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Abstract

Since the mid-2000s, recruitment of Walleye Sander vitreus in some northern Wisconsin lakes has declined, poten-
tially because of climate-induced changes in lake environments. Yellow Perch Perca flavescens is also an ecologically
and culturally important fish species in this region, but mechanisms driving Yellow Perch recruitment are unclear
because of a lack of targeted sampling. Previous studies have suggested that recruitment of these two species may be
regulated by similar factors, and observed declines in Walleye recruitment may be cause for concern about Yellow
Perch recruitment. Our objectives were to determine if abiotic factors related to recruitment success were similar
between Walleye and Yellow Perch populations in northern Wisconsin lakes and if the probability of successful Wall-
eye recruitment was related to estimates of juvenile Yellow Perch abundance before Walleye recruitment declines were
observed. We addressed these objectives using historical data from Wisconsin lakes. Random forest analysis incorpo-
rating lake-specific averages of predictor variables indicated that winter conditions (duration or severity), growing
degree days, variation in spring temperatures, peak summer temperature, and Secchi depth were important predictors
of recruitment success for both species. Logistic regression indicated that before Walleye recruitment declines were
observed on some lakes (2000-2006), Walleye recruitment success was related to relative abundance of juvenile Yel-
low Perch in mini-fyke-net sampling. Our results indicate that landscape-level patterns in recruitment success for the
two species are likely similar and additional research to understand Yellow Perch recruitment trends is warranted.
Better information on Yellow Perch recruitment could contribute to a better understanding of Walleye recruitment
trends as declines in Yellow Perch could influence prey availability and survival of age-0 Walleye. Furthermore,
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potential declines in Yellow Perch could lead to changes in the numbers and size of Yellow Perch caught by anglers,

which may have implications for harvest management.

Sustainability of recreational fisheries relies upon suc-
cessful recruitment of young fish to adult populations
(Beverton and Holt 1957, Maceina and Pereira 2007).
Recruitment is notoriously variable (Sissenwine 1984;
Houde 2009) as small fluctuations in juvenile survival rates
can lead to large changes in year-class strength (Houde
1987, 1989). Factors influencing survival early in life can
be complex and difficult to understand as they are regu-
lated by direct and indirect processes that are influenced by
multiple abiotic and biotic factors (Ludsin et al. 2014) that
may vary within and among lakes within a relatively small
geographic region (Hansen et al. 2015a). Nevertheless,
understanding the mechanisms driving variation in recruit-
ment is crucial for managing exploited populations (Ricker
1975; Sissenwine 1984). In particular, understanding how
among-lake variation in prevailing environmental condi-
tions relate to higher average recruitment success for indi-
vidual species can be valuable at a landscape scale for
identifying where management actions, such as stocking or
more restrictive harvest regulations, are warranted (Noble
1986; Isermann and Paukert 2010; Trushenski et al. 2010).
Understanding these relationships may prove even more
valuable if factors related to average recruitment success
are similar among multiple species that support important
fisheries.

In north temperate lakes, poor recruitment and appar-
ent population declines observed for two important mem-
bers of the Percidae family, Walleye Sander vitreus and
Yellow Perch Perca flavescens, are cause for concern
among fishery managers (Bethke and Staples 2015; Raabe
et al. 2020). Both species support important fisheries and
play ecologically significant roles in lakes as predators and
prey (Forney 1974; Feiner and H66k 2015; Embke et al.
2020). Since the early to mid-1990s, the number of Wall-
eye populations in Wisconsin that are supported by natu-
ral recruitment has declined, while the number that are
supported either in part or totally by stocking has
increased (Raabe et al. 2020). Similarly, Yellow Perch rel-
ative abundance has decreased markedly from 1970 to
2013 among Minnesota lakes (Bethke and Staples 2015),
and in Wisconsin, angler catch and harvest rates for Yel-
low Perch have decreased over time (Feiner et al. 2020).

Both Walleye and Yellow Perch can exhibit highly vari-
able recruitment, which is often related to environmental
factors (Kallemeyn 1987; Bozek et al. 2011; Kaemingk
et al. 2014). Walleye recruitment has been intensely stud-
ied in north temperate systems, and it appears that
observed declines in some northern Wisconsin lakes are

due to recruitment bottlenecks occurring in the first year
of life (Hansen et al. 2015b; Gostiaux et al. 2022, this spe-
cial section). Although the exact mechanisms resulting in
recruitment declines are currently unknown and likely
complex (Peters et al. 2007; Soranno et al. 2014), these
declines are potentially related to climate-induced changes
in lake environments (Hansen et al. 2015b). Walleye
recruitment has been related to temperature (Hansen et al.
1998, 2015a; Honsey et al. 2020), which may influence
similar recruitment patterns across Walleye populations
(Koonce et al. 1977; Schupp 2002; Beard et al. 2003).
Moreover, Walleye recruitment declines have coincided
with increases in warmwater species, such as Largemouth
Bass Micropterus salmoides in Wisconsin (Hansen et al.
2015b, 2015¢) and Ontario, Canada (Robillard and Fox
2006), but whether this is an environment-induced correla-
tion or cause and effect remains unknown.

