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Operationalizing Authentic Mathematical Proof Activity Using Disciplinary Tools 

 

Many educators advocate for students to engage in authentic mathematical activity – activity 

reflective of the discipline. In our respective design studies, we had a common goal of engaging 

students in authentic mathematical activity in relation to proof. However, we identified a need to 

better operationalize “authentic” and characterize student activity in relationship to the 

discipline in the undergraduate proof setting. We introduce the Authentic Mathematical Proof 

Activity (AMPA) framework as a theoretical tool for researchers interested in taking a multi-

dimensional approach to documenting authenticity in students' proof-related activity. The 

framework provides both a means to deconstruct activity systems in terms of tools and objectives 

of the professional mathematician community and a set of dimensions (agency, authority, 

alignment, complexity, variety, and accuracy) to account for differing elements of authenticity 

related to both student and disciplinary aims.  
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1 Introduction 

Learning and achievement in mathematics are often characterized in two ways (1) 

acquiring cognitive skills and beliefs and (2) participating in authentic mathematical activity 

(Sfard, 1998). The majority of research literature on students learning proof takes an acquisition 

lens (Stylianides et al., 2017) painting a rather deficit-view of students’ engagement with proof, 

showcasing that students have not yet acquired many of these skills and beliefs. While there are 

some studies and scholarly reflections that take a participation lens on learning proof via 

attention to design heuristics (e.g., Larsen & Zandieh, 2008), discursive shifts (e.g., Nardi et al., 

2014), or communities of inquiry (e.g., Biza et al., 2014), mathematics education researchers 



 

 

have only begun to understand how students participate in authentic mathematical proof activity 

and instruction that promotes it.  

At the same time, mathematics education reform emphasizes a shift towards authentic 

mathematical activity that reflects disciplinary practice (e.g., Lampert, 1992). In the case of 

proof-based undergraduate classrooms, we see this shift as focusing on apprenticing mathematics 

majors into the work of professional mathematicians.1 However, the common definition-

theorem-proof paradigm in many proof classes is generally seen as rather inauthentic to 

mathematical practice. When students are given a definition, theorem, then formal proof of the 

theorem, students are positioned to see proof as “a formal necessity required by the teacher” 

(Alibert & Thomas, 2002, p. 216) rather than a crucial part of a scientific process. Further, proofs 

presented following a step-by-step deductive argument may hide the non-linear formal and 

informal exploration and argumentation that often supports the eventual construction of a formal 

proof.  Advocates of authentic mathematical activity focus on goals beyond just formal deductive 

proof (e.g., Lampert, 1992) such as Lakatos’s (1976) analytical processes or Polya’s (1954) 

problem-solving. There have been efforts (including our own) to reform proof-based courses to 

foster student participation in such authentic mathematical activity that becomes more 

sophisticated over time. Yet, existing approaches to analyzing in-the-moment classroom activity 

primarily foreground cognitive analogs (e.g., Wawro’s (2014) use of taken-as-shared practices) 

or argumentation (e.g., Inglis et al.’s (2007) use of Toulmin’s argumentation scheme).  

We see research on students’ engagement in, and instruction that promotes, authentic 

mathematical proof activity as constrained by a lack of specification of what it means to engage 

in authentic mathematical proof activity; how can we determine if students are participating in 

authentic mathematical activity without a framework to characterize it? We argue that such a 

framework would serve research on students learning proof in several ways. A framework would 

allow researchers to identify aspects of student proof activity that are authentic and link it to 

instructional moves that fostered this activity. This could in turn move towards engendering an 

asset-view of students’ engagement with proof reflecting a multitude of competencies found in 

disciplinary activity. It could also inform instructional design to encourage authentic 

mathematical proof activity as well as offer a systematic way to assess the quality of such 

 
1 When referencing “mathematicians” in this manuscript, we refer to professional mathematicians who engage in 
mathematical research. 



 

 

interventions. Finally, a framework that characterizes authentic mathematical proof activity 

would provide the field with common language that would afford opportunities for research to 

build on prior work in a cumulative manner. 

The purpose of this paper is to introduce the Authentic Mathematical Proof Activity 

(AMPA) framework in order to analyze and describe authenticity of activity in the context of 

undergraduate proof-based settings. We leverage studies of mathematician activity (e.g., Inglis & 

Alcock, 2012; Mejía-Ramos & Weber, 2014; Weber, 2008) and design-research incorporating 

heuristics aligned with authentic mathematical activity (e.g., Dawkins, 2015; Larsen, 2013) to 

identify the activities of professional mathematicians that can be adapted in the undergraduate 

setting. Using activity theory, we decompose this activity into goal-directed actions in which 

tools serve to mediate the activity as subjects work towards objectives (motive-object pairings). 

