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Abstract—Human activity recognition (HAR) is the process
of using mobile sensor data to determine the physical activities
performed by individuals. HAR is the backbone of many mo-
bile healthcare applications, such as passive health monitoring
systems, early diagnosing systems, and fall detection systems.
Effective HAR models rely on deep learning architectures and big
data in order to accurately classify activities. Unfortunately, HAR
datasets are expensive to collect, are often mislabeled, and have
large class imbalances. State-of-the-art approaches to address
these challenges utilize Generative Adversarial Networks (GANs)
for generating additional synthetic data along with their labels.
Problematically, these HAR GANs only synthesize continuous
features — features that are represented by real numbers —
recorded from gyroscopes, accelerometers, and other sensors that
produce continuous data. This is limiting since mobile sensor
data commonly has discrete features that provide additional
context such as device location and the time-of-day, which
have been shown to substantially improve HAR classification.
Hence, we studied Conditional Tabular Generative Adversarial
Networks (CTGANSs) for data generation to synthesize mobile
sensor data containing both continuous and discrete features, a
task never been done by state-of-the-art approaches. We show
HAR-CTGANSs generate data with greater realism resulting in
allowing better downstream performance in HAR models, and
when state-of-the-art models were modified with HAR-CTGAN
characteristics, downstream performance also improves.

Index Terms—GAN, CTGAN, mobile healthcare, human ac-
tivity recognition, sensor data, synthetic data generation, discrete
features.

I. INTRODUCTION

Background. Human Activity Recognition (HAR) is the
task of using sensor data to classify the physical activities
performed by individuals [1]. These physical activities are
typically day-to-day low-level tasks, such as walking, standing,
and sitting [2], [3]. Data is captured by a variety of sensors
such as gyroscopes, accelerometers, and GPS trackers among
others [4]. Advancements in high-precision sensors along with
the heightened ubiquity of wearable technology that embed
these sensors [5], such as smartphones and smartwatches,
have led to rapidly greater access to high volumes of HAR
data. HAR classifiers have been applied to a wide range of
domains, such as security [6] and urban development [7]. In
particular, HAR classifiers are the backbone of many mobile
healthcare applications [8]. HAR methods are important for
mobile healthcare as they are able to detect a variety of
illnesses, such as depression [9], Parkinson’s disease [10],
autism [11], and Covid-19 [12], [13]. Additionally, HAR
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Figure 1: HAR classifier model performances (averaged
over 10 HAR classifiers of varying complexity), each trained
to classify 7 unique activities found in ExtraSensory [20].
Classifiers that used both discrete and continuous features as
input (on left) yielded consistently much better performances
than classifiers that ignored discrete features and only accepted
continuous features (on right). This indicates that the ability
to accept discrete features can enrich model quality.

classifiers have been used for assisted living systems [14]-
[17] as they can detect adverse events, such as falling [17],
[18] and early stroke diagnosis [19].

In the real world, there is a huge variety in people’s behavior
and the manner in which they perform activities [3]. To
create HAR models that perform well on such diverse real-
world data, state-of-the-art approaches train models on in-the-
wild datasets [20]. In-the-wild HAR datasets utilize passively
collected data from mobile devices as study participants go
about their daily lives [5]. However, HAR models often require
labels for each activity that is being performed at any given
instance [21]. For this reason, study participants are asked to
provide annotations for the activities they perform throughout
their day [20]. In-the-wild datasets often have egregious class
imbalances with some activities rarely performed by specific
individuals [22]. This phenomenon can be largely attributed
to subjects simply choosing not to perform certain activities.
For example biking, swimming, walking, and sleeping are
common HAR activities researchers record mobile sensor data.
In an average day, most people may spend 6-8 hours a day
sleeping, spend only an hour or two exercising in some way,
and walking occasionally throughout the day. In this case, all
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Figure 2: When HAR models only use continuous sensor
features due to the upsampling limitations of GAN:S, it can be
difficult to distinguish similar activities. But, when contextual
discrete features are leveraged, refined classifications can be
made from previously ambiguous data. For example, sensor
data when sleeping can look similar to data when sitting or
standing, leading to potential misclassifications. But, when
sleeping data is coupled with a discrete feature indicating the
time of day (night time), then a HAR model can correctly
classify the data with high confidence.

HAR Model

exercising activities are rarely ever seen, making up about 4%-
8% of all recorded data in a 24-hour cycle.

Furthermore, in the healthcare field specifically, HAR has
been used to develop early warning systems to detect falling or
tripping, which are useful for the elderly and individuals with
disabilities [14]-[19]. However, the data to train these systems
are typically collected from young, able-bodied people due
to the high risks of having physically vulnerable individuals
repeatedly fall — just so that sample data could be collected.
This means the data collected doesn’t accurately represent
the demographic using these downstream models. Misclas-
sifications due to user-specific movement patterns can have
serious life-or-death implications for individuals that depend
on passive monitoring systems to automatically contact first
responders.

