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Abstract Water quality monitoring is relevant for
protecting the designated, or beneficial uses, of water
such as drinking, aquatic life, recreation, irrigation,
and food supply that support the economy, human
well-being, and aquatic ecosystem health. Managing
finite water resources to support these designated uses
requires information on water quality so that manag-
ers can make sustainable decisions. Chlorophyll-a
(chl-a, ug L7') concentration can serve as a proxy
for phytoplankton biomass and may be used as an
indicator of increased anthropogenic nutrient stress.
Satellite remote sensing may present a complement
to in situ measures for assessments of water qual-
ity through the retrieval of chl-a with in-water
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algorithms. Validation of chl-a algorithms across US
lakes improves algorithm maturity relevant for moni-
toring applications. This study compares performance
of the Case 2 Regional Coast Colour (C2RCC) chl-a
retrieval algorithm, a revised version of the Maxi-
mum-Peak Height (MPHp)) algorithm, and three sce-
narios merging these two approaches. Satellite data
were retrieved from the MEdium Resolution Imaging
Spectrometer (MERIS) and the Ocean and Land Col-
our Instrument (OLCI), while field observations were
obtained from 181 lakes matched with U.S. Water
Quality Portal chl-a data. The best performance based
on mean absolute multiplicative error (MAE_, ;) was
demonstrated by the merged algorithm referred to as
C5—M,; MAE,,,=1.8, bias,,;;=0.97, n=836). In
the C;5—M,, algorithm, the MPHp, chl-a value was
retained if it was>10 pg L7'; if the MPH,p, value
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was <10 pg L~!, the C2RCC value was selected, as
long as that value was <15 pug L', Time-series and
lake-wide gradients compared against independent
assessments from Lake Champlain and long-term
ecological research stations in Wisconsin were used
as complementary examples supporting water qual-
ity reporting requirements. Trophic state assessments
for Wisconsin lakes provided examples in support of
inland water quality monitoring applications. This
study presents and assesses merged adaptations of
chl-a algorithms previously reported independently.
Additionally, it contributes to the transition of chl-a
algorithm maturity by quantifying error statistics for a
number of locations and times.

Keywords Satellite - Water quality - Chlorophyll -
Lakes - Reservoirs - Trophic state

Introduction

Eutrophication threatens the sustainability of lake
ecosystems, well-being (Cox et al., 2006; Wheeler
et al., 2012), and economies (Dodds et al., 2009) of
communities around the world (UNEP, 2007; Wilson
& Fischetti, 2010). Whether naturally induced or
driven by human activities, high nutrient levels pose
risks to both the environment and human health
(Peierls et al., 1991). Under the right conditions,
algae and cyanobacteria can proliferate, outcompeting
native aquatic flora and fauna and threatening aquatic
ecosystems. Additionally, some cyanobacteria create
compounds toxic to humans and livestock, leading
to public health and socio-economic risks (Stroming
et al, 2020). For these reasons, understanding
eutrophication is crucial. Chlorophyll-a (chl-a)
concentration is often the targeted water quality indi-
cator for nutrient eutrophication (Schaeffer et al.,
2012), as its presence in water tends to originate from
algae and cyanobacteria growth responses to nutrient
availability.

There are limitations with in situ measures of chl-a,
including variable accuracy where error can be as high
as 30-60% for fluorescence methods (Trees et al., 1985;
Bianchi et al., 1995) and spatial-temporal representation
from discrete samples does not reflect the larger system.
However, in situ measures can characterize the vertical
distribution of chl-a throughout the water column.
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Significant differences exist among the methods to
analyze chl-a samples in the laboratory. Most frequently,
fluorescence methods are used to analyze chl-a. Less
frequently, chl-a samples are analyzed with high
performance liquid chromatography (HPLC). HPLC
analysis involves greater material costs, sample run-
times, and technological training requirements. The error
associated with HPLC measurements is lower than
that associated with fluorescence methods since pig-
ment compounds are physically separated and individu-
ally quantified (Trees et al., 1985). In addition to tradi-
tional in situ sampling of chl-a, satellite remote sensing
can provide measures of optically related water quality
characteristics, including derived measures of chl-a, in
lakes, and reservoirs (Gitelson, 1992; IOCCG, 2018).
The spatial and temporal resolution of satellite remote
sensing can help reduce costs associated with traveling
to sites, laboratory analysis, and staffing to support these
activities. Papenfus et al. (2020) reported mean cloud
free temporal resolution of United States (US) lakes was
184 days per year with one Sentinel-3 satellite. Satellite
remote sensing may also be a cost-effective option for
state, regional, or national assessments of lake water
quality (Papenfus et al., 2020). However, there are several
inherent challenges with using satellite remote sensing
for inland water quality monitoring. First, the spatial
resolution of satellite sensors is generally too coarse to
resolve small water bodies and nearshore environments
(Clark et al., 2017). Second, satellite measurements
are retrieved primarily from the upper part of the water
column and therefore do not represent dynamics below
the surface. Third, not all necessary bio-geochemical
measures can be derived from satellites. Finally, the
temporal resolution can be impacted by cloud cover,
which often limits the number of viable satellite images
per year (Mercury et al., 2012). Given these constraints,
satellite remote sensing and in situ measures offer com-
plementary approaches to chl-a monitoring of inland
water bodies.

Though substantial effort has been put forth to vali-
date a variety of chl-a algorithms over the past several
decades (Matthews, 2011; Neil et al., 2019; Pahlevan
et al., 2020), there are relatively few studies that do
s0, both at a fine spatial resolution and across a broad
spatial scale relevant for water management appli-
cations and decision-making efforts for the inland
waters of the USA. Until such broad validations are
performed, reliable satellite-derived chl-a remains
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restricted to individual water bodies with existing
in situ data or to water bodies with specifically tuned
chl-a algorithms. Broader validations of chl-a algo-
rithms across US inland waters may improve under-
standing of satellite-derived measures for manage-
ment applications (Schaeffer et al., 2013b). Several
studies have validated chl-a algorithms; however,
most of them investigate either a single waterbody or
a small collection of water bodies.