Tools and their use reflect an “accumulation and transmission of social knowledge” (Kaptelinin 

et al., 1999, p. 32) from the historical context of their development. As such, we position tools as 

the lynchpin to connect student activity with the activity of professional mathematicians.  

In the remainder of this paper, we first provide an overview on our conceptualization of 

authenticity, connecting it to other uses of the term (section 2.1) and then introduce how activity 

theory guided our work (section 2.2). In section 3, we introduce the Authentic Mathematical 

Proof Activity (AMPA) framework, which provides a means for two layers of analysis. First, the 

AMPA framework can be used to deconstruct the activity systems of students’ and instructors’ 

(as well as mathematicians’) proof-related activity in terms of motives, objects, and tools. We 

selected the disciplinary tools and objectives from a careful review of relevant literature 

(discussed in section 3.1). Second, the AMPA framework can be used to analyze these activity 

systems through the lens of authenticity via the constructs of validity, complexity, accuracy, 

agency, authority, and alignment (elaborated in section 3.2). In section 4 we present two 

illustrations of using the framework to analyze data from two different contexts (real analysis 

and modern algebra) with students who have different mathematical backgrounds. We conclude 

the paper in Section 5, discussing how the AMPA framework provides insight into students’ 

activity in proof-based settings and provides a means to make claims about student participation 

in authentic mathematical proof activity.    

2 Background and Theoretical Orientation 



 

 

 We take the perspective that in higher education courses students are to be apprenticed 

into a community of practice (Lave & Wenger, 1991) reflective of the discipline. In our projects, 

we aim to promote advanced undergraduate mathematics classrooms that enculture students into 

the practices of mathematicians2 (e.g., Gueudet, 2008; Selden, 2012) by engaging students in 

activities using disciplinary tools (cultural artifacts including concepts and processes) towards 

disciplinary objectives. Broadly, we term students engaging in disciplinary activity as 

“authentic.” We take the stance that authentic experiences do not need to be perfect replicas of 

professional settings, but rather share “cognitive realism” (Herrington et al., 2014; Radović et al., 

2021). That is, as articulated by Tochon (2000), “[c]lusters of features derived from disciplinary 

genres may be assembled in premises that may provide the basis for genuine disciplinary 

experiences” (p. 357). It is not the contexts that must reflect the discipline, but rather the 

intellectual work. In this section, we provide a literature-grounded overview of authentic activity 

and introduce activity theory as a lens for analyzing participatory learning from this viewpoint. 

2.1 What is Authentic Mathematical Activity? 

Across research paradigms within undergraduate proof settings, we found that while 

researchers invoke the language of authenticity,3 the construct itself is frequently left implicit. 

Howell and Mikeska (2021) argued not only that there is a need to better attend to the term 

“authenticity” in the literature as authenticity “is unlikely to function as a simple continuous 

descriptor ranging from less to more authentic” (p. 17). While the literature on authenticity is 

rather substantial, we focus this discussion specifically on scholarly work that provides insight 

into what might be observable in student-teacher activity and relevant to the proof-based context. 

We exclude discussion of task planning and evaluating the impact of authentic learning 

environments (not observable student-teacher activity) or relationships to real-world contexts 

(not relevant to proof). In the remainder of this section, we will elaborate on the set of 

distinctions between (1) discipline and student and (2) content and practice.  

2.1.1 The Discipline and the Student. The general commonality across the authentic 

learning literature base is an emphasis on students engaging in activity that reflects professional 

practice in the discipline (Herrington et al., 2014). Radović et al. (2021) elaborated, “authentic 

 
2 Also referred to as disciplinary practice; see Rasmussen et al. (2015). 
3 e.g., anthropological theory of the didactic (ATD): “authentic mathematical praxeologies”, (Winsløw et al., 2014, 
p. 108); inquiry-oriented instruction (IOI): “authentic mathematical activity”, (Kuster et al., 2019, p. 187); inquiry-
based learning (IBL): “authentic mathematical inquiry” (Dawkins et al., 2019, p. 316).  



 

 

learning happens when learners use professional tools, knowledge and skills, when [learners] 

imitate behaviour of experts and develop relevant outputs” (p. 2711). Such an approach 

emphasizes professional practice as the defining element of authenticity and is common within 

the mathematics subject-area drawing on the activity of research mathematicians (e.g., Watson, 

2008; Weber et al., 2020). While this provides one means to discuss authenticity, we suggest it 

under emphasizes the interaction between the students and the disciplinary activity.  

In contrast, another group of scholars have emphasized both a discipline dimension and 

student dimension of authenticity. Tochon (2000) argued that planned disciplinary activity only 

materializes into authentic experiences for students through intersections between the discipline 

and the students’ situated and prior experiences. Stein et al. (2004) took a similar stance, 

focusing on both personal meaning and purpose in combination with authenticity to a 

professional community of practice.   