Approaches to remedy these problems can range from
dedicated staff that validate these labels with additional mon-
itoring systems, all the way to collecting additional data
from individuals that will hopefully perform a diverse set
of activities [20]. Intuitive solutions such as having subjects
perform specifically desired activities are not fruitful, as recent
studies show that HAR datasets collected in controlled lab
environments do not effectively mimic activities from in-the-
wild studies [21]. Thus, there lie several critical hurdles in
achieving data that can reasonable work for HAR systems.
In the age of big data in which mobile sensor datasets are
large in volume, diverse in their variety, and semi-trustworthy
in their veracity, existing simple solutions to address these
data issues can be expensive, laborious, or simply infeasible.
With the multiple issues laid out above plaguing downstream
HAR models, there is a high demand for reliable techniques
to consistently have clean, realistic, accurately labeled, high-
quality mobile sensor datasets without suffering the potential
down-sides of financial limitations and time-constraints.
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State-of-the-Art. State-of-the-art solutions for the above
data quality and imbalance issues employ Generative Adver-
sarial Networks (GANs) to upsample real datasets with syn-
thesized realistic-looking data that mimics users performing
activities that are commonly recorded in HAR studies [2],
[23]-[25]. GANSs are a deep learning framework in which two
networks, a generator and a discriminator, train against each
other in an adversarial environment in order to synthesize data
that is indistinguishable from a given dataset. The generator
is tasked with learning to map random noise into fake data
that matches patterns in real data, while a discriminator, also
known as the judge or critic, is tasked with deciphering which
data is real and fake when given mixed batches of samples
taken from the original dataset and the generator.

While many GAN approaches have been proposed in the
HAR setting in an attempt to mend various data quality
issues [2], [23]-[25], these HAR-GANs are only tasked with
generating the continuous features of mobile sensor data.
This is a major limitation, as HAR data sets commonly
have a significant volume of discrete features that provide
contextual details to the continuous features and improve HAR
classification, as seen in figure 1. State-of-the-art GANs for
HAR don’t incorporate discrete features in their generation
as GANs originally were designed to synthesize images and
other continuous forms of data [26], and historically fail at
synthesizing discrete data [27].

Problem Definition. In this work, we address the problem
of generating realistic HAR sensor data. In particular, we
aim to generate both continuous features as well as realistic
discrete features. This is an open and unstudied problem in
the HAR domain. A successful generative model will produce
discrete sensor data that is not only realistic in isolation, but
is also realistic when paired with the continuous features that
are being simultaneously generated. For instance, if a discrete
feature indicates that the mobile sensor is at rest on a table,
then the corresponding generated continuous accelerometer
data should not indicate significant movement.

Challenges. First, the application of GANs on multimodal
datasets is a challenging task, as GANs are notorious for their
unstable training process and sensitivity to mode collapses
[28]. Second, modeling discrete features is difficult as this
involves making a discrete choice, for which backpropagating
through is not straightforward [27]. Additionally, the large
diversity in HAR datasets can lead to multiple individuals
performing the same activity in different styles depending
on body mechanics and the use of assistive equipment [2].
The context in which an activity is performed also affects
the corresponding sensor data. For instance, walking over
a hardwood floor will yield a different sensor stream than
walking over uneven terrain while hiking.

Proposed Solution. We propose to develop a HAR GAN
data synthesizer for both continuous and discrete data, which
is the first solution to this open problem. To achieve this, we
propose the use of a recently developed Conditional Tabular
Generative Adversarial Network (CTGAN) [27], which is a
GAN developed for tabular data. CTGAN to-date has not
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been studied in the HAR domain. We thus apply CTGAN to
the task of generating in-the-wild HAR data, and refer to the
resulting model as HAR-CTGAN. We perform an extensive
set of experiments to validate not only that CTGAN can
accurately generate discrete features, a task existing HAR
GAN:Ss fail at, but also improves the quality of generated data
overall. Furthermore, we study each component of CTGAN,
and develop compared models that meld unique components
of CTGAN with existing GAN approaches. Through this, we
demonstrate that every component of CTGAN is necessary to
the generation of realistic HAR data; models that use only
some components perform significantly worse than the whole.

Contributions. Our contributions include:

o Applying Conditional Tabular GANs to the HAR domain
to generate mobile sensor data with both continuous and
discrete data features.

o Demonstrating a need for generating discrete features for
use in downstream HAR models.

o Demonstrating synthetic data from HAR-CTGAN yields
more realistic generation quality than that of the state-of-
the-art GANs when trained on a real HAR dataset.

o Demonstrating when state-of-the-art GANs are modified
to have attributes from HAR-CTGAN the state-of-the-art
model’s generation qualities improve.

II. RELATED WORK
A. Non-GAN Solutions for HAR Class Imbalances

Before the proliferation of neural-network-based generative
modeling, novel HAR data generation was achieved through
a variety of other machine learning techniques, notably k-
Nearest Neighbor interpolation techniques such as SMOTE:
Synthetic Minority Oversampling Technique [29]. SMOTE
derivatives such as BLL-SMOTE [22] have shown to generate
more realistic synthesized data across non-convex feature
spaces, and SMOTE-SVM [30] uses a SMOTE-like approach
directly when training the HAR classifier. Other proposed
ways to deal with class imbalanced data directly have used
Weighted SVMs [31], Cost-Sensitive SVMs [32], Random
Forest classifiers [33], and dual-ensembles [34]. These ap-
proaches commonly ignore and drop any of the nominal and
ordinal features in the datasets their methods are applied to,
as their methods typically cannot handle these types of data
well.