Factors influencing Yellow Perch recruitment in inland
Wisconsin lakes have not been specifically examined
largely because sampling designed to index Yellow Perch
recruitment early in life (age 0 or age 1) is rarely con-
ducted on these lakes. Evidence from other temperate sys-
tems suggests that factors regulating recruitment dynamics
may be similar for Walleye and Yellow Perch. Therefore,
observed trends in Walleye recruitment may provide
insights regarding trends in Yellow Perch recruitment.
Specifically, winter and spring temperatures can also influ-
ence Yellow Perch recruitment (Clady 1976; Kallemeyn
1987; Farmer et al. 2015). When comparing species, age-0
Yellow Perch and Walleye share similar thermal niches,
exhibit optimum growth at 22°C, and their recruitment is
similarly correlated with temperature (Huh et al. 1976;
Koenst and Smith 1976; Koonce et al. 1977).

Evidence of similar population declines for Walleye
and Yellow Perch across north temperate systems suggests
the potential for fish community shifts away from cool-
water, percid-abundant systems toward warmwater,
centrarchid-dominated communities (Hansen et al. 2017).
However, to date there have been few concurrent analyses
of recruitment trends or associations between Walleye and
Yellow Perch in the Midwestern USA, particularly in
small inland systems (Koonce et al. 1977; Kallemeyn
1987; Rose et al. 1999). We aimed to address this crucial
knowledge gap using historical data from Wisconsin lakes.
Our first objective was to determine if abiotic factors
related to recruitment success were similar between Wall-
eye and Yellow Perch populations in northern Wisconsin
lakes. In addressing this objective, we did not attempt to
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directly assess whether Walleye and Yellow Perch year-
class strengths were synchronous; rather, we examined
whether probability of recruitment success for each species
was related to average environmental conditions associ-
ated with individual lakes. Our second objective was to
determine if the probability of successful Walleye recruit-
ment was related to estimates of juvenile Yellow Perch
abundance before Walleye recruitment declines were
observed in some lakes. Our goal related to our second
objective was to assess whether variation in juvenile Yel-
low Perch abundance among lakes might help in under-
standing among-lake variation in Walleye recruitment
success, which could provide additional justification for
standardized sampling that specifically targets Yellow
Perch. Identifying correlations and common environmen-
tal associations with recruitment success between species
could indicate whether declines in Walleye reflect similar
declines for Yellow Perch and help to determine the extent
to which local management actions might be used to offset
the effects of a changing climate (Paukert et al. 2016).

METHODS

Landscape-level comparison of Yellow Perch and
Walleye recruitment.— To evaluate conditions associated
with Yellow Perch and Walleye recruitment success across
many individual lakes, age-specific relative abundance of
Yellow Perch and Walleye was determined from annual
spring (Yellow Perch) and fall (Walleye) sampling per-
formed by the Wisconsin Department of Natural
Resources (WDNR) and the Great Lakes Indian Fish and
Wildlife Commission from 1990 to 2020. Data were
obtained from databases maintained by each agency. Yel-
low Perch abundance was assessed using spring (March—
May) fyke-netting surveys targeting adult Walleye (see
Rogers et al. 2003 for detailed description) that also
occurred during Yellow Perch spawning when water tem-
peratures were between 10°C and 21°C. Number of nets
set per lake varied with lake size, and following criteria
defined in Feiner et al. (2020), we only included surveys
where (1) Yellow Perch were a target species (e.g., lengths,
counts, and age estimates were obtained), (2) the mini-
mum number of net-nights met defined requirements
based on surface area, and (3) no adverse conditions that
could reduce sampling efficiency were noted. Fyke nets
were checked daily, Yellow Perch were counted and mea-
sured (nearest 2.5 mm, total length [TL]), and ages were
estimated for a subsample (sampling target of at least five
fish per 12.7-mm length-group) using calcified structures
(scales, dorsal spines, or otoliths).