In the context of mathematics, we can coarsely divide two authenticity goals:  

● Staying authentic to mathematical disciplinary activity (discipline) 

● Staying authentic to students’ mathematical communication, activity, and thinking 

(student) 

The dual authenticity goals can lead to tensions for teachers attempting to support authentic 

learning experiences. In Lampert’s (1992) reflection, she identified this tension as one between 

“being authentic (that is, meaningful and important) to the immediate participants and being 

authentic in its reflection of a wider mathematical culture” (p. 310). Herbst (2002) refers to the 

tension between students engaging in authentic mathematical activity and the need to progress in 

normative ways while teaching proof as a double bind. In the undergraduate proof setting, others 

have expanded similar double binds such as “supporting success for all students and authentic 

mathematical activity” (Dawkins et al., 2019, p. 331). The tension between staying authentic to 

students and to the discipline may be amplified by the demands of the formal proof that require 

substantial shifts in language and argumentation practices (Weber & Melhuish, 2022). 

2.1.2 The Content and Practice.  A number of scholars have treated 

multidimensionality as more nuanced than just the discipline and student divide. In this section, 

we share an additional divide within both student and disciplinary authenticity that was relevant 

and insightful for explaining instructional tensions: content and practice. We first elaborate on 

this distinction relative to the discipline (a distinction found in Weiss et al.’s (2009) study of 



 

 

teachers). Mathematical content can be more or less accurate in terms of “definitions, language, 

concepts, and assumptions” of the discipline (Chazan & Ball, 1999, p. 7). From this viewpoint, 

the more accurate and reflective of the discipline the mathematical content is, the more authentic. 

In contrast, the practice dimension reflects the degree to which the “ practices and habits of 

working mathematicians” (Weiss et al., p. 277) are reflected in the classroom. That is, it is not 

about the accuracy of statements or definitions, but rather that the ways “for testing ideas, for 

establishing the validity of a proposition, for challenging an assertion” (Chazan and Ball, p. 7) 

align with those of the research mathematician. The focus on disciplinary practice is more 

heavily emphasized in the authenticity literature; however, accuracy of content is often a major 

consideration when attending to student contributions. 

Across the literature, we similarly observed many ways that the student component of 

authenticity can be conceptualized, ranging from emerging professional identity (e.g., Sutherland 

& Markauskaite, 2012), alignment with purposes (e.g., Stein et al., 2004), or relevance to student 

lives (e.g., Strobel et al., 2013). For our exploration, we identify a parallel practice-content 

distinction relative to students: the degree to which students are engaged with disciplinary 

practice and the degree to which content in a classroom reflects student contributions. Authentic 

student practice would mean that students primarily make decisions and shape the mathematical 

explorations. Such authenticity necessitates open and collaborative tasks, deemed as an essential 

component of authentic learning experiences by a number of scholars (Herrington et al., 2014; 

Strobel et al., 2013). Authentic student content would then be reflected by the centrality of 

student-contributed mathematical content (e.g., definitions, propositions, proofs) in a lesson.  

Such student-generated content may or may not be accurate to disciplinary content and lead to 

fundamental tensions in how to proceed in instruction (see Ball, 1993 for such an instance).  

 2.1.3 Summary. We focused on these distinctions – that of students and discipline, and 

that of content and practice – because they were salient to student-teacher activity and 

particularly the tensions at play related to authenticity. In the next section, we use activity theory 

and literature on mathematician activity to operationalize an analytic framework to account for 

discipline, student, content, and practice elements of authenticity. 

2.2 Mathematician and Student Activity Systems: A Participatory Learning Perspective 

To operationalize the socially constituted activity of mathematicians and students and 

situate our larger view on learning, we turn to cultural-historical activity theory (Engeström, 



 

 

2000). Both professional mathematicians and students operate within activity systems, which 

relate an individual’s goal-driven actions to how communities work together when they share a 

common objective. Goal-driven actions can be deconstructed into subjects, objects, tools, norms, 

community, division of labor, and outcomes. The object, with an embedded motive, underscores 

the objective of the particular action made by the subject. Because researchers diverge on 

whether objects and motives are distinct constructs (Blunden, 2009), we use the term objective to 

capture the object/motive pairing. Mathematicians share a common objective that can be 

decomposed into object (mathematical theory) and motive (building this theory, see Bass, 2017). 

Then more specifically, a mathematician (subject) may be working with a proof (object) for a 

particular motive -- perhaps engaging with a proof for the motive of comprehending it. Tools 

then mediate the relationship between the individual (subject) and object, including material 

tools, mental concepts, procedures, or other culturally situated means for a subject to transform 

an object. Finally, goal-driven actions are shaped by the community’s norms and rules and the 

division of labor between community members as they work towards a goal, resulting in an 

outcome.  