B. GAN-Based HAR Data Generation

Due to HAR becoming a growing area of research over
the past decade [1], [4], [S], [14], there is a greater demand
for better techniques for handling HAR class imbalances. For
multiple years now, GAN frameworks have been implemented
as a method of generating realistic data suitable for upsampling
real image datasets [26], [27], [35], [36]. More recently, they
have been seamlessly and successfully applied to the HAR
domain. Due to the unique highly-dimensional and tabular
nature of mobile sensor data, developments in generating
activity-specific data to ensure the generated data can follow
patterns in the minority HAR classes [23]-[25]. GANs can
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be further tailored to handle modeling the different styles
in which multiple users can perform the same activity [2].
However, all of the techniques mentioned fail to recognize the
utility of generating the discrete features in sensor data.

III. PROBLEM DEFINITION

Suppose we are given a real dataset X = {(z,zq,a):}¥ ,,
where z. € C corresponds to a tuple representing an in-
stance of the continuous features (e.g. accelerometer features),
xq € D corresponds to a tuple representing an instance
of the discrete features (prioception, device locked/unlocked,
bluetooth on/off, etc.), a € A is the activity being performed
for that instance, and NN is the number of instances in the
dataset.

Our task is to obtain a generative model G, such that Va € A
G(a) ~ Pr((C,D)|A = a). Thus, we want our generative
model to follow the distribution of continuous and discrete
features according to the specific human activity the mobile
sensor data is meant to be representative of. The notation used
in this work is shown in Table I.

Symbol Meaning
A | Set of activities
C | Set of continuous features
D | Set of discrete features
X | Real Dataset
G(-) | Generator
D(-) | Binary Discriminator
fw(-) | Wasserstein Discriminator
Pr | Probability Distribution of Real Data
p Probability distribution of continuous features X
(C,D)|A=a | gjven that the activity is a.
An multivariate Gaussian distribution with
Np,0) mean g and covariance o.

Table I: Table of notation.

IV. BACKGROUND

Before describing our HAR-CTGAN approach, we briefly
describe the process behind standard GANs [26].

A. Standard Generative Adversarial Networks

First proposed by Goodfellow et al. [26], generative adver-
sarial networks consist of two neural networks, a generator G
and discriminator D, that compete in a zero-sum game accord-
ing to the following optimization equation mgin max f(G, D),

Esnpiolog(D(2)] + Ezonv(u,ollog(l = D(G(2))] (1)

in which G minimizes the loss of f by learning to map noise
z to the continuous feature space R™ that the real data z lives
in from a corpus X. By drawing noise from random samples
of a latent space Z according to some easy-to-sample-from
distribution, commonly Gaussian or uniform, G effectively
learns to sample the unknown distribution Pgr using a known
distribution. The discriminator D on the other hand maximizes
f by being tasked with learning to discriminate between real
data x and the synthetically generated data G(z) when given
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a batch mixed with both types of data. The networks learn
in an iterative and alternating fashion where only one of the
two machines train for several epochs, and then its adversary
trains for several epochs, and so on. This process continues
until the end of training where, ideally, G finds a mapping
that transforms random noise into synthetic data that can
consistently and effectively fool D. This results in G producing
such realistic data that D can’t effectively distinguish real
from fake data, and its decision-making ability is analogous
to randomly guessing.

B. Existing HAR GANs Can Not Generate Discrete Data.

Using the assumptions presumed in Tanielian et al. [37], the
following proposition holds in which the generator architecture
that is utilized in start-of-the-art HAR GAN models (i.e., any
of the methods described in the Related Works section [2],
[23]-[25]) is unable to learn to perfectly generate discrete
features from latent noise.

Proposition 1. Let G be a multi-layer perceptron whose
domain Z is a latent space in R” that is sampled to get random
noise z according to a Gaussian distribution, such that G yields
an image H lying in R™. If so, then G(z) cannot yield a
discrete image.

Proof.

1) Let ¢ be a homomorphism that relates every multi-layer
perceptron to a vector-valued function f. Since a multi-
layer perceptron consists of a finite sequence of layers in
which there is a linear transformation W and then a non-
linear transformation V' that is lipschitz continuous, then
f can be constructed as f(¥)= tW1ViWoVy ... Wi Vi
where k is the number of layers in the multi-layer
perceptron. Since f is a product of transformations that
all of which are continuous, then we can assert f is
continuous and that every multi-layer perceptron can be
thought of as a continuous vector-valued function.
Since Z lies in R™ it is a connected space. Therefore,
since f is a continuous function acting on a connected
space, the image of f must be connected.