To develop age-specific relative abundances of Yellow
Perch as an indicator of recruitment, we constructed age—
length keys (12.7-mm TL bins) for individual lake-years
using length-at-age data obtained from sampling

conducted in spring (March—May). In addition to fish cap-
tured in fyke nets, we also used length-at-age data from
electrofishing surveys performed in the same lake and year
to maximize the number of ages available in individual
length bins for constructing age-length keys. Electrofishing
surveys were also conducted during spring (March-May).
We did not use electrofishing data to estimate relative
abundance or to index recruitment. We included all lake-
years that had at least three fish with estimated ages in at
least 50% of the survey’s observed length bins. We
assigned ages to unaged fish from fyke nets using semiran-
dom assignment (R package FSA, Ogle et al. 2020; Iser-
mann and Knight 2005). Once ages were assigned, we
calculated age-specific relative abundances (fish caught per
net-night = CPE) from spring fyke-net catches. The CPE
of age-3 Yellow Perch was used as an indicator of recruit-
ment because it was the youngest age at which Yellow
Perch exhibited full catchability to the gear and repre-
sented an age at which fish reached large enough sizes to
enter the recreational fishery (Feiner et al. 2020). In other
studies, Yellow Perch year-class strength is usually set by
age 0 or age 1, with high correlations in age-specific abun-
dances of cohorts through the first few years of life (e.g.,
Ivan et al. 2011; Bogner et al. 2016), suggesting that the
relative abundance at age 3 is not only an index of recruit-
ment to the fishery, but also likely reflects relative differ-
ences in year-class strength at younger ages.

Age-0 Walleye abundance was quantified using night-
time electrofishing performed in the fall (September and
October) when water temperatures were between 10°C
and 21°C (see Hansen et al. 2015a for details). We
required that at least 70% of the shoreline was electrof-
ished in lakes with <23 km of shoreline and at least 16.1
km of shoreline was electrofished in lakes with >23 km of
shoreline. We removed surveys with unreliable abundance
estimates for age-0 Walleye based on sampling conditions
(e.g., poor conductivity reducing sampling efficiency; see
also Hansen et al. 2015a) and only included lakes with a
previous history of at least some Walleye natural recruit-
ment. Lastly, we removed surveys that coincided with
Walleye stocking events (Hansen et al. 2015a). Age-0
Walleye were identified using length frequency distribu-
tions and verified by estimating age for a subsample of
fish using scales. Walleye recruitment, indexed as CPE of
age-0 Walleye, was quantified as fish per kilometer.

Attempts to predict recruitment tend to be highly
uncertain and often yield irreplicable relationships (Myers
1998; Zhao et al. 2013). Moreover, managers may be
more interested in whether recruitment is sufficient to sup-
port a fishery or surpasses some baseline threshold (Han-
sen et al. 2015a). Therefore, we classified Yellow Perch
and Walleye recruitment into “successful” or “unsuccess-
ful” recruitment years using estimates of relative abun-
dance. Based on previous work, age-0 Walleye CPE > 6.2
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fish/km in fall electrofishing was used to designate a Wall-
eye year-class as successful (as in Hansen et al. 2015a,
2018; Gostiaux et al. 2022). However, no benchmark cur-
rently exists for Yellow Perch. Therefore, we classified
“successful” Yellow Perch year-classes as having age-3
CPE >0.39 fish/net-night, which represented the overall
median value for our data. Year-classes with CPE below
the median were considered “unsuccessful.” It is important
to note that this was a statewide index, meaning some
lakes could consistently produce successful (>50th percen-
tile) year-classes, while others may never produce one.
Classifying recruitment in this way allowed us to make
inferences about average environmental conditions associ-
ated with lakes that consistently produce successful year-
classes compared with those unable to do so, which may
be more useful for managers seeking to generally catego-
rize probability of recruitment success at a landscape
scale.

We developed a set of predictor variables based on
their likelihood to influence percid recruitment in previous
research (see Feiner and Hook 2015; Hansen et al. 2015a;
Honsey et al. 2020). Conductivity (uS/cm) and in situ and
satellite-derived measures of Secchi depth (m), indicators
of primary productivity and water clarity that can influ-
ence juvenile Walleye growth (Lester et al. 2004), were
obtained from the WDNR Surface Water Integrated
Monitoring System database (SWIMS: https:/dnr.
wisconsin.gov/topic/SurfaceWater/SWIMS), a database of
historical lake limnological parameters developed by the
North Temperate Lakes Long-Term Ecological Research
project (Papes and Vander Zanden 2013), and from Han-
sen et al. (2015a); in situ observations were always used
when available. Conductivity and Secchi depth data were
typically collected from May to September, and we used
all available data in calculating average values for a lake.
While seasonal variation in conductivity and Secchi depth
can occur, our assumption was that interlake differences
in these metrics would be larger than intralake variations
over time, and averaging all available observations would
reduce temporal variation within and among years. Lake
morphology data, including lake area (ha), maximum
depth (m), and shoreline development index, which can
influence thermal-optical habitat availability (Lester et al.
2004; Hansen et al. 2019), were acquired from various
WDNR databases and the R package “lakeattributes”
(Winslow 2015). Lastly, we indexed thermal conditions in
lakes using updated daily water temperature and ice phe-
nology predictions from a process-guided deep learning
model of lake water temperatures (Read et al. 2021).
Thermal metrics were summarized into hypothesized
important predictors of percid recruitment based on the
importance of winter, spring, and summer temperatures
for adult reproduction (Schneider et al. 2010; Farmer et
al. 2015; Feiner et al. 2016a, 2016b) and juvenile growth