Participatory learning can be documented through changes or expansions (Greeno & 

Engeström, 2014) and appropriation of tools (Grossman et al., 1999; Nelson & Kim, 2001) in 

activity systems. Expansion involves increased variety and complexity of tool use as new 

configurations become acceptable in the community and former goal-directed action outcomes 

become tools for continued mathematical activity (e.g., Nelson & Kim, 2001). Students’ 

objectives ( and activity systems) can expand to be more reflective of the discipline, such as 

proof construction objectives that are not limited to the application of syntactic strategies (e.g., 

Weber & Alcock, 2004). Tool appropriation (Grossman et al., 1999; Nelson & Kim, 2001) 

reflects students’ increased role in the division of labor through selecting, generating, and using 

tools. Thus, participatory learning can be conceptualized as students engaging in activity that 

resembles mathematicians’ activity, and learning occurs over time as students appropriate tools, 

expand objectives, and use outcomes from prior activity as tools towards new objectives. 

3 The Authentic Mathematical Proof Activity Framework 

Table 1. Authentic Mathematical Proof activity (AMPA) Framework 

Tools  Objects  Motives 



 

 

• Analyzing/ 

Refining 

• Formalizing 

• Deformalizing 

• Warranting  

• Analogizing/ 

Transferring  

• Examples  

• Diagrams  

• Logic 

Structures/ 

Frameworks 

• Existent PSC 

Objects  

 • Proofs 

• Statements 

• Concepts 

 • Explore 

• Test 

• Construct 

Authenticity in Tool Use Characteristics 

Discipline Tool Use 

Characteristics 

(Practice) 

 Discipline Tools 

and Outcomes 

(Content) 

 Student Role in 

Division of Labor 

(Practice) 

 Student Tools and 

Outcomes (Content) 

• Variety 

• Complexity 

•  • Accuracy  • Agency 

• Authority 

 • Alignment 

  

 In this section, we introduce the Authentic Mathematical Proof Activity (AMPA) 

framework. Our operationalization of authentic mathematical proof activity hinges on 

disciplinary tools and objectives and the framework can be decomposed into two levels: a set of 

tools (and objectives), and an examination of tool use in activity systems to address authenticity 

dimensions. The first theoretical contribution of this paper is the identification of AMPA tools 

and objectives (the top portion of the framework in table 1). These are tools that can be both 

empirically linked to the activity of mathematicians and have the potential to be used with 

undergraduate students in proof-based classrooms.  

There have been recent concerns about mathematics educators’ characterization of 

mathematician activity (Weber et al., 2020), including relying on mathematicians’ possibly 

idiosyncratic reflections (Hanna & Larvor, 2020) or potentially artificial task-based interviews 

(Mejía-Ramos & Weber, 2020). Addressing such concerns, we conducted a thorough literature 

search to identify tools that have been linked with multiple empirical studies of working 

mathematicians’ practice. We began this process with a full text search, using Google Scholar to 

search texts of high- and very high-quality mathematics education journals (Williams & 

Leatham, 2017) and the International Journal of Research in Undergraduate Mathematics 

Education, for studies that included mathematicians, “authentic mathematical activity” or 

common paradigms aimed at engaging students in authentic mathematical activity (“inquiry-



 

 

oriented instruction” and “inquiry-based learning”) in combination with the word “proof.” This 

process led to the initial creation of a set of themes found in literature on both mathematicians 

and student activity. We then conducted an exhaustive search for empirical research on 

mathematicians by broadly searching EBSCO for articles with “mathematician” in the title and 

abstracts that included our mathematical objects (proofs, definitions, propositional statements). 

This led to identifying work in journals of practice and philosophy such as Synthese and 

Philosophia Mathematica, resulting in the identification of 48 relevant papers. From these 

papers, we identified objects, motives, and tools used by the mathematicians in their work. We 

also expanded our search parameters for student literature to include “cognitive unity”4  and 

“anthropological theory of didactics”5 to account for international paradigms. We worked 

reflexively between literature on mathematicians and literature on undergraduate students 

purported to be engaged in authentic disciplinary activity to identify a set of objectives (objects, 

motives) and tools found across both bases of literature.  

To focus our efforts, our final set of tools satisfy three criteria: 

1. documented in empirical studies of mathematician practice, 

2. used in relation to at least two objects and all three types of motives, and 

3. linked to student activity in undergraduate mathematics. 

3.1 Disciplinary Tools and Objectives 

Our framework includes three objects: proofs (proofs and arguments purported as 

proofs), concepts (mathematical concepts including, but not limited to, definitions), and 

statements (theorems/propositions that relate mathematical concepts) (cf. Dawkins, 2015). These 

objects can then be paired with the following motives:  

● Exploring involves making sense of a mathematical object. This corresponds to 

comprehending a proof (e.g., Mejía-Ramos & Weber, 2014), understanding a 

definition/concept (e.g., Parameswaran, 2010), or understanding a statement/proposition 

(e.g., Lockwood et al., 2016). The observable outcome would be an interpretation.  