Let H C R™ be the finite set of points desired for G to
yield as its image. As G can only yield a connected space
when randomly sampling from a connected domain, then
there must exist some sub-region M C Z where G(m) ¢
HVme M.

In conclusion, we show by contradiction that a multi-
layer perceptron cannot produce a perfectly finite or
solely discrete image when its domain is a connected
space.

2)

3)

4)

Thus, a discrete data generator can not be achieved by
naively applying the above GAN methods to discrete HAR
data. Rather, a more sophisticated approach is required.

V. THE HAR-CTGAN METHODOLOGY

In this section we describe the HAR-CTGAN approach,
which utilizes the Conditional Tabular GAN (CTGAN)
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method proposed by Xu et al. [27]. CTGAN succeeds in
generating discrete as well as continuous features by utilizing
a Gumbel-Softmax activation function [38], which allows for
efficient backpropagation through the sampling of discrete
variables. Additionally, CTGAN learns a faithful representa-
tion of the joint distribution between discrete and continuous
variables such that the generated continuous variables are
logically consistent with the discrete variables and vice versa
by utilizing a novel discrete conditioning training process. Fur-
thermore, CTGAN learns by attempting to minimize/maximize
a divergence metric, Wasserstein Divergence, as its loss func-
tion rather than conventional cross-entropy. These steps are
explained in more detail below.

A. Discrete Conditioning

When sampling noise for the generator’s synthesis, the gen-
erator is given additional conditioning information that allows
for the generator to learn realistic synthesis with complete
coverage across the discrete space. For each batch of noise
sampled for the generator’s input, the noise is coupled with a
mask of all the discrete features to be generated. Within the
discrete feature mask, one of the discrete features is randomly
chosen according to a uniform distribution for conditioning.
Then, a randomly chosen one-hot representation is chosen to
represent the previously chosen discrete feature. This chosen
feature representation tailors the generator’s synthesis to be
compliant with the chosen condition. As a result, for a well-
trained generator, all of the synthetic data in the generated
batch has the same one-hot representation for the discrete
feature used for conditioning. Discrete conditioning allows
for practitioner-desired generation in order to yield synthetic
examples of realistic instances with certain properties.

When the discriminator is learning during training, this
conditional sampling mask doubles as a filtering condition for
choosing what real data is chosen for mini-batches passed to
the discriminator. If applied to a simple GAN, it would affect
the loss function mgin max f(G, D) to then become:

EdNPDuAECNPdEwNP(X\c) IOg[D(x”

2
LB (o log[l — D(G(:]0)) @

where Pp_ 4 is the distribution over discrete features and
activities, c is a value of a discrete variable or activity, and Py
is the probability distribution of possible values for discrete
variable d. By convention, P; follows the log-probability of
the frequency of ¢ for d.

Having each batch the discriminator sees have at least one
discrete feature with an identical representation with respect to
the synthetic batch of data forces the job of the discriminator
to be more challenging. Thus, the discriminator must learn
to distinguish a batch of real data from synthetic data that is
the most similar looking to the real batch that the generator
can currently produce. This is beneficial to the generator-
discriminator tandem since this limits the chances of the
discriminator being able to simply memorize specific real data
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having complete freedom to generate synthetic data in only the
low-cost mode.

B. Gumbel-SoftMax

Gumbel-SoftMax allows for the one-hot vectorization of
categorical distributions. In the context of deep generative
modeling, this is particularly helpful for generating exact one-
hot vectors rather than normalized probability distributions.
By annealing, or smoothing out, a discrete distribution into a
continuous one, a discrete distribution can be sampled from
using an approximate continuous distribution. Continuity is
especially impactful in the context of deep models for the
sake of backpropagation during training. Since techniques like
ArgMax (forcing the greatest-valued entry in a tensor to one,
and forcing all other values to zero) can only generate a one-
hot vector in a way that can’t be backpropagated, or SoftMax
(tensor sigmoid normalization) which can be backpropagated
but can’t generate purely one-hot vectors, Gumbel-SoftMax
has the unique capability of both attributes. For a given discrete
feature x4 with k representations, the value of each entry x4,
is computed by the following expression:
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A major driver of Gumbel-SoftMax depends on the tuning
of its only hyperparameter 7, which can be set to any positive
real-valued number [0, inf). As 7 approaches zero, the categor-
ical distribution is not annealed and the probability distribution
matches the expectation. Conversely, as 7 approaches larger
values tending towards infinity, the categorical distribution is
annealed to such as degree that the distribution transforms
into a uniform distribution. In the context of using Gumbel-
SoftMax for one-hot generation, low temperatures are used.

C. Wasserstein Loss

The overall goal of the generator is to match the distribution
of real data. Divergence metrics are a class of measures used
to quantify the dissimilarity between two probability distribu-
tions. Therefore, one can train the generator and discriminator
to directly minimize or maximize a divergence metric. While
Equation 1 represents the standard GAN divergence, optimiz-
ing for this equation is known to be classically unstable [39].

