Zehlike and Castillo
[2] show that pre-processing and post-processing methods can
be problematic, while in-processing methods tend to be more
effective in addressing these problems.

C. Inference Algorithms

Demographic inference algorithms attempt to predict the
demographic information, like race or gender, of individuals.
They are commonly used in fair LTR models when demo-
graphic information is missing. However, there is little work on
understanding the effect of demographic inference on fairness.
The one exception we are aware of is the recent study by
Ghosh et al. [6], which is restricted to post-processing fair
ranking solutions. Ghosh et al. [6] found that using inference
algorithms in the context of post-processing fair ranking tends
to result in more harm to vulnerable groups than without any
fair re-ranking method. They report that the detriment inferred
data has on fairness is often hard to predict, which prompted us
to explore this research question in the context of in-processing
methods—a currently open research question.

III. ALGORITHMS AND METRICS
A. Metrics for Ranking Evaluation

Metrics have been designed to quantify fairness and utility
of the results of fair ranking solutions. Two popular metrics are
Skew [1], a representation-based fairness metric, and NDCG
[14], a utility metric. Representation-based fairness metrics
consider the underlying population in the dataset with respect
to the protected group G; and its proportion in the top entries
in the ranking generated by the fair ranking algorithm. On the
other hand, utility metrics determine the quality of a ranking,
i.e., how relevant the top entries are to the targeted application
(e.g., towards meeting their employee hiring objective).

Skew. First introduced in 2019 by Geyik et al. [1], the Skew
for a group G, at position k in a ranking 7 is

Pre G,

Skewg,Qk(T) =
yZxer

)
where p.» , denotes the proportion of members in group G
in the top k positions of the ranking 7, p; ¢, the proportion of
members in group G; of the entire ranking 7, and ¢ € {0, 1}.
Skewg,Qk(7) > 1 indicates the group G; is over-represented
in the top k elements of 7, whereas Skewg, @Qk(7) < 1 means
the group G; is under-represented.

We also evaluate fairness at a position using the difference
in Skew values between the two relative groups, which we call
ASkew:

ASkewQk(r) = |Skewg,Qk(T) — Skewg, Qk(T)|  (2)

for a ranking 7 with non-protected group G and protected
group (i1 (e.g., males and females). ASkew@k(7) = 0 occurs
only when both groups Gy and G; have skew values of 1 at
position k, i.e., both groups are represented accurately in the
top k elements. Thus, values of ASkew closer to 0 can be
considered more fair.

NDCG. As proposed by Jérvelin and Kekéldinen in 2002
[14], Normalized Discounted Cumulative Gain (NDCG) is
commonly used to judge overall utility of a ranking 7.

7]

A riEsy ®

where s; represents the utility score of the 7th element in the
ranking 7, and Z = ZLT‘1 Tog (1 - Larger NDCG values
correspond to rankings with hlgiler overall utility.

NDCG(t

B. Fair Learning to Rank Algorithm

For our study, we select the fair LTR framework DELTR
created by Zehlike and Castillo [2], which builds off of
the ListNet algorithm [15]. Like ListNet, DELTR is an in-
processing fair ranking algorithm built for supporting fairness
relative to a protected and non-protected group. Additionally,
DELTR actively considers the average exposure of each group
G, to ensure equal treatment of members within these groups.
Exposure asserts that items at the top of a ranked list will

receive more attention from the reader than items at the
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Fig. 2. Sankey plot for FGNL. “M” represents male and “F” represents
female.

bottom. Thus, DELTR is mainly concerned with increasing
fairness for the top items of a ranking.

DELTR balances fairness and utility using the parameter y.
Training DELTR with v = 0 does not consider exposure of
each group, creating a fairness-unaware trained model that
solely considers utility in its ranking. A non-zero 7y value
will prioritize a model that provides equal average exposure
between the protected and non-protected groups instead of
focusing solely on accurate utility scores. For our study, we
define a fairness-aware model as one where y = 1.

C. Gender Inference Methods

In order to accommodate the binary nature of DELTR and
the current limitations of inference algorithms, we adopt a
simplistic binary system to classify gender.

The gender inference algorithms, given a first name, will
infer and return a gender. Some of the algorithms return
unknown or ambiguous values, which we handle by assigning
them as “male” because the COMPAS dataset is majority male.

We use three popular algorithms for gender inference:

Facebook Generated Name List (FGNL): All inference
calls to FGNL use a static database created from observ-
ing the gender listed on Facebook users’ profiles [7].
Gender-API (GDAP): Trained on publicly available
governmental archives and social network information,
GDAP is a high-end gender inference algorithm [9].
The algorithm accepts both first name and full names
to provide gender inferences with supporting meta data
such as confidence percentage and regional information.
Genderize.io (GDZE): GDZE is a widely used gender
inference algorithm that bases its predictions off of a
person’s first name and, optionally, their country [8]. It
has been used by sources such as The Washington Post,
The Atlantic, and The Guardian.

Ground-Truth

Gender-API

Mo97 983 M

Fig. 3. Sankey plot for Gender-APIL.
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—

Fig. 4. Sankey plot for Genderize.io.

Figure 1 highlights the percent accuracy-i.e., correctly
inferred gender—of our inference process after unknown values
were assigned to “male”. Figures 2-4 show the number of
accurate and inaccurate classifications for each algorithm on
the COMPAS test data. We see that FGNL and GDAP have
similar accuracies, while GDZE is much less accurate.