● Testing involves determining the validity of a mathematical object. This corresponds to 

validating a proof (e.g., Weber, 2008), validating a definition (e.g., Ouvrier-Buffet, 

 
4 Cognitive unity is derived from the work of mathematicians where informal argumentation and exploration is often 
aligned in the proving process (see Garuti et al., 1998). 
5 Researchers in this paradigm often focus on the transposition of the discipline into the classrooms with attention to 
how the university institution imposes constraints (see Winsløw et al., 2014). 



 

 

2015), or testing the truth of a statement/proposition (e.g., Lockwood et al., 2016). The 

observable outcome would be an evaluation. 

● Constructing involves creating a new mathematical object. This corresponds to 

constructing a proof (e.g., Savic, 2015), creating a new definition/concept (e.g., Martín-

Molina et al., 2018), or conjecturing a new statement/proposition (e.g., Smith & Hungwe, 

1998). The observable outcome would be a new object. 

The ten tools that mathematicians used to meet such objectives can be found in Table 1. A single 

goal-directed action can be decomposed into a triad of tool(s), object, motive such as: 

[formalizing] an [example] (tools) in service of constructing (motive) a statement (object) to 

achieve an outcome (theorem, lemma, or other propositional statement). Note, the set of tools in 

Table 2 is not exhaustive; rather it is representative of tools we identified as fundamental and 

transferrable to undergraduate proof-based settings based on our literature review criteria. 

Table 2. Mediating Tools in Mathematician Activity 

Tool Description Example 

Analyzing/ 

Refining 

A process of analyzing and/or refining an 

object via attention to the strength and 

consequence of assumptions.      

Starting with a statement and changing 

assumptions to build a stronger statement (e.g., 

Fernández-León et al., 2020). 

Formalizing A process of translating informal ideas 

into symbolic or formal rhetoric form. 

Syntactifying a noticing from a diagram (e.g., 

Samkoff et al., 2012). 

Deformalizing A process of translating an object from 

formal rhetoric form to informal form.  

Summarizing the point of a portion of a proof 

(e.g., Fang & Chapman, 2020). 

Warranting A process of inferring why a particular 

claim is true based on the provided 

premises. 

Determining why a particular line in a proof is 

valid (e.g., Weber, & Mejía-Ramos, 2011). 

Analogizing/ 

Transferring 

A process of importing an object across 

domains and adapting to the new setting. 

Transferring a proof technique to prove a new 

statement (e.g., Mejía-Ramos et al., 2012). 

Examples A specific, concrete instantiation of an 

object representing a class of objects. 

Using examples to test whether a statement is true 

(e.g., Lynch & Lockwood, 2017). 

Diagrams A visual representation of an object that 

captures structural features. 

Creating a graphical representation to find a key 

idea for a proof (e.g., Samkoff et al., 2012). 



 

 

Logic The rules of logic which allow for 

precisely quantified statements. 

and deductive arguments. 

Creating a deductive subproof while validating 

(e.g., Weber, 2008). 

Structures/ 

Frameworks 

A top-level structure for a proof (or 

modular section of a proof) which is 

determined by statements to be proven. 

Determining if a proof approach is valid by 

testing the alignment of a statement and proof 

(e.g., Weber, 2008). 

Existent Objects Objects that are accepted as valid in the 

community. 

Using an existent definition of a concept to 

understand a new statement (e.g., Wilkerson-

Jerde & Wilensky, 2011). 

 

Beyond identifying a set of tools, we also explored this literature to identify themes in 

how mathematicians use these tools with particular attention to how this might differ from how 

novice provers use these tools. We share a summary of Fernández-León et al.’s (2020) case 

study of a mathematician’s conjecturing and proof activity in order to illustrate our three 

overarching themes (complexity, variety, accuracy) that emerged from the literature related to 

mathematicians’ activity systems. We emphasize our [tools] and objectives throughout the 

following instantiation and note that this is a high-level summary of the article’s contents. 

A mathematician (and their colleagues) began with a statement [existent object] found in 

a publication, “all complete CAT6(0) spaces satisfy the (Q4) condition” (p. 773) with the 

objective of developing a new theorem, constructing a statement.  They 

[analyzed/refined] the statement through the process of exploring [examples] to arrive at 

a new, stronger statement [formalized] as: “every CAT(0) space has property (Q4)” (p. 

774). They then tested the statement with additional [examples] aided by a [diagram] 

which led to rejecting the statement, and [analyzing/refining] to construct a new 

statement with altered assumptions: “any CAT(0) space with constant curvature satisfies 

the (Q4) condition” (p. 12). The mathematicians then tested this statement in a new 

[example] producing a proof of the Q4 condition being met (using [logic] and 

[framework]) in a specific context, spheres. This proof then served as a generic example 

 
6 A CAT(0) space “is a geodesic space for which each geodesic triangle is at least as ‘thin’ as its comparison 
triangle in the Euclidean plane” (Kirk & Panyanak, 2008, p. 3689.) 