Large-scale assessment of chl-a algorithm perfor-
mance across water bodies is challenging due to the opti-
cal complexity of inland waters. The presence of opti-
cally significant constituents such as colored dissolved
organic matter, algae, and sediments confounds the
satellite signal making differentiation of chl-a difficult
(Gitelson et al., 2008). Odermatt et al. (2012) present one
of the most comprehensive reviews of chl-a algorithm
approaches for optically complex waters. Topp et al.
(2020) found that most studies focused on developing
algorithms and validation with only recently improved
data availability enabling operational remote sensing
algorithms to improve the quantification of inland water
quality. Filazzola et al. (2020) synthesized a database of
in situ chl-a for> 10,000 freshwater lakes across 72 coun-
tries for potential satellite validation. Other databases are
becoming readily available that may aid in satellite algo-
rithm validation, such as the Water Quality Portal (WQP,
Read et al., 2017) in the USA and the Lake Bio-optical
Measurements and Matchup Data for Remote Sensing
(LIMNADES) worldwide (Spyrakos et al., 2018). This
study found as of August 2019 a Web of Science search
using keywords “lake, satellite, algorithm, chlorophyll”
returned 273 journal articles with 23% focused on the
Great Lakes along the border of the USA and Canada
and Lake Taihu, China. The limited larger studies across
multiple lakes included a validation of 185 lakes across
the globe and> 100 sites within the USA (Neil et al.,
2019; Spyrakos et al., 2018). Sayers et al. (2015) derived
chl-a for 80,012 lakes across the globe using data from
37 lakes as validation, with 20 in the USA. Odermatt
et al. (2018) derived measures for 340 lakes with 24 lakes
for validation. Wang et al. (2018) assessed global trophic
status in over 2,000 large inland water bodies. Huovinen
et al. (2014) included 50 lakes in South Africa, and Lesht
et al. (2014) used 23 water reservoirs in Spain. Even
these larger studies have limited validation across lake
systems, especially in the USA.

The MEdium Resolution Imaging Spectrometer
(MERIS) onboard the Envisat satellite and the Ocean

and Land Colour Instrument (OLCI) onboard the
Sentinel-3A and Sentinel-3B satellites have a spa-
tial resolution of 300 m and provide the potential to
resolve >2,000 of the largest lakes and reservoirs in the
contiguous USA (CONUS) (Schaeffer et al., 2018a;
Urquhart & Schaeffer, 2020); however, validation
efforts of satellite-derived chl-a across US lakes are
still fairly limited in these systems. Validation efforts
are necessary to quantify the algorithm maturity in
order to advance application readiness levels (ARLs)
for stakeholders. Algorithm maturity (NASA, 2020)
can be defined into three general levels: beta, provi-
sional, and validated. The validated level includes four
stages of maturity: (1) algorithm error statistics are
estimated from a small number of measurements from
select locations and times; (2) algorithm error statistics
are estimated from a significant number of locations
and times, with consistency compared against similar
efforts representing a comprehensive representation
of locations and times; (3) algorithm error is assessed
with uncertainties well quantified and robust com-
pared to reference data; and (4) validation results are
systematically updated with new algorithm updates
and as time expands. Most algorithm evaluations
involving a single waterbody or small collection of
water bodies fall into validation stage 1 maturity.

This study compares two different chl-a retrieval
algorithms and three scenarios merging these two
algorithms using satellite data from both Envisat
MERIS and Sentinel-3A OLCI with field obser-
vations from 181 water bodies across CONUS
matched from the US WQP. The objective of this
study is to assess the performance of each algo-
rithm across water bodies with a range of environ-
mental and optical conditions to initiate the tran-
sition from algorithm validation stage 1 to stage
2. Results from this study can help determine the
usability of each chl-a retrieval algorithm and will
also allow for evaluation of water quality metrics
at both a fine and a broad spatial scale. Satellite-
derived chl-a can complement in situ water quality
metrics that are reported in large-scale monitoring
programs, such as the U.S. Environmental Protec-
tion Agency (EPA) National Lakes Assessment
(NLA, U.S. EPA, 2011) and the U.S. EPA National
Coastal Condition Assessment (NCCA, U.S. EPA,
2012), to allow for more frequent reporting than
otherwise possible with field sampling alone.
Further, the value of satellite-derived chl-a can
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be demonstrated through various ecological appli-
cations, such as classification of lake trophic state,
to aid in general condition assessments, identify
trends in water quality, and track the successes of
restoration actions.

Methods and data
In situ validation data

In the USA, in situ discrete water samples are col-
lected by several monitoring and research organiza-
tions, many of whom do not follow the same prac-
tices, formats, and description approaches. To address
these inconsistencies, the U.S. Geological Survey
(USGS), the U.S. EPA, and the National Water Qual-
ity Monitoring Council (NWQMC) developed the
WQP (www.waterqualitydata.us, Read et al., 2017).
The WQP was developed as a publicly accessible
database to simplify dissemination of water qual-
ity data in the USA, with>290 million total records
and > 3 million records on ground, inland, and coastal
waters. Monitoring is performed through samples
taken by state, federal, or tribal projects. We com-
piled a validation dataset from the WQP including
chl-a measurements for inland water bodies resolv-
able by MERIS (2002 through 2012) and OLCI (2016
through 2019). Resolvable lakes were defined as
lakes with at least three water pixels remaining in the
National Hydrography Dataset (NHD) Plus version
2.0 (McKay et al., 2012) polygon, after excluding
pixels adjacent to the shoreline. Radiometric infor-
mation such as remote sensing reflectance or inherent
optical properties, typically used to constrain the use
of in situ observations, are not part of the WQP. The
availability of in situ measures was dependent on the
organizations voluntarily uploading data to the WQP;
thus, observation data may be delayed anywhere from
months to years (Papenfus et al., 2020). This delay
caused the number of available in situ match-ups with
OLCI to be considerably lower than for MERIS.
Measurements of chl-a at Lake Champlain were
obtained from the Lake Champlain Long-Term Water
Quality and Biological Monitoring Project at https://
dec.vermont.gov/watershed/lakes-ponds/monitor/
lake-champlain using EPA method 445.0 from the
Vermont Department of Environmental Conserva-
tion (Arar & Collins, 1997). Measurements from
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2018 taken at 1-m depth were retained for analysis.
Those outside the detection limit of the instrumenta-
tion were removed. While monitoring is conducted at
15 points throughout the lake, only measurements at
most central locations in the lake were considered to
avoid errors caused by adjacency effects in the satel-
lite measurements.

In situ measures of chl-a at Lake Mendota, Lake
Monona (Magnuson et al., 2020), and Trout Lake in
Wisconsin were obtained from the North Temperate
Lakes US Long-Term Ecological Research (LTER)
Network (https:/lter.limnology.wisc.edu; Magnuson
et al., 2019, 2020). Measurements from 2018 taken
at a 0-2-m depth range were retained for analysis.
LTER measurements containing a quality flag were
discarded.

Validation quality assurance

The measurements provided by the WQP were not
intended for satellite algorithm validation. Therefore,
WQP data were filtered based on quality assurance
criteria, detailed here, to ensure appropriate fidel-
ity prior to use for validation with the satellite algo-
rithms. For example, the WQP data contained several
chlorophyll pigment types. Many phytoplankton pig-
ments (e.g., chlorophyll-b, -¢) are not distinguishable
with broad band multi-spectral satellite algorithms in
optically complex inland waters (Chase et al., 2017;
Muller-Karger et al., 2018), and only in situ chl-a
measurements were retained in the validation dataset.
Different laboratory analytical identifiers provided
information about the respective extraction and analy-
sis methods to measure in situ chl-a concentrations.
There were various analytical methods used, and no
single document exists listing all methods. A majority
of the in situ chl-a measurements were from stand-
ard fluorometric methods such as EPA method 445.0
(Arar & Collins, 1997).