Instead of the standard GAN divergence, we optimize for the
Wasserstein loss [39]. Wasserstein loss is an objective function
for GAN s that directly aims at utilizing Wasserstein divergence
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for training, which is often more stable than standard GAN
training [39]. The discriminator is still tasked with discerning
between real or fake data, but uniquely does not use any non-
linear activation function in its final layer. Wasserstein loss
for GANSs is then optimizing mgin max f(G,D) as follows in

Equation 5:

EwNP(X)fw [:17] - EZNN([L,O')f'lU [g(z)]a (5)

where f,, equal D with an additional Lipschitz constraint [39].
To train the two machines without knowing the distribution or
real data directly, the Wasserstein distance is calculated using
the distribution of the real data evaluated by the discriminator
and the distribution of the discriminator’s evaluation on syn-
thetic data. When this loss is incorporated into the discrete
conditional procedure of CTGAN, the resulting loss function
mgin max f(G,D) is then:

EdNPDuAEC’\‘Pd []EwNP(XIC)fw ['T] - Ez~/\/(;t7a)fw [g(z|c)”
(6)
Thus, Equation 6 represents the optimization equation for
our HAR-CTGAN approach.

VI. RESULTS

A. Experimental Setup and Methodology

To validate our framework, we employ the ExtraSensory
dataset [20], a HAR dataset of over 300,000 instances of
featured sensor data from in-the-wild recordings on mobile
devices from 60 users. The dataset covers a wide diversity
in user ethnicities, user heights, user ages, types of activities
performed, and mobile sensors employed. !

Table II: Breakdown of features in the ExtraSensory dataset.

Feature Type [ No. of Features

Activities 7
Discrete 48
Continuous 192

1) Activities: Each instance of mobile sensor data is cou-
pled with a label corresponding to one of seven mutually
exclusive activities — lying down, cleaning, sleeping, sit-
ting, walking, running, and bicycling. We can also intuitively
group certain activities together based on their similarity in
motion. For example, we can split the labels into two main
groups: idle activities and dynamic activities. Idle activities
like lying down, sleeping, and sitting all are different human-
interpretable representations of an individual performing little
to no movement. Likewise, dynamic activities like walking,
running, and bicycling are all representations of individuals
constantly moving their bodies in different ways or under
different circumstances. Lastly, the “cleaning” activity is a
somewhat dynamic, somewhat static activity. While it may be
simple to distinguish an idle activity from a dynamic one, the

'Code and supplementary material relating to the cleaning and feature
engineering of the data used from ExtraSensory in this work is all open-
sourced at https://github.com/deoliveirajoshua/HAR-CTGAN
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primary ways to distinguish idle activities from one another
or dynamic activities from one another primarily lies in the
context in which they are performed.

2) Continuous Features: The data captured for the contin-
uous features comes from raw data captured by accelerometer,
gyroscope, magnetometer, compass, GPS, and microphone
sensors which are then broken up into 1-minute intervals (also
known as chunking). To distill these 1-minute chunks into a
single data instance, the raw chunks are feature engineered
and aggregated by using a series of transformations. This
in turn yields a variety of features to consider for synthetic
generation and likewise input into a downstream HAR model.
The multitude of methods to engineer these features are
described in Table III.

mean() | Mean value
std() | Standard deviation
mad() | Median absolute deviation
max() | Largest value in array
min() | Smallest value in array
sma() | Signal magnitude area
Energy measure. Sum of the squares
energy() divided by the number of values.
iqr() | Interquartile range
entropy() | Signal entropy
Autorregresion coefficients with
arCoeff() Burg or%ier equal to 4
correlation() | Correlation coefficient between two signals
Index of the frequency component
maxInds() with largest ma;;]nitudz ’
meanFreq() Weighted average o.f the frequency
components to obtain a mean frequency
skewness() | Skewness of the frequency domain signal
kurtosis() | Kurtosis of the frequency domain signal
Energy of a frequency interval within the
bandsEnergy() 64 blglils of the lglFT 01>°, each window.
angle() | Angle between to vectors.

Table III: Statistical functions we compute on the accelerom-
eter and gyroscope data

3) Discrete Features: A portion of discrete features come
from device states recorded from the device’s operating system
such as battery status, screen status, ringer settings, wifi
availability, and time-of-day. The other portion of discrete
features comes from contextual aspects that pertain to the
conditions the sensor data was collected. For example, the
location of the device on the user’s body (ie. prioception) or
the type of environment the user was in (indoors/outdoors)
provides additional context to the data that would be difficult
or even impossible to extract directly from the continuous
data. Additionally, consider when an individual is riding their
bike outside on a path versus when that same user rides
a stationary bike at the gym. While the sensor data may
look different in these two different environments, additional
context allows HAR models to classify these tasks as identical.
Ergo, contextual features can also resolve issues in which the
same continuous sensor data can be ambiguous to a variety of
classes, such as in Figure 2.

Comparative Models. To illustrate the performance of
HAR-CTGAN, we compare our approach to a variety of
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models that fall into three primary classes of GANs: vanilla
(simple), conditional, and controllable GANs. Within each of
these architectures, we train a batch of models with modifica-
tions spanning 3 varying degrees:

1) None. The generator has no additional post-processing
to its output and functions in its standard run-of-the-mill
implementation.