 

 

that could be [analogized] to the more general statement in service of constructing the 

proof. 

We now turn to the three literature themes exemplified in the example. First, mathematicians use 

a variety of types of tools to meet objectives. In the above case, the mathematicians did not 

exclusively work with formal tools as they constructed and proved a new statement. Rather, they 

used informal tools (examples), translating tools (moving between formal and informal) and 

generating tools (weakening conditions of a statement or analogizing a proof to produce a new 

object). This type of tool use contrasts findings about typical student activity in several ways. 

Unlike novice students7 who may hold empirical proof schemes (Harel & Sowder, 1998) or limit 

their proof production to syntactic manipulation (e.g., Weber & Alcock, 2004), mathematicians 

often use informal tools in the process of arriving at a formal outcome (e.g., Karunakaran, 2018; 

Lockwood et al., 2016; Samkoff et al., 2012; Weber & Alcock, 2004). Further, different tools 

including those to translate and generate are used in spontaneous ways not found in typical 

student activity (e.g., Lynch & Lockwood, 2017). Therefore, we suggest the existence and use of 

a broad variety of tools characterizes more disciplinary mathematical activity. 

Second, mathematicians use tools in complex ways – in conjunction and succession 

towards an objective. For instance, the mathematicians in the above case study used 

[analyzing/refining] with [examples] to detect patterns in needed assumptions (tools in 

conjunction). Then, they generated additional [examples] and accompanying [diagrams] as they 

tested the statement (tools in succession). Further, when mathematicians arrived at an outcome, it 

became a tool for additional mathematization. That is, prior objects become tools to construct, 

test, or understand new objects. In the above case, the mathematicians analogized their [previous 

proof] to create a new proof (any CAT(0) space with constant curvature satisfies the (Q4) 

condition). In contrast, novice students often proceduralize proofs or focus on using one tool 

towards their objectives. For example, Zazkis et al. (2016) found most students did not use a 

diagram in their proof approaches, and those who did struggled to translate between the diagrams 

and a formal proof. Lynch and Lockwood’s (2017) investigation of examples echoes similar 

results as students were less likely to use examples with other tools, such as the logic of 

statements, when compared to mathematicians. Karunakaran’s (2018) expert-novice study 

 
7 See Weber (2010) for a challenge on the prevalence of empirical proof schemes. 



 

 

similarly highlighted novice students’ adherence to linear deduction. We posit that disciplinary 

mathematical activity may be characterized by the use of multiple types of tools towards a single 

objective and shifting objectives so that prior outcomes become tools for continued mathematical 

work.  

Finally, we discuss the accuracy of the tools and outcomes in mathematicians’ activity, a 

theme often left implicit in the reviewed papers. An overarching goal of mathematicians’ activity 

is to discover, understand, and prove what is mathematically valid according to the standards of 

the mathematical community, that is, to arrive at valid outcomes. Dawkins and Weber (2017) 

noted that, “developing and justifying theories” includes “definitions, theorems, proofs, 

examples, and algorithms, in addition to the shared conceptual tools that mathematicians use to 

understand, discuss, and reason about these concepts” (p. 124). The objects and tools used by 

mathematicians come from a shared body of propositional statements, theorems, proofs, and 

practices. In the example above, the mathematicians began with a statement established in the 

literature, then did substantial work to create and verify a new statement by using tools and 

objects acceptable to the larger mathematical community. Accuracy is an expected and well-

documented (e.g., Selden & Selden, 2003) point of divergence between novice and expert 

provers.  

3.2 Authenticity Dimensions 

In this section, we describe how dimensions of authenticity can be discerned in goal-

directed actions through tool use. We focus on tools and objectives as they have the potential to 

exist across disciplinary and educational systems (e.g., Nolen et al., 2020). These dimensions can 

be broadly tied to the student/discipline and content/practice divides previously discussed 

(sections 2.1.1-2). We moved from these coarse divides to the six dimensions via a reflexive 

process working with data from our respective studies (described in section 4) and the literature. 

Of note, we found documenting students’ engagement in tool use largely insufficient to make 

claims about students engaging in disciplinary practice. This led to revisiting the mathematician 

literature to identify the themes in how they used tools: complexity and variety. Similarly, we 

found that broadly citing student use of tools did not sufficiently account for qualitative 

differences in our data. Returning to the activity theory framing, we considered elements of 

division of labor in order to make some qualitative distinctions (between who generates and who 

evaluates tools and outcomes). We elaborate each of the six dimensions below. 