(Kitchell et al. 1977). We specifically included annual
growing degree days (base 0°C; GDDy), annual peak epi-
limnetic water temperature (peak temperature; °C), winter
severity (number of days with water temperatures between
0°C and 4°C), duration of ice cover (d), and variation in
spring temperatures (coefficient of variation [CV] in water
temperatures 0-30 and 30-60d after ice-off), which
reflects variability in spring warming rates and has been
important for Walleye recruitment in Escanaba Lake,
Wisconsin (Serns 1982; Hansen et al. 1998). While several
of these thermal variables are likely associated with lati-
tude (i.e., more northerly lakes are cooler and have more
ice cover), we did not include latitude as an explanatory
variable because it has previously been shown to be a
poor predictor of Walleye recruitment in Wisconsin (Han-
sen et al. 2015a) and because we were interested in
directly testing for more clearly interpretable, mechanistic
environmental associations with  successful  percid
recruitment.

We were interested in whether percid recruitment suc-
cess was associated with average environmental condi-
tions observed among individual lakes. Moreover,
environmental data were generally not available for every
lake and year in which we had measures of percid
recruitment. Therefore, we averaged all available observa-
tions of predictors first within years and then across years
to generate mean indices of environmental conditions for
each lake. This approach has been previously used to
assess environmental conditions associated with high
probabilities of Walleye recruitment success in previous
studies and thus also allowed for more direct compari-
sons of results between studies (Hansen et al. 2015a;
Feiner et al. 2019b).

We evaluated and compared the importance of average
environmental conditions to Yellow Perch and Walleye
recruitment success using random forest modeling. In
brief, random forests are a machine learning technique
that identifies relationships between variables by construct-
ing many classification trees based on partitions of the
data; i.e., many bootstrapped subsamples of the data are
taken for development of many distinct classification trees
that predict recruitment success (or failure) by splitting the
subsamples along predictor variables (Cutler et al. 2007).
Predictions and variable importance measures from all
trees are then combined to assess predictive accuracy and
the effect of explanatory variables. By maintaining all
recruitment observations in our data instead of averaging
them within lakes, we were able to propagate variability
in recruitment success across classification trees and assess
which average environmental conditions were most often
associated with “successful” recruitment years. To clarify,
while abiotic predictor variables were averaged for a lake,
recruitment data for Walleye and Yellow Perch were not.
This allowed the random forest algorithm to select
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different recruitment years when subsetting the data across
many trees.

We specifically used conditional random forests, using
“cforest” in R package “partykit” (Hothorn and Zeileis
2015), because of their ability to robustly handle corre-
lated or skewed predictor variables (Strobl et al. 2008).
Random forests were constructed by increasing the num-
ber of trees until model results stabilized (1,000 for Yellow
Perch and 400 for Walleye). Predictive power of the model
was determined by calculating classification error rates (R
package “DescTools”; Signorelli et al. 2020) and perform-
ing a one-sided exact binomial test to determine whether
model predictions were more accurate than a “no informa-
tion” model. Relative importance of predictors was deter-
mined by calculating the mean decrease in “out-of-bag”
classification accuracy among trees when permuting the
predictor of interest (function “varimp” in the “partykit”
package). The effects of important predictors were evalu-
ated using partial dependence plots (package “pdp”;
Greenwell 2017), developing predictions across 100 levels
spanning the range of each predictor variable while hold-
ing other predictors at their observed levels and calculat-
ing the mean, 25th, and 75th quantiles of the predicted
probability of recruitment success.