Bailey and Werdell (2006) recommend using
validation data within+3 h of the satellite over-
pass for ocean waters, whereas in lakes, Rusak et al.
(2018) reported hourly to daily phytoplankton bio-
mass variations influenced by wind speed and storm
events. Therefore, a temporal restriction of+6 h
was used between in situ data collection and satel-
lite overpass to maximize the number of potential
in situ measures matched with satellite observations
while minimizing the complexities of bio-physical
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changes such as vertical and horizontal movement
of phytoplankton within the water column. In situ
samples without a time stamp were assigned a time
of 12:00 p.m. local time to retrieve the satellite
overpass of the same day.

In situ samples were filtered to those with depth
measures of <2 m or labeled as “surface” in resolv-
able lakes to avoid influences of the bottom albedo
on the retrieved reflectances (Albert & Mobley,
2003) and to represent the top of the water column.
Most of the light detected by a typical satellite sen-
sor originates near the water’s surface, down to a
depth of about 2 m in clear water (Mishra et al., 2005)
and <2 m in more turbid waters (Wynne et al., 2010).
Additionally, nearby land areas influence the opti-
cal signals retrieved, where top-of-atmosphere radi-
ance contamination from neighboring land surfaces
with brighter reflectances causes adjacency effects
(Bulgarelli & Zibordi, 2018). Therefore, an in-lake
spatial filter was applied to all in situ locations to
reduce adjacency effects from surrounding land envi-
ronments. Spatial filtering to resolvable lakes using
the NHD limited in situ data to lakes with at least
three water pixels remaining in the NHD lake poly-
gons, after quality control flagging pixels adjacent to
the shoreline (Urquhart & Schaeffer, 2020). MERIS
and OLCI 300-m at-nadir pixel size limits resolvable
lakes in the USA to 0.7% of total lakes as defined
by the NHD (Clark et al., 2017). A land-waterbody
mask was generated using the NHD (McKay et al.,
2012). This land—water mask functioned as the base
layer; two water pixels adjacent to land were flagged
as mixed land—water pixels potentially experiencing
adjacency effects, providing a 600-m in-lake buffer.
The dataset obtained from the WQP was then spa-
tially clipped by this buffer to discard every in situ
location not surrounded by at least 8 complete neigh-
boring pure water pixels. This quality filter step
removed any mixed land—water shoreline pixels in a
MERIS or OLCT scene. It also guaranteed that a con-
sidered in situ location was at least 600 m from shore.
In situ measures were matched only with the single
pixel (1x1 pixel array) where the discrete sample
position was located.

MERIS and OLCI satellite data

Satellite observations were obtained from MERIS
from 2002 through 2012, as the MERIS mission

formally ended in April 2012 due to instrument fail-
ure. The Copernicus program’s new series of Senti-
nel-3 OLCIs (Berger et al., 2012; Donlon et al., 2012)
replaced the previous MERIS sensor. The Sentinel-
3A OLCI launched in February 2016, and a single
mission offers a revisit frequency of approximately
2-3 days with 300-m spatial resolution at nadir. Data
is collected in 21 spectral bands with center wave-
lengths ranging from 400 to 1020 nm. While Senti-
nel-3B launched in April 2018, data was not publicly
available until late 2019 and there were limited in situ
data available for match-up from the WQP; therefore,
only Sentinel-3A data are utilized in this study.

Producing temporally aggregated water qual-
ity parameters for a 12-year timeframe from Level-1
products with instrument and radiometric calibrations
applied requires several methods in a processing chain
(Fig. 1). This processing chain has been deployed on
the Calvalus Earth Observation processing cluster of
Brockmann Consult. Calvalus is a parallel processing
system allowing for fast and iterative processing of sat-
ellite products (Fomferra et al., 2012). All processors
used in this study are publicly available in the Senti-
nel-3 Toolbox of the European Space Agency’s (ESA)
Sentinel Application Platform (SNAP; https:/step.esa.
int/main/toolboxes/snap/) and can be combined in bulk
processing schemes.

It is critical to identify high-quality water pix-
els prior to implementing algorithms. Cloud or
cloud shadow influenced pixels may negatively
impact algorithm operations. Pure water pixels were
retained using the Identification of pixel properties
algorithm (IdePix), an open-source SNAP processor.
IdePix performs the identification of clouds, cloud
shadows, snow, ice, sun glint, and ambiguous mixed
pixels. The processor consists of several linked algo-
rithms: arithmetic expressions, spectral unmixing for
pixel identification, and two back-propagation neural
networks for Level-1B (calibrated, ortho-geolocated,
and spatially re-gridded radiances) cloud identifica-
tion (ESA, 2013). The satellite algorithms used in
this study assume pure water reflection.

Satellite algorithms for chl-a
In this study, we applied two distinct chl-a inver-
sion algorithms, the Case 2 Regional Coast Colour

(C2RCC) (Doerffer & Schiller, 2007) and Maxi-
mum-Peak Height (MPH) algorithms (Matthews &
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Fig. 1 Processing workflow on the Calvalus Earth Observation processing cluster, publicly available in the Sentinel-3 Toolbox of
ESA’s Sentinel Application Platform for a MERIS and b OLCI, where the algorithm merge workflow is detailed in Fig. 2

Odermatt, 2015; Matthews et al., 2012). C2RCC is
based on independent neural networks trained with
atmospheric and water-atmosphere radiative trans-
fer simulation look-up tables. The first neural net-
work corrected for atmospheric influences on top of
atmosphere reflectance and calculated remote sens-
ing reflectance. Remote sensing reflectance was then
inverted by a subsequent neural network to derive
chl-a concentration (Brockmann et al., 2016). C2RCC
was validated in coastal marine waters using the
Coast Colour Round Robin dataset (Nechad et al.,
2015) with some lake in situ measurements and is
available in ESA’s SNAP software (Brockmann et al.,
2016).

The MPH algorithm uses bottom-of-Rayleigh
reflectance (BRR) to derive chl-a in high biomass
waters (Matthews & Odermatt, 2015; Matthews et al.,
2012). The algorithm was designed with a peak posi-
tion selector to search for the maximum radiance
emitted. In the MPH procedure, a baseline was cal-
culated over a large red to near infrared (NIR) range
between the bands centered at 664 and 885 nm to
determine the maximum peak intensity and posi-
tion from the maximum radiance measured over 681,
709, or 753 nm. BRR was calculated by the Rayleigh
processor incorporated in the SNAP MPH processor
bundle. Based on computed BRR, the MPH was then
calculated as follows:

@ Springer

MPH = BRR,,,, — BRRy4 — [(BRRggs — BRR(q, )
x </1max B /1664 >]
Aggs = Aeoa

where BRR_,, and 1., are the magnitude and posi-
tion of the largest magnitude BRR from spectral bands
centered at 681, 709, or 753 nm. Pitarch et al. (2017)
updated the MPH algorithm (MPH4)) to include
new in situ calibration data for deriving chl-a from
the MPH index values. The new regression for chl-a
allowed for a transition between eukaryotes and cyano-
bacteria-dominant waters by combining both datasets,
avoiding calibration with specific chl-a regressions for

either eukaryote or cyanobacteria dominant waters.
MPH,p, chl-a was computed from MPH as follows:

Chla[MPHj] = 848468 x MPH® — 72058
X MPH? + 5515.7 x MPH

Derived C2RCC and MPH,p chl-a were merged to
achieve optimal measures across various inland water
types. A recent study showed that C2RCC retrieved
chl-a accurately in eukaryote dominant waters,
turbid waters, and with chl-a concentrations typi-
cally<10 pg L™' (Kratzer & Plowey, 2021). Krav-
itz et al. (2020) reported the MPH minimum detec-
tion limit was potentially 1-5 pg L~! with accuracy
improving > 20 ug L.
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In order to leverage each algorithm to perform
optimally, merged algorithms were developed in
which the MPHp, algorithm value was utilized in
cases of relatively high chl-a values and the C2RCC
algorithm for low chl-a values. The algorithms were
combined such that the chl-a concentration resulting
from MPH p, was retained if MPH,p, chl-a was above
a certain MPH ) minimum threshold value. If the
chl-a concentration was below this value, the C2RCC
result was selected if the pixel was valid and below
a C2RCC maximum threshold value. If the pixel
value was below MPHp) minimum threshold value
and above the C2RCC maximum threshold, it was
discarded. A schematic diagram showing the logical
selection process of the merged algorithm values is
shown in Fig. 2. To select optimal threshold values,
all combinations of MPHp, and C2RCC threshold
values were assessed to identify the one yielding the
lowest error. Error was assessed through calculation
of the mean absolute multiplicative error (MAE_ ;).
a metric explained in the subsequent section. In addi-
tion to the merged algorithm using previously pub-
lished optimal thresholds, two other merged algo-
rithms were considered based on natural breaks that
occurred in the in situ data set.

Algorithm assessment

To assess the performance of each algorithm, sin-
gle-pixel chl-a values were compared against in situ

Fig. 2 Workflow showing
the logic applied to deter-
mine output values for the
merged algorithms C,5-M,,
C59-M,, and Cs5-M, 5 based
on the C2RCC and the
MPHp, algorithms. NAN
(not a number) indicates
invalidity

chl-a values in a log-log transformed scatter plot.
Axes were log-transformed since error was pro-
portional to chl-a concentration, and the data val-
ues spanned several orders of magnitude (Seegers
et al., 2018a). For the same reasons, this study used
MAE,,,; as the priority performance metric, which
expresses error in terms of the factor by which mod-
eled and observed values tend to differ using a geo-
metric mean (Seegers et al., 2018b):

i [log1o(M;)-log1(0;)] >

MAE_; = 10< "

mult

Terms M, O, and n represent the modeled value,
the observation, and the sample size. As an exam-
ple, a MAE_ value of 1.5 indicates that modeled
values are on average 50% different from observed
values (in either direction—smaller or larger). Mul-
tiplicative bias (bias,,) was also used to assess
algorithm performance. Bias,,,, reports values rela-
tive to 1, indicating unity, with values <1 indicating
systematic underestimation and values> 1 indicating
overestimation.

< i log1o(M;)-logi0(0:) )
bias,;, = 10 "

As an example, a bias, value of 1.2 indicates
that modeled values are on average 20% greater than
observed values, and a bias_,,, value of 0.8 indicates
modeled values tend to be 20% less than observed

values.

| |

MPH, <= {10, 10, 15}

or MPH, = NAN [MPH(P)> {10, 10, 15} ’

l

|

[ C2RCC < {15, 50, 50} ’ [

C2RCC >= {15, 50, 50}
or C2RCC = NAN

MPH }

C2RCC
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Temporal and spatial analysis

Measures of chl-a time series and/or lake-wide gra-
dients are important for water quality managers to
assess current water status or condition and may sup-
port U.S. Clean Water Act reporting requirements. To
illustrate the applicability of the best performing chl-
a algorithm, time series of in situ and satellite-derived
chl-a were used to capture within lake variability at
multiple discrete sites. Further, spatial composites of
chl-a enable detection of known chl-a gradients and
help avoid outlier responses such as erroneously high
values along the land—water interface or in different
areas of a waterbody (Seegers et al., 2018a, b).

Chl-a estimates from the best performing algo-
rithm were compared to field monitoring programs
at Lake Champlain—Ilocated along the border of
Vermont and New York—and at Lake Mendota,
Lake Monona, and Trout Lake in Wisconsin. At
Lake Champlain, satellite-derived chl-a values repre-
sent monthly averages (+ 1 standard deviation), cor-
responding to the month of field data collection. At
Lake Mendota, Lake Monona, and Trout Lake, satel-
lite-derived chl-a values represent daily observations
for every date that had a valid satellite observation at
each location from April through October. Daily snow
and ice data were obtained from the National Snow
and Ice Data Center (Urquhart & Schaeffer, 2020).
Flags for snow and ice were added to the monthly
composites and were developed separately from the
Iterative Multisensor Snow and Ice Mapping System
Northern Hemisphere Snow and Ice Analysis data
(NSIDC, 2008; Version 1.0, 4 km resolution). At each
of these lakes, satellite pixels were averaged within a
300-m buffer of the field data collection location.

Trophic assessment

Trophic assessments may support protection of desig-
nated uses, such as fish and aquatic life use, and water
quality criteria (Schaeffer et al., 2012, 2013a). Chl-a
estimates from reliably performing algorithms can
complement in situ chl-a measures to classify trophic
states in inland lakes, flowages, and reservoirs. There-
fore, satellite-derived chl-a was applied to a subset of
resolved lakes that matched Wisconsin Department of
Natural Resources (WDNR) sampling in 2018. These
lakes were classified by chl-a ranges for each trophic
category used in the NLA (U.S. EPA, 2009), shown
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in Table 1. The months of June, July, and August
were selected to represent a typical recreational sea-
son in the USA that extends from Memorial Day (end
of May) through Labor Day (beginning of Septem-
ber). This monthly representation also closely aligned
with WDNR seasonal sampling between the target
date range of July 15 through September 15, result-
ing in one sample for each month of July, August,
and September (WDNR, 2019). WDNR chl-a sam-
ples were collected from the top 2 m of the water col-
umn at the deepest lake location, or across two to five
locations if the lake required additional sampling for
characterization. Sample collection, preservation, and
storage followed procedures from the WDNR Field
Procedures Manual and analysis followed standard
methods (Hein, 2017).