 

 

We propose three complementary aspects of teacher-student activity systems related to 

discipline authenticity: the types of tools used in proof-related objectives (variety), how tools 

connect with each other and objectives (complexity), and the accuracy of the tools and outcomes 

in relation to disciplinary standards (accuracy). The first two are elements of practice that we 

documented across the mathematician literature base, and the latter is an element of content. 

Variety reflects the use of different types of tools. High variety would include tools that are 

informal (such as examples), formal (such as logic), tools that might translate between them 

(such as summarizing), and tools that lead to generating new mathematics (such as analogizing). 

Complexity reflects how tools are used together to achieve objectives, rather than tools being 

used in isolation. Complexity is also reflected in the ways that prior objects (such as a theorem or 

proof) can become a tool used towards a new objective. Accuracy refers to the degree tools and 

objects in an activity system would be considered conventionally correct in the discipline.  

We can then consider activity in terms of student authenticity. First, authenticity of 

students’ practice can be reflected in the division of labor (agency and authority). By agency we 

mean who generates and uses various tools and who makes decisions in that process. This 

parallels the degrees of freedom in a task. If students are provided an objective and otherwise left 

to their own devices, they would have high agency (many degrees of freedom) to generate and 

use tools. If an instructor generates and uses all the tools, then agency would be low (no degrees 

of freedom). However, much activity falls between these extremes with the instructor perhaps 

prompting for a type of tool (e.g., create some examples) while giving students agency in their 

creation, or providing a tool and allowing students to decide when and how to use it. The other 

salient characteristic in division of labor is authority. By authority we mean who evaluates tools 

and objectives to determine whether an objective is, or will be, met. This could involve attention 

to whether this is an appropriate tool type to meet aims (e.g., how this tool helps us get to our 

objective) or whether a particular tool or outcome is accurate. Finally, we can consider student 

authenticity in terms of content (alignment). By alignment we mean the degree to which tools 

and objects that are taken up in the activity system reflect student contributions. This could range 

from complete adherence to a student contribution to instructor-researcher contributions being 

the only ones endorsed. As in other categories, there is substantial room for middle ground such 

as a student contribution being centered, but an instructor modifying or formalizing it. 



 

 

These six interconnected components – variety, complexity, accuracy, agency, authority, 

and alignment – account for differing dimensions of authenticity and promote a shift away from 

a binary or continuum view of authenticity. Our intention is not to suggest that proof-based 

classrooms should include activity systems that maximize authenticity in all dimensions at all 

times. Typically, the division of labor in traditional undergraduate courses positions students as 

responsible for taking notes and answering largely closed-form questions while the instructor 

presents definitions, theorems, and formal proofs accompanied by informal verbal explanations, 

with the instructor maintaining agency and authority over tools and their use (e.g., Artemeva & 

Fox, 2011; Paoletti et al., 2018; Weber, 2004). We argue that an activity system more authentic 

to students would include students having more agency and authority in the division of labor 

(see, David & Tomaz, 2012; González & DeJarnette, 2012). However, we emphasize that the 

instructor maintains a vital role managing dimensions of authenticity with their pedagogical 

knowledge and knowledge of the social and historic use of disciplinary tools.   

4 Analysis of Authentic Mathematical Proof activity in Teacher-Student Activity Systems 

Our work developing authenticity dimensions combined with identifying tools mediating 

mathematician activity culminated in the framework found in Table 1. The framework is 

intended as an analytic tool to document activity and address dimensions of authenticity. In this 

section, we illustrate how this framework provides insight into activity and authenticity by 

drawing on two diverse research projects with a common goal of engaging students in authentic 

mathematical proof activity. The focal episodes are situated in real analysis and algebra contexts, 

with students engaged in defining prior to proving and analyzing/refining a statement after 

proofs were constructed, respectively. We share these episodes because they not only illustrated 

diverse settings, they also exemplified differing authenticity characteristics and important 

moments in which authenticity changed. For each setting, one author classified student activity 

according to the framework and another served as an additional reader to challenge or endorse 

interpretations. The analysis process was two-fold: first attending to the tools and objectives, 

then attending to the six authenticity dimensions. Through discussion, the researchers arrived at 

the shared interpretations provided in this section. Throughout these illustrations we continue to 

emphasize [tools] and objectives. 