IV. EXPERIMENTS
A. COMPAS Dataset

Commonly used in fairness research [16] [17], the
COMPAS dataset was collected by ProPublica for an article
assessing discriminatory patterns in the COMPAS Recidivism
assessment, a national screening tool for future criminal be-
havior [10]. The data describes 6,172 Broward County pretrial
defendants from 2013 and 2014 with name and sex informa-
tion for each defendant. The non-demographic features that the
trained DELTR model utilizes to predict COMPAS Recidivism
scores for each defendant are juvenile felony count, juvenile
misdemeanor count, total priors count (including juvenile
felonies and misdemeanors), and days in jail.

B. Analysis Method

Our method can be broken into several parts which are
described below.

Prepare Dataset. We first produce an 80/20 training/testing
split on the dataset, i.e., 80% of the items in our dataset are
used for training, and the other 20% are used for testing.

Train DELTR. Using the training split, we apply the pub-
licly available code? to train two DELTR models, a fairness-
unaware (y = 0) and fairness-aware (y = 1). This dataset
includes ground-truth gender information, with females as the
protected group G.

Inference Algorithms. We compute the inferred gender
for the COMPAS test split separately for our three inference
algorithms FGNL, GDZE, and GDAP, generating three copies

Zhttps://github.com/fair-search/fairsearch-deltr-python
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of the test split with inferred gender information. We keep a
fourth testing split with actual gender information.
Test DELTR. We run the four test datasets through the two
trained DELTR models, obtaining eight distinct rankings.
Metric Computation. We input each ranking shown in
Table 1 through the metrics described in Section 3A.

Ranking Inference Fair-
ORIG none none
ORCL none aware
vLTR none unaware
vFGNL FGNL unaware
vGDAP Gender-API unaware
vGDZE Genderize.io  unaware
FGNL FGNL aware
GDAP Gender-API aware
GDZE Genderize.io  aware

TABLE I
RANKED SETS

V. RESULTS

We present our results corresponding to our two research
questions.

A. Fairness-aware vs. Fairness-unaware Models

We first answer the question: When using inferred demo-
graphic information, are the benefits of a fairness-aware LTR
model still present compared to the use of a fairness-unaware
LTR model?

Shown in Figures 5 and 6, the fairness-aware ground-truth
ranking has a smaller ASkew value and a larger NDCG value
than the fairness-unaware ground-truth ranking, as expected.
We note that the fairness-unaware ground-truth, FGNL, and
GDAP rankings show the same high ASkew and NDCG
values. This is intuitive, as small differences in gender infor-
mation should have little effect on a fairness-unaware model.
For both the FGNL and GDAP rankings, the fairness-aware
models show a notable improvement in ASkew compared to
the fairness-unaware models, with just a marginal decrease
in NDCG. However, GDZE shows no difference in ASkew
and an increase in NDCG from the fairness-unaware to the
fairness-aware model. The differences in the behavior of
GDZE is likely due to its lower percent accuracy.

B. Performance Using Inferred Data

We then answer the question: How does the performance
of a fairness-aware LTR model change when using inferred
demographic information instead of actual demographic in-
formation?

By examining Figure 7, it is clear that the original rank-
ing (ORIG) is the least fair, showing a significant under-
representation of females in the top 20 positions. The fairness-
aware model with actual gender information (ORCL) over-
corrects for this and over-represents females. The skews of
FGNL, GDAP, and GDZE are closer to 1 than ORCL, showing
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Fig. 5. ASkew values at position 20 for the eight rankings described in
Section 4B.
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Fig. 6. NDCG utility values at position 20 for the eight rankings described
in Section 4B.

that the misclassifications of the inferences actually help with
equal representation by diminishing DELTR’s over-correction.

However, these results do not hold at all positions. Shown
in Figure 8, GDZE performs much worse than ORCL, FGNL,
and GDAP at positions 10 and 100 in terms of fairness. In
fact, ASkew doesn’t change depending on position; males
are over-represented up to 100 positions. As shown in Figure
4, GDZE often misclassifies females as males, thus DELTR
fails to place these females in higher positions, which leads
to a persistent over-representation of males. Overall, our
most accurate inference algorithm, GDAP, receives the lowest
ASkew, thus making it the most fair.

When observing Figure 9, we see that ORIG has the
highest utility, highlighting the decrease in relevance that
often comes from DELTR’s consideration of fairness. NDCG
remains roughly the same for the other rankings, showing that
inferred data may have a negligible effect on utility.

VI. DISCUSSION

We study the effect of inputting inferred gender information
to a trained fair LTR model. We report that less accurate
inferred gender from GDZE adversely affects the rankings’
fairness, while more accurate inferred gender from FGNL and
GDAP create fairer rankings. We find that FGNL and GDAP
give very similar results, most likely because their accuracies
are almost the same.

Our results for NDCG show that there is indeed a trade-off
when considering fairness and utility. Our least fair ranking,
ORIG, has the highest NDCG, whereas the most fair, ORCL,
FGNL, and GDAP, have the lowest NDCG.
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Fig. 7. Skew at position 20 for the original ranking and each fairness-aware
ranking.
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Fig. 8. ASkew at position 20 for the original ranking and each fairness-aware
ranking.

Limitations and Future Work. Due to time limitations,
our study focuses on one dataset. In addition, this dataset
included more males than females, which may have influenced
our results. Future work should test on additional real datasets
to discover the impact inference methods could have on real
people. We also suggest more research investigating other
inferred demographic information like race.

Additionally, we are limited by the binary nature of DELTR.
Thus, we only used the labels “male” and “female” without
including other gender identities. Future research should look
into fair LTR frameworks and inference methods that can
accommodate more than two groups, including non-binary
gender identities.

Our research shows that using inference algorithms as input
to a fair LTR model can be problematic and unpredictable
with varying levels of fairness and utility. We recommend the
careful evaluation of demographic inference algorithms before
use with fair LTR models to optimize fairness and ensure
groups are not inadvertently harmed.
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