SoftMax. An additional SoftMax activation function is
applied across each discrete one-hot vector individually
when synthesized by the Generator before being passed
to the Discriminator (and independent classifier for the
controllable GAN).

Gumbel-SoftMax. An additional Gumbel-SoftMax [38]
activation function with hyperparameter 7 0.2 ap-
plied to each discrete one-hot vector separately when
synthesized by the Generator before being passed to
the Discriminator (and independent classifier for the
controllable GANs). The use of Gumbel-Softmax is
native to CTGAN frameworks.

We modify the generator’s in these 3 degrees to progres-
sively shift these models closer to a CTGAN architecture
than their originally designed architecture. This is done to
demonstrate the positive impact CTGAN attributes have even
when applied to architectures that weren’t originally proposed
for supporting them.

2)

3)

B. Metrics Used for Evaluation.

We evaluate GAN performance via the weighted average
F1 score of a classifier trained on real data and evaluated
on the GANs synthetic data. This metric require is found by
computing the F1 score for each class:

precision(a) - recall(a)

Fl(a) = .
(a) precision(a) + recall(a)
By doing so, the weighted average F1 score is then calculated
by:
A

1
F1_avg_weighted = m z

/

a
7F1(CL)7
X

where o’ is the number of instances of class a, where a is a
specific activity.

To quantify the generation quality of synthetic data through
another perspective, we utilize our own metric named ambi-
guity score. When a balanced test set is passed into a shallow
model such as a soft-margin SVM, logistic regression, or k-
means, the ambiguity metric describes the percentage of the
test set that is incorrectly classified. Whether it be synthetic
data that the shallow model predicted as real or real data
that the shallow model predicted as fake, the ambiguity score
encapsulates both scenarios.

FP+FN
TP+TN+FP+FN

This metric is also analogous to calculating (1 — Accuracy)
but depends on having balanced classes in order to have a
trustworthy scoring of the generated data quality.

Ambiguity_Score =

5239

C. Machine Evaluation

To validate our framework, we employ the HAR dataset
from UCSD, ExtraSensory [20], which has an extensive
amount of data that is diverse in both the types of activities
performed by individuals and the mobile sensors used for
data capture. A machine evaluation study is one avenue for
examining how closely the generated data matches the patterns
of real data. If the generated data is very realistic, it will match
the pattern. However, we do not want to match the pattern
exactly, as the generated data will be not meaningful and will
not improve the performance of downstream models.

In order to quantify the realism of the synthetic data
generated from each of the GANs, we use a common gener-
ative model evaluation technique [40] by utilizing additional
classifiers independent of the generative model post-training.
These classifiers are deep HAR classifiers that are designed to
mimic some plausible downstream HAR task utilizing mobile
sensor data as input. The goal of the HAR classifier is to
classify the given mobile sensor instance into one of the seven
mutually exclusive activities mentioned previously.

Firstly, we partition our real dataset into two subsets: a
training set, and a hidden test set. We then train 3 differ-
ent hypothetical downstream HAR models with exact same
architecture each time from scratch exclusively on real data
from the training set, where each HAR model accepts either
only continuous, only discrete, or both sets of features as
input. After training these models, they are each evaluated on
their performance using the hidden test set and scored using
weighted-average-fl as the fitness metric.

These three weighted-average-fl scores serve as a baseline
for comparing all of our GANS. Then, we train all 12 GAN
variations including HAR-CTGAN using exclusively the same
training set that the baseline HAR models used. Each GAN
model trained for 1,000 epochs with a learning rate of 2e-5 and
a batch size of 500 with the same generator and discriminator
architectures. After GAN training, 40,000 synthetic instances
were sampled from each GAN and individually used to train
HAR models with the same architecture as those used for
the baseline models. This time, exclusively training on the
fake data sampled from each GAN’s generator. From there,
we evaluate the weighted-average-f1 scores from each of these
models using the same fixed test set that both the GANs and
the respective HAR models have never seen during training.

Models that achieve a fitness closest to the fitness of the
benchmark mean the synthetic data is most realistic and thus
the GAN it was synthesized from yields the best generation
quality. Fitness scores closer to O correspond to poor, unre-
alistic generation quality by failing to mimic the patterns in
the real data. This effect may be a result of the generator’s
synthesis oversimplifying the patterns in the real data or
failing to generalize these patterns in any consistent way. In
either case, upsampling datasets with data that is meaningless
or misleading will harm model performance, especially in
minority classes that are upsampled with synthetic data the
most. The results in Table IV show that HAR-CTGAN’s

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 28,2023 at 18:49:40 UTC from IEEE Xplore. Restrictions apply.



Table IV: Machine evaluation study for comparing the synthetic data generated from each of the state-of-the-art GAN models
and their modified variations. When using the performances of downstream HAR models trained using synthetic corpora as a
proxy for evaluating the quality of each generated corpus, HAR-CTGAN’s generation produced a synthetic corpus that was
more realistic than any other synthetic corpora tested. When the generated data is broken down into the synthesized discrete
and synthesized continuous features, the generation HAR-CTGAN is the most realistic with respect to the real mobile sensor

dataset in both categories.