Historic mini-fyke-net data.— We used Yellow Perch
catch data from mini-fyke-net surveys conducted during
2000-2006 to test whether the probability of Walleye
recruitment success may have been related to relative
abundance of juvenile (age-0 and age-1) Yellow Perch
abundance before Walleye recruitment declines became
evident in some lakes. We used this approach because Yel-
low Perch data from mini-fyke-net sampling were only
available from 2000 to 2006 as this gear is not routinely
used by the WDNR as a panfish and community assess-
ment tool (Treaty Fisheries Assessment Team 2005;
Simonson 2006) and prevalence of this sampling was
higher in 2000-2006. However, only 24 of the 174 lakes
used in analyses were sampled with mini-fyke-net surveys
in more than 1 year during 2000-2006. Mini-fyke-net sur-
veys were conducted from July through early September
with nets that had either 0.92-m x0.61-m or 0.92-m X
0.92-m frames, 4.76-mm mesh, 0.61-m-diameter hoops,
and sometimes 25.4-mm mesh exclusion netting (Treaty
Fisheries Assessment Team 2005; Simonson 2006). On
lakes <202 ha, at least six nets were fished, and on lakes
>202 ha, at least eight nets were fished (Treaty Fisheries
Assessment Team 2005; Simonson 2006). Nets were fished
for 1-2 nights such that the number of net-nights per lake
ranged from 6 to 16. Yellow Perch relative abundance
was calculated as fish per net-night (CPE), and mean CPE
was used for the 25 lakes where more than 1 year of mini-
fyke-net sampling was conducted. Mini-fyke-net sampling
primarily captured Yellow Perch less than 100 mm (89%
of all fish collected) that were largely age 0 and age 1. We

note that while most lakes were sampled with mini-fyke
nets in only I year, these nets provide a composite index
of abundance for two subsequent year-classes of Yellow
Perch.

Lakes where mini-fyke netting occurred were classified
as having “successful” or “unsuccessful” Walleye recruit-
ment based on mean CPE of age-0 Walleye in fall electro-
fishing, also conducted from 2000 to 2006, but not
necessarily in the same year mini-fyke-net data were col-
lected. We only included lakes with more than one annual
estimate of age-0 Walleye CPE from 2000 to 2006, and
78% (135 of 174) of the lakes were sampled for age-0
Walleye at least three times in this period. Lakes with
mean age-0 Walleye CPE >6.2 age-0 Walleye/km were
classified as supporting successful recruitment (Hansen et
al. 2015a, 2018). Using logistic regression, we tested
whether the probability that a lake supported successful
Walleye recruitment was related to juvenile Yellow Perch
CPE in mini-fyke nets. We used mean values of age-0
Walleye CPE in fall electrofishing for this analysis rather
than year-specific estimates used in our landscape-level
analysis because mini-fyke-net surveys were typically con-
ducted in only 1 year on each lake during 2000-2006, lim-
iting the availability of paired observations of within-year
estimates of year-class strength for both species. Conse-
quently, our analyses were focused on the generalized rela-
tionship between Walleye recruitment success and juvenile
Yellow Perch abundance at a relatively coarse scale (e.g.,
is the probability of Walleye recruitment success generally
higher in lakes with higher Yellow Perch abundance).

RESULTS

Landscape-Level Comparison of Yellow Perch and
Walleye Recruitment

Yellow Perch recruitment to age 3 was quantified in 55
surveys across 43 lakes, whereas age-0 Walleye recruit-
ment was quantified in 3,440 surveys across 460 lakes
from 1990 to 2020 (Figure 1). Similar sets of environmen-
tal variables, particularly thermal variables, were identified
as important for explaining the probability of successful
year-classes for both Yellow Perch and Walleye, although
the order of variable importance was not the same (Table
1). For Yellow Perch, the duration of ice cover was most
important, followed by conductivity, GDD,, Secchi depth,
and peak temperature, with spring water temperature CV
being secondarily important. The model predicted success-
ful year-classes with 67.3% accuracy (95% CI=54.1-
78.2%) and performed significantly better than a null
model (P=0.01). The most important predictors of
Walleye recruitment success were water temperature
CV 30-60d after ice-off, lake area, and peak temperature,
with GDD,, winter severity, and Secchi depth being
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FIGURE 1. Maps of Wisconsin showing the locations of lakes used for (A) the landscape-level comparison of environmental characteristics
associated with Yellow Perch (43 lakes) and Walleye (460 lakes) recruitment success and (B) determining if the probability of Walleye recruitment
success during 2000-2006 was related to juvenile Yellow Perch catch per effort in mini-fyke-net sampling (174 lakes). Shaded areas indicate the Ceded

Territory of Wisconsin.

secondarily important. Walleye recruitment success was
predicted with 79.5% accuracy (95% CI = 78.2-80.8%) by
the model, which performed significantly better than a null
model (P <0.001).