Results and discussion
In situ data availability

There were 96,707 in situ chl-a samples downloaded
from the WQP during the MERIS mission from
2002 through 2012, and 61,448 in situ chl-a samples
during the OLCI mission from 2016 through 2019
(Fig. 3a). Chl-a ranged from 0.01 to 2,100,000 pg
L~! with a mean of 27.08 pg L~'. US lake chl-a may
range between 0.1 and 1,000 pg L™'; Loftin et al.
(2016) reported values up to 940 pug L™! across the
USA from the 2007 NLA. It may be possible for chl-a
concentrations to range up to 5,000 pg L~! in cyano-
bacteria scum conditions or approach 50,000 pg L™
with wind-induced concentrations of scums at the
surface (Chorus & Bartram, 1999). Samples above
50,000 pg L~! were rare, only 0.03% of the total sam-
ples, and treated with caution as they may be erro-
neous. However, the filtering criteria removed all
these extremely high values from further validation

Table 1 Chl-a ranges for each trophic state based on the
National Lakes Assessment (NLA)

Trophic state chl-a (ug L™
Oligotrophic <2
Mesotrophic >2and <7
Eutrophic >7 and <30
Hypereutrophic >30
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analysis. This removal was likely due to wind advec-
tion transporting the scum into land adjacent pixels
that were quality flagged to remove straylight con-
tamination. Remaining in situ samples filtered for sat-
ellite matches ranged from 0.1 to 872 pg L™! with a
mean of 42.2 ug L™! (Fig. 3b). Only 12% of the total
samples had a depth measure <2 m or were labeled
“surface” and were retained for satellite match-ups.
Spatial filtering to resolvable lakes using the NHD
reduced the initial potential matches. Clark et al.
(2017) initially identified MERIS and OLCI resolv-
able lakes from the NHD based on the requirement
for a 3x3 water pixel array after eliminating adja-
cent shore pixels. Urquhart and Schaeffer (2020)
later updated these findings to lakes that had at least
three water pixels remaining in the NHD lake poly-
gons, after quality control flagging pixels adjacent
to the shoreline. MERIS and OLCI 300-m at-nadir
pixel size limits resolvable lakes in the USA to 0.7%
of total lakes as defined by the NHD (Clark et al.,
2017). The number of resolvable lakes may fluctuate
depending on the resolution of the land mask applied
in the satellite processing. Lake shorelines are also
fractal (Mandelbrot, 1967), and the resolution of their
size is dependent on the method applied to measure
the shoreline. In addition, shorelines are dynamic due
to flood and drought stages, erosion, and land devel-
opment (Murray et al., 2019). Validation points are
from across 20 of the 50 states in 181 lakes of the
2,370 (7.6%) resolvable lakes (Fig. 4). Of the nine
US climate regions (Karl & Koss, 1984), the Upper
Midwest had the best validation coverage, while there

was minimal representation in the Northeast, South-
east (except Florida), Ohio Valley, South, and South-
west regions. After filtering, there were 946 in situ
matches with MERIS and 17 with OLCI representing
only 0.6% of the total in situ samples.

Validation results

Validation data was over-weighted during MERIS
years between 2002 and 2012 compared to OLCI,
which had most matches in 2017 and 2018 (Fig. 5a).
There was an increase in validation points from 2002
through 2009, a pattern supported by other research
reporting a steady increase in WQP chl-a data den-
sity from 1980 to 2008 (Papenfus et al., 2020). The
increase in matchups from 2002 through 2008 was
also a result of increased MERIS coverage. MERIS
data for North America were obtained by onboard
recording prior to 2008. In 2008, the Canadian Cen-
tre for Remote Sensing started direct broadcast of
MERIS data increasing coverage (Mishra et al.,
2019). The lower counts in 2002 and 2012 were
a result of partial years from the MERIS sensor,
launched in March 2002 and terminating in April
2012. The minimal validation matches for OLCI
years may be due to a lag in voluntary reporting to the
WQP, a decline in actual in situ monitoring, or some
combination thereof. Sampling throughout months of
the year was heavily biased toward spring and sum-
mer, with the lowest representation in winter months
(Fig. 5b). Schaeffer et al. (2018b) and Papenfus et al.
(2020) identified similar seasonal in situ sampling
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Fig. 4 Locations of 181 resolvable inland water bodies for
MERIS (2002 through 2012) and OLCI (2016 through 2019)
validation from the WQP in situ chl-a after quality filtering.

biases toward warmer months and under-represen-
tation during the coldest months of the year. Most
validation locations were from Oregon, Minnesota,
Florida, and the Great Lakes (Fig. 5¢). Minnesota and
Florida are more likely to have matches with OLCI
and MERIS because they have some of the highest
numbers of chl-a records in the WQP and the most
resolvable lake observations from satellites (Papenfus
et al., 2020).

The analysis to determine the merged algorithm
combination with the lowest error yielded a MPHp,
minimum threshold value of 10 ug L~! and a C2RCC
maximum threshold value of 15 pg L™!, a combina-
tion referred to as C;5s-M,, (Fig. 6). Thus, the chl-a
concentration resulting from MPH4p) was retained
if chl-a was>10 pg L~!: if the chl-a concentration
was<10 pg L~!, the C2RCC result was selected,
as long as the pixel was valid and<15 pg L™! (see
Fig. 2). If the C2RCC result was above 15 pg L7,
the output was reported as not a number (NAN),
indicating it was invalid. The other two merged algo-
rithms were considered based on natural breaks that
occurred in the in situ data set: (1) C5p-M,;,, with
MPH,p, split value at 10 pg L' and C2RCC chl-a
maximum threshold at 50 pg L™!, and (2) Cs-M;s,
with MPHp, split value at 15 pg L~! and C2RCC

@ Springer

MERIS had 946 match-ups, and OLCI had 17 matchups across
the continental USA

chl-a maximum threshold at 50 pug L™!. C,5-M,, was
the only merged algorithm exhibiting underestimation
bias, though slight. This was because, relative to the
other merged algorithms, C;5-M;, was more domi-
nated by MPHp), which was characterized by a strong
negative bias. Conversely, bias,,, values for the other
merged algorithms were slightly above 1, reflecting
the overestimation bias observed for C2RCC.

The C2RCC, MPH ), and three merged algorithms
were evaluated by comparing their values to coinci-
dent in situ chl-a samples (supplemental Table S1).
Regression plots (Fig. 7) for the five algorithms and
performance metrics (Fig. 8) show all three merged
algorithms performed better than either the C2RCC
or MPH(P) individual algorithms, with notably
lower MAE, ;. Of the five validated algorithms, the
merged C,5-M,, algorithm had the lowest MAE,; at
1.80 and smallest bias,, (closest to 1) at 0.975, out-
performing all other algorithms in both metrics.

Generally, C2RCC was most effective at low chl-
a values, as previously reported (Alikas et al., 2010;
Giardino et al., 2010), and did not exceed an upper
threshold of~100 pg L~'. Log-transformed residu-
als (Fig. 9) confirmed the relatively even distribution
around the unity line, with systematic overestimation

at low- to mid-range values, reflected in the bias,
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Fig. 5 In situ measurement counts matched to the satellite for each a calendar year, b month, and ¢ within states and the Great Lakes

of 1.16, and some degree of underestimation at high
values. Conversely, MPH,p, exhibited a strong under-
estimation bias at low- and mid-range chl-a values,
while performing reasonably well at high chl-a values
compared to C2RCC.