Training Data Post-Processing

Weighted Average F1 By Feature Type
All

Continuous Discrete
Original Corpus N/A 0.794 (£0.003)  0.873 (£0.002)  0.958 (£0.002)
None 0.620 (£0.027)  0.635 (£0.029) 0.714 (£0.004)
Vanilla GAN SoftMax 0.496 (£0.040) 0.222 (£0.302)  0.536 (£0.020)
Gumbel-Softmax 0.438 (£0.031)  0.421 (£0.068)  0.490 (£0.055)
None 0.266 (£0.100)  0.284 (+0.135)  0.311 (£0.141)
Conditional GAN SoftMax 0.249 (£0.067)  0.335 (£0.117)  0.338 (£0.131)
Gumbel-Softmax 0.135 (£0.070)  0.244 (£0.148)  0.176 (£0.090)
None 0.222 (£0.032)  0.176 (£0.096)  0.238 (£0.068)
Controllable GAN  SoftMax 0.294 (£0.033)  0.368 (£0.088)  0.405 (£0.052)

Gumbel-Softmax

0.346 (£0.062)

0.325 (£0.092)  0.423 (£0.075)

HAR-CTGAN Gumbel-Softmax

0.754 (£0.010)

0.807 (£0.011)  0.766 (+-0.006)

generator, which has never directly seen real data, was able
to build the classifier closest to training on real data than any
other GANSs. This shows that the generated data from HAR-
CTGAN is more realistic than the generated data from other
models.

D. Separability

One mode of evaluating generation quality is to directly
test how indistinguishable the synthetic data from a generative
model is in comparison to the original real dataset. If synthetic
data is truly indistinguishable from real data, binary classifiers
should struggle to classify all real data as real and all fake data
as fake. Therefore, we trained a shallow that was independent
of the GAN’s training and tasked it with binary classification
where one class was entirely real mobile sensor data and the
other class is synthetic data generated from one of the trained
GANSs. Using a shallow model trained with balanced classes
inhibits the chances of overfitting. For our shallow model, we
chose to use a logistic regression model.

Table V: Separability study for determining how indistin-
guishable synthetic data is from real data when comparing
the continuous features, discrete features, and the entire data
instance from each other. State-of-the-art GANs produce data
that is easily separable due to an inability to generate every
feature realistically as well as unstable training.

Ambiguity Score

Model Continuous Discrete All
Vanilla GAN 0.000 (£ 0.000) 0.004 (£ 0.003) 0.000 (% 0.000)
HAR-CTGAN  0.121 (£ 0.008)  0.409 (£ 0.011) 0.112 (£ 0.009)

When generation quality is extremely poor, the patterns in
the synthetic data would appear very different than those in
real data. Consequently, the SVM would be able to perfectly
distinguish real data from synthetic, and the synthetic data
would receive an ambiguity score of 0. However, when the
generation quality of the synthetic data from a GAN is superb,
the synthetic is so indistinguishable from real data that the
SVM fails to learn the differences between real and synthetic

5240

data, producing a perfect 0.5 ambiguity score. Table V il-
lustrates that HAR-CTGAN produces a far better ambiguity
score than even some of the best performing GANs from the
machine evaluation study (Table IV). This can be explained by
the non-HAR-CTGANS struggle to produce every continuous
feature with the correct patterns of that continuous feature in
the real data. When training a logistic classifier in which even
a single continuous feature is easily distinguishable, a logistic
classifier can find a hyperplane/decision boundary that can
perfectly separate the data using that single unrealistic feature.
Thus, while non-HAR-CTGANSs may be able to generate some
features fairly realistically, they lack the ability to generate
data that is holistically realistic.

VII. DISCUSSION
A. Effect of Synthetic Corpus Size

When upscaling real datasets with synthetic data, the ulti-
mate goal is to fill in the “gaps” in real data with realistic-
looking data in order to maintain a diverse, balanced dataset
for downstream applications. As larger and larger volumes of
data are needed for deep HAR models that have larger and
more sophisticated architectures, there is even more of a push
for truly big-data in the HAR domain. Thus, if we have only
a limited quantity of real, clean data instances, yet can build
generative models that can provide near limitless volumes of
synthetic data that is near indistinguishable from real data,
we can arrive at the question: do we truly need to train our
downstream models on real data at all?

To investigate whether synthetic data can completely substi-
tute real data in practical settings and whether real data can be
used indirectly as a means to train good generative models for
HAR, we test the limits of HAR-CTGAN. In order to explore
this idea for the future of HAR, we train HAR-CTGAN for
a variety of epochs, then train a deep HAR classifier using
exclusively synthetic samples of different orders of magnitude.
Ideally, there should exist a large enough sample size of
synthetic data produced from a sufficiently good generator
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that should yield a downstream performance that is at least
equivalent, if not superior, to using real data.