Negative associations were apparent between lakes with
warm and variable water temperatures and the probability
of recruitment success for both species. Longer, colder
winters were positively associated with recruitment success
in both species (Figure 2A), whereas higher annual GDD,
(Figure 2C), higher peak temperatures (Figure2E), and
more variable late spring temperatures (Figure 2F) were
negatively associated with recruitment success. Recruit-
ment success was negatively associated with Secchi depth
for both species (Figure2D), whereas conductivity was
positively associated with Yellow Perch recruitment suc-
cess but negatively associated with Walleye recruitment
success (Figure 2B).

Historic Mini-Fyke Data

Yellow Perch CPE in mini-fyke nets ranged from 0.06
to 2,312 fish/net-night, with a median value of 2.6. Mean
Yellow Perch CPE in mini-fyke nets for 72 lakes classified
as supporting successful Walleye recruitment during 2000-
2006 was 167 fish/net-night (SE =51), and CPE in the 102

lakes not supporting successful Walleye recruitment was 15
fish/net-night (SE = 6). Probability of Walleye recruitment
success from 2000 to 2006 was significantly related to Yel-
low Perch CPE (Z=2.8, P<0.01; Figure 3), with a CPE
increase of one Yellow Perch resulting in a 1.008 (i.e.,
90754 times increase in the odds that a lake supported
successful recruitment from 2000 to 2006. Removal of
seven extreme observations where Yellow Perch CPE in
mini-fyke nets was >500 fish/net-night (>95% percentile
for all observations) resulted in only a slight change in the
odds that a lake supported successful Walleye recruitment
(odds ratio=1.013; Z=3.1; P <0.01). Of the 87 lakes with
a Yellow Perch CPE >2.6 fish/net-night (median value for
all lakes), 51 (59%) were classified as supporting successful
Walleye recruitment. Conversely, only 21 of the 87 lakes
(24%) with Yellow Perch CPE <2.6 fish/net-night were
classified as supporting successful Walleye recruitment.

DISCUSSION

This study provides important information regarding
conditions associated with Yellow Perch and Walleye
recruitment in the upper Midwestern USA that can help
explain and predict spatial patterns in recruitment success
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TABLE 1. Mean (SD in parentheses) of lake-specific average environmental conditions and variable importance (measured as the percent increase in
mean squared error when a given variable is permuted) of environmental predictors of Yellow Perch and Walleye recruitment success used in random
forest modeling. The six most important predictors are bolded for Yellow Perch and italicized for Walleye (four are shared between species).

Yellow Perch Walleye

Variable Mean (SD) Importance Mean (SD) Importance
Ice cover duration 130.99 (12.38) 0.112 152.16 (7.34) 0.029
Conductivity (uS/cm) 283.94 (130.96) 0.073 94.56 (54.52) 0.034
GDD, 3,873.4 (242.92) 0.063 3,405.93 (183.83) 0.038
Secchi depth (m) 2.62 (1.18) 0.061 2.9 (1.43) 0.035
Peak summer temperature 29.45 (1.65) 0.057 27.45 (1.42) 0.058
Temperature CV 30-60 d post ice-off 0.17 (0.02) 0.043 0.15 (0.01) 0.09
Temperature CV 0-30d post ice-off 0.35 (0.04) 0.023 0.33 (0.04) 0.033
Lake area (ha) 614.75 (1,708.5) -0.006 244.16 (491.23) 0.083
Shoreline development index 2.25 (1.31) -0.022 2(1) 0.029
Maximum depth (m) 9.87 (5.16) -0.033 10.78 (6.28) 0.028
Winter severity (days at 0-4°C) 126.65 (26.36) -0.034 149.63 (20.62) 0.034

for both species. Although our work was focused on Wis-
consin, we analyzed data from a broad spectrum of lakes
that would encompass environmental conditions and fish
communities observed for many lakes in Minnesota,
Michigan, and other lakes within the Midwestern USA.
Across individual lakes, average thermal conditions early
in life appear to be related to production of successful
year-classes for both species, which is consistent with
other studies that have focused on Walleye (Hansen et al.
1998, 2015a; Honsey et al. 2020) and Yellow Perch
(Clady 1976; Ward et al. 2004; Farmer et al. 2015). The
general similarity in the suite of variables associated with
high probability of recruitment success between the two
species suggests that Walleye recruitment patterns previ-
ously reported for Wisconsin lakes (e.g., Hansen et al.
2018; Rypel et al. 2018) may also reflect patterns in Yel-
low Perch recruitment across Wisconsin. Moreover, before
Walleye recruitment declines were observed the probabil-
ity of Walleye recruitment success appeared to be posi-
tively related to relative abundance of juvenile Yellow
Perch. Similarities in environmental conditions associated
with recruitment success and in general abundance pat-
terns among lakes suggest that Walleye and Yellow Perch
may respond similarly to climatic changes across northern
Wisconsin and may be indicative of overall changes in
fish community structure in temperate lakes (Hansen et
al. 2017).