The poor performance of C2RCC in highly
eutrophic and hypereutrophic US lakes and reservoirs
was similar to results across various North Ameri-
can, European, and South African lakes (Binding
et al., 2011; Palmer et al., 2015; Kravitz et al., 2020).
Where Kravitz et al. (2020) recommended C2RCC
only be applied in waters with<20 pg L7!, the
15 pg L7! threshold selected in this study was more
conservative. Kravitz et al. (2020) also reported the
MPH detection limit was 1-5 pg L', but the work
here showed a heavy bias and increased MAE
with <10 pg L~'; this difference may be due to the
updated MPH index used in this study (Pitarch et al.,

2017). This low-end bias and increased MAE, ;, sup-
ported findings from Kravitz et al. (2020) that the
MPH,;) algorithm performed most accurately for chl-
a concentrations >20 ug L™!, when compared to oli-
gotrophic and mesotrophic waters. The differences in
the selected algorithm thresholds between this study
and previous studies may also be a result of the avail-
able distribution of in situ validation points within
these ranges.

Validation studies experience limitations and
errors in both the in situ measures and satellite data.
Single point discrete in situ measures do not repre-
sent larger three-dimensional (longitude, latitude, and
satellite penetration depth) areas of water, such as a
300300 m pixel from OLCI, especially in heterog-
enous environments. In situ chl-a measures range in
error from 30 to 60% (Trees et al., 1985), even though
they are frequently considered ground-truth, which
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Fig. 6 A visualization 100 -
demonstrating selection of
MPH,p) and C2RCC thresh-
olds, showing MAE,_;, for
each possible combination
of the two thresholds. If
MPH,p, is above the MPHp,
threshold, the algorithm
outputs MPH(P); otherwise,
it outputs C2RCC, as long
as C2RCC is below the
C2RCC threshold. The opti-
mal combination of MPHp,
and C2RCC thresholds—
i.e., that yielding the lowest
MAE,, ;—Was selected (10
and 15 pg L™, respec-
tively), and is shown at the
intersection of the dotted
lines 25-

)

50-

C2RCC chl-a threshold (ug L™

is a misnomer. Several other studies have previously
reported that fluorometric analyses underestimate chl-
a values compared to more precise HPLC methods
(Kumari, 2005; Pinckney et al., 1994; Welschmeyer,
1994). One confounding factor inherent to satellite
remote sensing of inland waters is straylight con-
tamination along the land—water interface (Schaeffer
et al., 2012), especially since the shoreline may be a
priority management area for recreational purposes;
this needs to be addressed in future satellite missions.
Here, the nearest two pixels from land were quality
flagged, but it has been suggested that up to four pix-
els from shore may still be under the effects of stray-
light contamination (Hestir et al., 2015), which would
severely limit applications in many smaller water
bodies<0.1 km? (Downing et al., 2006). Satellite-
derived bio-geochemical measures also suffer from
a lack of standard calibration reference as commonly
required with traditional laboratory methods.

Time series comparison

At Lake Champlain, the majority of in situ samples
were within+ 1 standard deviation of satellite merged

@ Springer
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MPHp) chl-a threshold (ug L"1)

Ci5-M,, chl-a (Fig. 10). Additionally, with the
exception of Station #19, field and satellite observa-
tions exhibited similar patterns of chl-a increase and
decrease, despite an offset between the magnitude of
field observations and satellite-estimated averages.
Generally, in situ observations were lower than sat-
ellite-estimated values, which is consistent with the
slight bias observed with the merged C,s-M,, algo-
rithm validation (Fig. 8). Some of the bias could be
explained by the depth offset between the two data-
sets; some of the Lake Champlain samples were col-
lected at 1 m below the surface, which may under-
represent surface biomass measured by the satellite.
Additionally, underestimations have been reported
with the in situ fluorometric method (Kumari, 2005;
Pinckney et al., 1994; Trees et al., 1985). Mismatches
between in situ and satellite measurements could
likewise be attributed to temporal offsets in the data:
field observations were collected on a single day
per month, whereas satellite-derived results shown
in Fig. 9 represent average chl-a estimates for all
valid satellite observations during the corresponding
month. Furthermore, a spatial offset exists, as field
observations represent a single-point sample, while
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satellite observations were averaged within a 300-m
buffer of each field sample.

Satellite merged C,s-M;, chl-a at Lake Cham-
plain were well within the published range. Lu et al.
(2016) used field measurements to summarize chl-a
across the lake for the years 1992 to 2012, finding a
range between 0.5 and 40.8 pg L' with an average
of 5.8 pug L™! and a standard deviation of 4.7 pg L.
This study also used satellite imagery from OLCI for
the year 2018 at a subset of sites across Lake Cham-
plain, finding a range between 0.8 and 19.3 ug L'
with an average of 4.9 ug L™! and a standard devia-
tion of 3.4 ug L.

LTER in situ measurements at Lake Mendota,
Lake Monona, and Trout Lake varied in agreement
with satellite estimates (Fig. 11). Visually, measure-
ments at Lake Mendota exhibited the most disagree-
ment, with LTER data indicating a peak in chl-a early
in the time series and merged C,5-M,, chl-a indicat-
ing a peak approximately a month later. Later obser-
vations demonstrated better agreement, and merged
C,5-M,, chl-a indicated additional increases in chl-a
where field observations were not available. These
increases, which were not captured through in situ
measurements, highlight the increased temporal reso-
lution offered as an advantage of satellite monitoring.
At Lake Monona, field measured chl-a and satellite
merged C,5-M,, chl-a followed similar patterns, cap-
turing local minimums and maximums, but differed
in their magnitude. Overall, merged C;5-M,, chl-a
were higher than field measurements, a finding con-
sistent with results presented for Lake Champlain. At
Trout Lake, both datasets indicated low chl-a con-
centrations and were closely aligned throughout the
entire time series.

At each of the three Wisconsin lakes considered in
this comparison, merged C,5-M,, chl-a were slightly
higher than previously published ranges. Like in Lake
Champlain, a satellite bias would be expected since
field samples were collected down to 2 m below
the surface; this integrated collection that includes
lower chl-a concentrations at depth, presumably, may
under-represent surface concentrations measured
by the satellite. The aforementioned fluorescence
underestimation may also explain some of the dis-
crepancy. At Lake Mendota, long-term monitoring
spanning May to September of 1995 through 2014
suggested an average chl-a value of 8.7 ug L™! and
at Lake Monona, 10.8 pg L™! (McDonald & Lathrop,

2017). Using merged C,5-M,, chl-q, this study found
Lake Mendota to range between 2.4 and 86.1 ug L™
with an average of 21.3 pg L™!. At Lake Monona,
chl-a estimates ranged from 2.0 to 89.9 ug L™ with
an average of 21.0 ug L™!. At Trout Lake, long-term
monitoring spanning 1990 through 2014 yielded an
average chl-a value of 2.6 pg L™ (Jane et al., 2017).
Using merged C,5-M,, chl-a, this study found Trout
Lake to be the lowest of the three sites considered,
ranging between 0.05 and 30.6 pg L™ with an aver-
age of 7.7 uyg L7!.