Thus, if HAR-CTGAN can successfully generate data that
completely spans the space that realistic mobile sensor data
lives on, then as the size of the synthetic dataset approaches
infinitely many instances, then the dataset should approach
complete and more expansive coverage of the realistic space
than the original real dataset

Table VI: The size of synthetic sampling greatly affects
downstream classification performance.

Synthetic ~ F1 Performance By Epochs Trained

Volume 100 500 1000

1-10° 0.706 (£ 0.022) 0.768 (£ 0.016)  0.795 (& 0.005)
5-103 0.691 (£ 0.014) 0.778 (£ 0.012)  0.797 (& 0.005)
1-10% 0.639 (£ 0.031) 0.771 (£ 0.013)  0.791 (& 0.008)
5-10% 0.705 (£ 0.008)  0.768 (£ 0.014)  0.783 (& 0.006)
1-10° 0.747 (£ 0.008)  0.790 (£ 0.013)  0.810 (& 0.004)
5-10° 0.761 (£ 0.016) 0.815 (£ 0.011)  0.833 (& 0.007)
1-106 0.765 (£ 0.013)  0.819 (+ 0.014)  0.837 (& 0.007)

Table VI reflects the mean and standard deviation of perfor-
mances of a deep HAR classifier when trained on completely
synthetic data from a variety of HAR-CTGANSs trained for
3 different training lengths. Generally, there is an increasing
improvement in HAR classifier performance, nearly reaching
and surpassing the same classifier when trained on exclusively
real data or upsampled real data up to the largest class size.
However, we see that within a single duration of the training,
increasing the sample size of synthetic data only has a steady
increase in improving model performance. Also, unsurpris-
ingly, as HAR-CTGAN trained longer, the synthetic data from
well-trained models produced the best model performance for
each sample size for downstream HAR training. This implies
that while generation may be realistic, fully substituting real
datasets with synthetic data may be possible with enough
computational resources.

It is important to recognize that even when ignoring the
several-fold longer time requirement to train HAR-CTGAN
than state-of-the-art GANSs, training a deep HAR classifier on
an enormously large synthetic sample in order to get negligibly
different performance than training on real data is not a data-
efficient task. If synthetic datasets that are orders of magnitude
larger than real datasets can produce equivalent results, then
there is a case to be made that real data is more meaningful
per instance than each instance of synthetic data.

B. Limitations

Despite the success of HAR-CTGAN in the continuous and
discrete synthesis of mobile sensor data, there are several
points of failure in which this approach can become sub-
optimal or, in extreme scenarios, fail completely. Since HAR-
CTGAN is rooted in a generative adversarial framework, it
is no less susceptible to unstable training than other GAN
architectures mentioned. GANs are notoriously susceptible to
oscillating converge or failure to learn in training due to mode
collapse or overfitted discriminators [28], [39].
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C. Future Work

Generative adversarial paradigms require large corpora in
order to effectively have their generator machine synthesize
realistic data. With more and more limited examples in the
corpora, generative models commonly begin to fail as their
task of generating new meaningful data that interpolates po-
tentially non-linear patterns becomes harder and harder. In the
case of the ExtraSensory dataset, there are adequate volumes
of mobile sensor instances despite the stark class imbalances
present. Burgeoning techniques in generative modeling have
explored avenues to learn disentangled representations of
real data to extract greater meaning from each instance to
distinguish underlying global patterns from extraneous ones.
One avenue of future work would be to explore ways to
apply HAR-CTGAN concepts for realistic discrete feature
generation on sparse mobile sensor datasets.

VIII. CONCLUSION

In this paper, we have identified and shown the efficacy of
a new tool to remedy an open problem that heavily impacts
HAR applications across the domain. Up-sampling tools that
counteract class imbalances in mobile sensor datasets lead to
HAR models that can fully utilize their cleaned data without
having to jeopardize poor multi-class performance nor discard
expensive-to-collect data in order to down-sample for uniform
class distributions. We demonstrate on a conceptual and em-
pirical level that discrete features in HAR data add significant
impact to HAR classification tasks. We identify state-of-the-
art approaches that perform synthetic up-samplings of class-
tailored HAR data still lack the ability to generate discrete
contextual HAR features that are realistic. We propose our
approach, HAR-CTGAN, which is a Conditional Tabular GAN
that learns to generate synthetic data of the continuous and
discrete features in mobile sensor data, a task never before
achieved in the HAR domain. We evaluated our performance
against multiple state-of-the-art architectures on a publicly
available benchmark HAR dataset. Our results show that HAR-
CTGAN consistently outperforms the state-of-the-art models
on the continuous and discrete aspects of novel data genera-
tion.

When state-of-the-art models are modified to have
properties of HAR-CTGAN, the modified model’s generation
qualities improve. This further emphasizes how impactful
the characteristics of HAR-CTGAN are for improving GAN
generation quality and GAN training stability. In short, HAR-
CTGAN provides greater flexibility for training high-quality
down-stream classification models with the best features,
whether they are continuous or discrete, for passive healthcare
monitoring via mobile devices.
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