Our results were consistent with previous work indicat-
ing that changes in annual water temperature regimes,
including shorter, less severe winters, higher annual
GDDy, and more variable late spring temperatures, were
associated with lower recruitment for both age-0 Walleye
(Hansen et al. 2015a, 2017, 2018) and age-3 Yellow Perch
(Farmer et al. 2015; Feiner et al. 2016a). The generally

negative association of warm water temperatures with
Walleye and Yellow Perch recruitment could be moder-
ated by lake size and water clarity—recruitment success in
both species was positively associated with lake size while
negatively associated with Secchi depth and differentially
associated by conductivity. Hansen et al. (2015a) showed
that the effect of water temperature GDDs (base tempera-
ture 5°C) on probability of Walleye recruitment success in
Wisconsin lakes was negligible in lakes >1,000 ha and that
the relationship between recruitment probability and con-
ductivity was dome-shaped. Thermal-optical habitat avail-
ability has also been related to Walleye recruitment
(Honsey et al. 2020) and fishery yields (Lester et al. 2004).
Understanding how water clarity, lake morphology, and
climate change will interact to affect recruitment could
allow managers to identify resilient populations or poten-
tial candidates for rehabilitation.

One explanation for the similarity in environmental
conditions associated with the probability of recruitment
success is that Walleye and Yellow Perch are responding
similarly to these conditions (Sharma et al. 2011). Alterna-
tively, in some lakes, Walleye recruitment declines may be
caused by declines in Yellow Perch recruitment through
direct interspecific interactions. Yellow Perch are both a
prey item (Engel et al. 2000; Gostiaux et al. 2022) and
prey buffer (Forney 1974, 1976) for juvenile Walleye.
Walleye and Yellow Perch population dynamics may be
strongly linked through predator—prey interactions, partic-
ularly when Yellow Perch are the main prey source for
Walleye (Forney 1971; Mills et al. 1987). Specifically, pre-
vious evidence suggests that juvenile Yellow Perch are an
important prey item for both age-0 and adult Walleye in
northern Wisconsin lakes (Engel et al. 2000; Kelling et al.
2016; Gostiaux et al. 2022).
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FIGURE 2. Partial dependence plots for six important variables in the random forest model for both Yellow Perch (yellow) and Walleye (blue): (A)
indices of winter severity, including days between 0°C and 4°C (Walleye) and ice duration (Yellow Perch); (B) conductivity (uS/cm); (C) GDDy; (D)
Secchi depth (m); (E) summer peak temperature; and (F) water temperature CV 30-60d after ice-off. Solid lines represent mean year-class strength
predictions, shaded areas represent the region between the 25th and 75th percentiles of year-class strength predictions, and color-coded vertical dashes

on the x-axes represent deciles of observed data.

Our analysis of the Yellow Perch CPE from mini-fyke
nets offered a slightly different perspective than our analyses
relying on standard fyke-net data. The mini-fyke-net data
represent the only information for juvenile Yellow Perch
abundance available at a relatively broad spatial scale in
Wisconsin. These data did not allow us to determine if year-
class strength was synchronous at annual scale between
Walleye and Yellow Perch. However, results from the logis-
tic regression and the general distribution of Walleye recruit-
ment success relative to juvenile Yellow Perch CPE further
suggest that recruitment of both species were related in some
way. Recruitment for an individual species can exhibit sub-
stantial variation among systems (e.g., Janetski et al. 2013;
Dembkowski et al. 2016; Honsey et al. 2016; Feiner et al.
2019a), and this likely explains some of the variation we
observed between the probability of Walleye recruitment

success and Yellow Perch abundance when analyzing his-
toric fyke-net data. Additionally, introduced populations
may exhibit less resilience to abiotic and biotic stressors than
populations that were naturally established (Lorenzen et al.
2012). Unfortunately, the history of widespread fish stocking
and translocations in northern Wisconsin means it is difficult
to determine what lakes had native Walleye and Yellow
Perch populations. Additional information is needed to fully
understand among-lake variation in the responses of Wall-
eye and Yellow Perch to biotic and abiotic conditions and
how this may drive asynchronous or synchronous patterns
in their recruitment.