Disagreement between satellite merged C,s-M,,
chl-a and in situ measurements at Lake Champlain,
Lake Mendota, Lake Monona, and Trout Lake can
in large part be attributed to mismatches in sampling
frequencies between the datasets (Chen et al., 2007b).
Additionally, satellite-derived chl-a can have several
potential sources of error, including contamination
from cloud cover, limitations due to snow and ice
cover, and potential fluctuations in satellite estimates
due to image processing such as atmospheric correc-
tion (Harding et al., 2005; Hu et al., 2001). However,
satellite imagery likely provides more consistent and
frequent observations, both spatially and temporally,
acting as an effective complement to field monitoring
(Chen et al., 2007b). Chen et al. (2007a) found that
multiple observations throughout a single month cre-
ate more realistic monthly summaries versus using a
single value, and seasonal changes can be difficult to
discern using a single observation per month. Moreo-
ver, satellite imagery provides increased spatial cov-
erage which can reveal spatial patterns not observable
through point measurements.

Application

Spatially, the maximum chl-a occurred in the north-
ern end of Lake Champlain, Vermont, at Missisquoi
Bay with concentrations generally decreasing from
north to south (Fig. 12). Temporally, chl-a biomass
increased from March through April, peaked in Sep-
tember, and declined from October through Decem-
ber. Snow and ice flags and quality control masks
limited or completely removed observations from late
December through early March. Monthly composites
also demonstrate the lack of spatial outliers, particu-
larly along the land—water interface where algorithm
saturation due to erroneous straylight could lead to
higher errors. The range of chl-a from 0 to 25 pg L™
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«Fig. 7 Validation scatterplots for a C2RCC, b MPH(P), and the
three merged algorithms ¢ C5-M;5, d C5-M,, and e C;5-M,,,
n is the number of validation points. Both axes were log,
transformed for display

and the north-to-south latitudinal decrease were con-
firmed by independent measures from the Vermont
Department of Environmental Conservation long
term monitoring project (VT DEC, 2020), in which
the 1992-2019 chl-a distributions ranged from 0 to
35 pg L', The median long-term range in Missisquoi
Bay was between 10 and 15 pg L™!, with the upper
quartile between 20 and 25 pg L~ and the 90th per-
centile at 35 pg L~'. This demonstrates a potential
application of the C5-M,, algorithm within a single
waterbody over a diverse range of concentrations
within an optically complex system.

There are an estimated 15,000 lakes within the
State of Wisconsin, where Sentinel-3 OLCI resolved
138, or 0.92%, of the largest lakes (Schaeffer et al.,
2018a). Past remote sensing efforts in the state
included the use of the Landsat missions to comple-
ment trophic state assessments (Greb et al., 2009)
and studies of water quality patterns across the state.
Northern lakes were found to be highly affected by
colored dissolved organic matter with greater water
clarity, while southern lakes showed an increased
influence by algae and suspended sediments due to
more intense agricultural land use (Rose et al., 2017).
Spatially (Fig. 13), the C,;5-M,, algorithm followed
a comparable pattern, with northern lakes generally

MAEmult

C2RCC
2.5

- “A\
0N\,

CSO'M‘IS C50'N|10

Fig. 8 Comparison of the metric results of MAE_ , and
bias,,,,, summarized in star plots across all five algorithms. The
star plot center represents values that indicate best algorithm
performance, while farthest from center represents the poorest

Ci5-M1o

low in chl-a and central and southern lakes higher in
chl-a. LTER subsets indicate little variability in chl-a
except for slightly increased chl-a in the Yahara River
estuary, the primary inlet of Lake Mendota located
in the northeastern part of the lake, where most sus-
pended sediments reach the lake (Wu et al., 2013).
The merged C,5-M,,, algorithm appositely identi-
fied some of the lakes and reservoirs with exception-
ally high (Fig. 14a) and low (Fig. 14b) chl-a through a
statewide ranking process. Beaver Dam Lake (Dodge
County, Wisconsin), a shallow lowland reservoir with
a size of 2591 ha and a mean depth of only 1.5 m, has
experienced significant summer algal blooms in the
past, and its health is listed as poor (WDNR, 2020). It
was assessed in 2012 and remains listed as impaired
as total phosphorus and chl-a exceed the Wisconsin
Consolidated Assessment and Listing Methodology
(WisCALM) thresholds for Fish and Aquatic Life as
well as Recreation Use. The satellite-derived chl-a
value of 173 pg L~!, which was the 2nd highest for
the Sentinel-3 OLCI resolved lakes in the state in
August 2018 (Fig. 14a), was within the chl-a range of
27.7-393 ug L~ measured for this lake from 2016 to
2020 and indicated a moderate summer algal bloom.
This is in stark contrast to Shell Lake (Washburn
County, Wisconsin), a shallow seepage lake with
a size of 1017 ha and a mean depth of 7.0 m. The
health of this lake is listed as excellent. Shell Lake
was assessed in the 2016 listing cycle and is currently
not considered impaired as total phosphorus and chl-
a do not exceed the WisCALM thresholds for Fish

|1 - biasmult|

C2RCC
0.3

B

MPH(p) r\ et \\ C15-M10
Ny 0 f
\ A
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performance. Here, for visualization purposes, bias,, is dis-
played as the absolute difference between 1 and bias since
values further from 1 in either direction indicate a greater bias
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«Fig. 9 Residual scatterplots and histograms of MERIS and
OLCI to in situ chl-a matchups. The left panels are residual
plots of the difference between model satellite log,, chl-a and
the reference in situ log,, values versus reference values. The
right panel are histograms of log;, summarizing the error dis-
tribution of a C2RCC, b MPH,p), and merged C2RCC-MPHp,
¢ C5p-M;5, d C5-M,, and e C,5-M,, algorithms

and Aquatic Life and Recreation Use. The satellite-
derived chl-a value of 11 pg L™!, which was the 4th
lowest in August 2018 (Fig. 14b), matched the chl-
a range of 0.5-22.9 pg L™' measured from 2016 to
2020. However, the merged C,5-M,, chl-a were two
to four times higher than previously measured ranges

Station #19
75 OLCI
5.0 + Field observations
25 + +
0.0 -+ + T
Apr Jun Aug Oct
® 46
Station #25
10
5 ® 36
4+ + *F—F—3F 3 *F £a
Apr Jun Aug Oct
® 25
—~  Station #34
- s 19
O 10
= i
% Apr Jun Aug Oct
Station #36
12
8 +
. -
0 -+ + + +
Apr Jun Aug Oct
Station #46
15
10 +
5
0 + - + ei
Apr Jun Aug Oct

Fig. 10 Time series of chl-a at five locations across Lake
Champlain—located along the border of New York and Ver-
mont—based on satellite observations via the merged C;5-M,,
algorithm (gray lines) and using field observations from the
Lake Champlain Long-Term Water Quality and Biological

Monitoring Project (black points). Satellite observations repre-
sent monthly averages (+ 1 standard deviation) of all valid sat-
ellite overpasses within the month of field data collection and
within 300 m of each point sample. Field observations were
obtained for a single date each month
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Fig. 11 Time series of
chl-a at three lakes in
Wisconsin based on satel- 1007 4=
lite observations via the
merged C,5-M, algorithm
(gray lines) and using field
observations from the North 0 o
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for seven of the lakes. This does not necessarily mean
the satellite over-estimated but measured more of the
lake spatially and temporally than would be achieved
through field monitoring, so it was possible past
field observations were unable to capture the highest
concentrations.

These relatively high C,5-M,, chl-a values
are reflected in the trophic states of a subset of
satellite resolved lakes. WDNR chl-a samples
collected from June to August 2018 indicate a
decrease in the number of combined oligotrophic
and mesotrophic lakes from 47% in June to 36% in
August 2018 (Fig. 15a; supplemental Table S2).
The C,5-M, algorithm indicates an increase from
3% in June to 7% in August 2018 at the respec-
tive point locations (Fig. 15b; supplemental
Table S2). Again, the bias in the algorithm may
result from the WDNR sample collections down

@ Springer

Jul Sep

to 2 m depth either potentially not capturing the
surface biomass or including lower concentra-
tions at depth, and mismatches in the exact timing
and dates of the in situ sampling versus satellite
measures. The merged C,s-M,;, algorithm aver-
aged across the lake indicates 0% oligotrophic
and mesotrophic lakes in the summer months
(Fig. 15c), which can be attributed to the lack of
spatial representativeness of the point locations.
This difference between the satellite and in situ
point locations with averages across the entire
lake is another example where the spatial and
temporal coverage of satellites may complement
single monthly measures at fixed monitoring loca-
tions. The difference between the satellite point
location results (Fig. 15b) and averages across
lakes (Fig. 15c) addresses a challenge in the use
of water quality indicators by providing flexibility
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Fig. 12 Representative OLCI monthly mean composites of the
merged C,5-M,, algorithm chl-a in Lake Champlain—located
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colored pixels inside the lake polygon represent quality flags
including mixed pixels, clouds, cloud shadow, snow, and ice
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Fig. 13 Representative average log,, chl-a for the state of
Wisconsin in August 2018 based on results from the merged
C;5-M,, algorithm. A total of 138 lakes in Wisconsin were
viewable to provide a means of assessing algorithm behavior
and consistency in time and space. The satellite imagery can
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temporal consistency in retrievals, and spatiotemporal distribu-
tions of error metrics from compiled satellite pixels. Subsets
show pixel-level results at several lakes including Lake Men-
dota, Lake Monona, and Trout Lake, where LTER data was
compared to satellite estimates

be used to evaluate algorithm spatial extent of valid retrievals,

@ Springer
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Fig. 14 Average chl-a at
the ten satellite resolved
lakes with the a highest and
b lowest chl-a for the state
of Wisconsin in August
2018 based on results

from the merged C;5-M,;,
algorithm. The county
names are provided in
parentheses. This serves as
an application example for
the potential use of merged
C,5-M,, algorithm chl-a to
support assessments of lake
health

(a) Sinissippi Lake (Dodge) 200
Beaver Dam Lake (Dodge) 173
Big Round Lake (Polk) 167
Lake Koshkonong (Jefferson) 151
Fox Lake (Dodge) 148
Lake Chetac (Sawyer) 146
Lakes Poygan & Winneconne (Winnebago) 145
Lake Menomin (Dunn) 131
Lake Butte des Morts (Winnebago) 130
Mason Lake (Adams) 128
0 50 100 150 200
chl-a (ug L™
(b) Devils Lake (Burnett) 12
Geneva Lake (Walworth) 12
Tomahawk Lake (Oneida) 12
Oconomowoc Lake (Waukesha) | = 11
Lac Courte Oreilles (Sawyer) 11
Shell Lake (Washburn) 11
Fence Lake (Vilas) 10
Round Lake (Sawyer) [ = 10
Grindstone Lake (Sawyer) 8
Lac La Belle (Waukesha) 8
0 50 100 150 200
chl-a (ugL™)

in the definition of spatial and temporal scales for
which the indicator is relevant (Bierman et al.,
2011; Rees et al., 2008). Satellite water quality
monitoring methods provide the option to report
chl-a both at a fine spatial resolution, such as at
point locations, and across a broad spatial scale,
such as averaged across lakes, which is relevant
for management applications and decision-making
efforts. In situ measures do not provide the same
flexibilities temporally and spatially. In the case

@ Springer

of lakes, nutrients are not limited to impacting the
single point locations within a system, but impact
the entire system (Guildford & Hecky, 2000).
These results demonstrate the algorithm applica-
tion, while biased, could still support assessments
of lake health through the identification of lakes
with exceptionally high and low chl-a and address
some of the challenges in the use of remote sens-
ing data for the statewide quantification of trophic
states in Wisconsin (Greb et al., 2009).
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Fig. 15 Trophic states for a subset of satellite resolved lakes
where WDNR chl-a samples were collected in June, July, and
August 2018. Trophic states were deduced from a WDNR chl-
a samples, b the merged C,5-M,, algorithm at the respective

Conclusion

Chl-a serves as a proxy for phytoplankton biomass
and is an ecologically important indicator of aquatic
ecosystem health and condition. The C2RCC chl-
a retrieval algorithm, MPH(P) algorithm, and three
merged scenarios were assessed. The best perfor-
mance based on mean absolute multiplicative error
(MAE,, ;) was from the merged algorithm referred
to as C,5-M,,. Validation occurred across 20 of the
50 states in 181 lakes of the 2,370 resolvable lakes.
This study contributes to the transition of chl-a algo-
rithm maturity (NASA, 2020) from stage 1 which
consists of quantifying error statistics on a small
number of measurements from selected locations and
times toward stage 2 which consists of assessing the
algorithm across a number of locations and times;
with some initial convergence of findings with simi-
lar efforts. However, more effort would be required

579 July

July

27%

Au

7%/

529 August [EA

38%
August

point locations, and ¢ the merged C,5-M,, algorithm averaged
across the entire lake. This serves as an application example
for the statewide quantification of trophic states in Wisconsin
and can be rescaled for any number of lakes or reservoirs

[l oligotrophic

I Mesotrophic

B Eutrophic
Hypereutrophic

to complete the transition and continue to advance
maturity levels, as this is the first study to examine
the merged results of two algorithms previously only
independently assessed. Satellite-derived measures
were demonstrated to complement in situ water qual-
ity time series in Lake Champlain and spatially across
Wisconsin lakes within previously published ranges
even with a slight bias. The combination of satellite
measures and in situ data will allow for more frequent
reporting than otherwise possible with field sampling
alone. Further, the value of satellite-derived chl-a
was demonstrated to adequately classify Wisconsin
resolvable lakes for trophic state assessments. Con-
tinued demonstration and convergence of algorithm
performance evidence may allow for these satel-
lite measures to eventually be considered by more
management agencies in assessments and report-
ing, such as WDNR’s use of the Landsat missions to
complement trophic reporting (WDNR, 2019).
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