Feiner et al. (2020) and Bethke and Staples (2015) sug-
gest that some Midwestern U.S. Yellow Perch populations
may be in decline. In light of similar patterns observed for
Walleye in northern Wisconsin (Rypel et al. 2018), this
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FIGURE 3. Probability (black line) of successful Walleye recruitment during 2000-2006 in relation to juvenile (age-0 and age-1) Yellow Perch catch
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shaded area represents 95% confidence intervals. Successful Walleye recruitment was defined as lakes with a mean catch per effort of age-0 Walleye of

more than 6.2 fish/km in fall electrofishing.

may be part of a larger trend for declines in percids over-
all. In addition to recruitment, there are strong indicators
to suggest that Yellow Perch size structure has decreased
in Wisconsin (Beard and Kampa 1999; Rypel et al. 2016)
along with recreational harvest rates (Feiner et al. 2020).
We note that observed declines in Yellow Perch size struc-
ture could explain observed declines in fyke-net CPE and
angler harvest rates as both “gears” are size-selective,
meaning that fewer fish may be vulnerable to fyke-net
capture or acceptable for angler harvest.

Declines in Walleye recruitment in northern Wisconsin
have already prompted substantial research efforts and
changes to management strategies, including increased
stocking of large fingerlings in lakes exhibiting recruitment
declines (Hansen et al. 2015a) and implementing more
restrictive harvest regulations (Raabe et al. 2020), while Yel-
low Perch populations have received comparatively limited
attention. One potential hurdle is the lack of long-term stan-
dardized data needed to further assess the status and trends
of Yellow Perch. Specifically, current sampling does not pro-
vide a means to assess Yellow Perch recruitment early in life
(age 0 or age 1), whereas sampling for this purpose does
occur in many other states and provinces (Irwin et al. 2009;
Dembkowski et al. 2016; Zhang et al. 2017). We recognize
that the Yellow Perch data from standard fyke-net sampling
were not specifically collected to assess recruitment trends
and for the historic mini-fyke-net sampling, there was little
replication at the individual lake level. These problems
emphasize the need to establish standardized Yellow Perch

sampling protocols that will help biologists answer several
critical questions about the status and trends of Yellow
Perch populations across the region, including elucidating
mechanisms driving Yellow Perch recruitment and abun-
dance, levels of Yellow Perch recruitment necessary to sus-
tain viable populations, and linkages between Walleye and
Yellow Perch population dynamics.

Despite the lack of data on Yellow Perch recruitment,
our findings have important implications for fisheries man-
agement. Our work has prompted new field-based research
comparing methods to sample age-0 Yellow Perch and
examining Yellow Perch recruitment trends in lakes with dif-
ferent Walleye histories. Our work also demonstrates that
mitigating potential declines in Yellow Perch recruitment
may be difficult given that environmental conditions associ-
ated with recruitment success are largely outside the control
of fishery managers. However, managers may need to
respond to these potential declines, which have implications
for several other species. Yellow Perch have been shown to
provide important prey for both adult Walleye and Large-
mouth Bass in northern Wisconsin lakes (Kelling et al.
2016), suggesting that declines in Yellow Perch may trans-
late into reduced capacity to support historic densities of
these predators or that predation may be shifted to other
species, such as Bluegill Lepomis macrochirus, that also sup-
port important fisheries. Furthermore, Yellow Perch con-
tributed to moderate to high diet overlap between
Largemouth Bass and Walleye observed in four northern
Wisconsin lakes in some months (Kelling et al. 2016).
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Reduced availability of Yellow Perch coupled with increases
in Largemouth Bass abundance (Hansen et al. 2015¢c) may
mean that fewer Yellow Perch are available to Walleye as
prey, which could translate to slower growth if alternative
prey are not available. However, recent work has shown that
growth of juvenile Walleye in Wisconsin lakes increased
from 1990 to 2012, while growth of older fish remained rela-
tively stable (Pedersen et al. 2018). Fewer Yellow Perch
could also result in changes to growth and size structure that
could result in Yellow Perch fisheries that are characterized
by lower catch rates but with more fish that are of desirable
size for angler harvest (Isermann et al. 2007). However,
growth and size structure of Yellow Perch may be regulated
by factors other than intraspecific density (Paukert and
Willis 2001; Purchase et al. 2005). Lastly, larval sampling
conducted on northern Wisconsin lakes (Gostiaux et al.
2022) has shown that age-0 Yellow Perch likely represent
one of the dominant zooplanktivores in these lakes during
May and June. Consequently, potential reductions in age-0
Yellow Perch abundance may result in greater availability of
zooplankton prey for many other species that support
important fisheries (e.g., centrarchids, Walleye), which could
translate into improved growth and survival.
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