 

 

4.1 Real Analysis Illustration 

The following illustration comes from a pilot study for the Advancing Students' Proof 

Practices in Mathematics through Inquiry, Reinvention, and Engagement (ASPIRE) project 

which draws on the instructional design theory of Realistic Mathematics Education. The main 

goal of the study was to refine an instructional theory for supporting students in reinventing 

concepts in real analysis. The two participants, Chloe and Gabe (pseudonyms), were recruited 

from the last two courses of an undergraduate calculus sequence and had yet to take any proof-

based courses. The data presented here comes from approximately one hour of a teaching 

experiment session8. The overarching goal of this session was for students to prove {1/2n} 

converges to 0. A substep in this process was to construct a proof that the sequence {2n} tends to 

infinity. The selected episodes describe the instructor-researcher and student activity as they 

worked to construct a definition for a sequence tending to infinity needed to make progress on 

proving {2n} tends to infinity. The instructor-researcher launched this portion of the activity by 

explaining students would propose defining properties and generate [examples and non-

examples] that would later serve the objective of testing their definition by [analyzing/refining] 

whether the defining properties were of sufficient strength, ultimately [formalizing] their 

definition.  

We selected the episodes for this illustration because they demonstrate how the 

instructor-researcher balanced student authenticity and disciplinary authenticity. The instructor-

researcher took on more authority and some agency to promote authenticity to the discipline 

checking for accuracy in student contributions and prompting students to use a variety of tools in 

conjunction toward their larger construct the concept definition objective. At the same time, the 

activity was mainly focused on the students’ contributions, reflecting high alignment. Further, 

there was evidence of expansion as prior objects became tools for new objectives. We note that 

the student authenticity dimensions remained steady throughout these excerpts while the 

discipline dimensions (variety and complexity) increased. 

4.1.1 Using Examples/Diagrams to Explore a Concept: Sequence Tending to 

Infinity. In this episode, to engage students in constructing a definition for a sequence tending to 

infinity, the instructor-researcher prompted the students to first explore the concept to develop a 

set of [examples and non-examples] of sequences that tend to infinity (see Figure 3). 

 
8 See Vroom (2020) for additional information about this study. 



 

 

While Chloe and Gabe generated [examples and non-examples], the instructor-researcher 

attended to inaccuracies and amplified certain contributions. For instance, as Chloe created a 

continuous function defined on the real numbers that increased without bound, the instructor-

researcher questioned, “it definitely looks like a thing that goes to infinity, but is it a sequence?” 

Gabe responded, using his [existent concept] of sequence that it should have “discrete inputs” 

and altered the [diagram9] accordingly. Gabe initially sketched a sequence that was unbounded 

above with a constant subsequence at 0 (Figure 3c), but erased it, explaining he did not know 

how to deal with that yet. The instructor-researcher endorsed this [non-example] by commenting 

on the utility of cases “close to the boundary.” The division of labor shifted slightly as the 

students continued testing the concept by debating and eventually coming to an agreement that it 

“didn’t really approach anything” even after the instructor-researcher evaluated it as a non-

example. Upon the instructor-researcher’s request, the students continued to explore the concept 

by considering their collection of [examples and non-examples] to generate additional 

“borderline” [examples and non-examples]. 

Throughout this episode, authenticity was relatively low regarding students’ use of tools 

which were informal and relatively isolated (variety and complexity), yet high with respect to 

centering student contributions (alignment). Other student authenticity dimensions were 

moderate as the students created a collection of examples and non-examples with instructor-

researcher prompting (agency) and the instructor-researcher explained how their collection 

would be used to achieve the objective (authority). There was some indication of shared 

authority as the students continued to debate whether a particular non-example was in fact a non-

example since both students and the instructor-researcher were evaluating tools in relation to the 

objective. However, the instructor-researcher maintained the role of attending to the accuracy of 

student contributions, which constrained student authority to some extent.  

a. b. c. d. e. 

   
 

 

 
9 A visual example is a diagram tool when usage reflects attention to structure embedded in the visual. 



 

 

Figure 3. Students’ collection of examples and non-examples of a sequence that tends to infinity  

 

 4.1.2 Using Examples, Formalizing, and Prior Definition to Construct Definitions: 

Tends to infinity and No Upper Bound. In this episode, the instructor-researcher shifted the 

objective to constructing a definition of a sequence that tends to infinity by prompting the 

students to define a “condition in which all the [examples] meet but the [non-examples] don’t” 

and emphasized that they would [refine] their condition using their previously generated 

[examples and non-examples] (Figure 3). The following activity between the students and 

instructor-researcher reflects the instructor-researcher maintaining authority while promoting 

some student agency as the students proposed several defining properties which the instructor-

researcher challenged for the sake of accuracy. 

After the instructor-researcher focused the students’ attention on a [non-example] (Figure 

3d) and [example] (Figure 3e), the students explained that the [example] “has no upper bound” 

while the [non-example] does. With prompting, Gabe continued to display agency by using 

another [non-example] (Figure 3c) to test the condition ‘no upper bound,’ suggesting that it was 

a sequence that did not have an upper bound and did not tend to infinity. The instructor-

researcher suggested they construct a definition for ‘no upper bound’10 to then [analyze/refine] 

the definition to “rule out” the [non-example]. After some prompting, Gabe used Figure 3d to 

explain that if a sequence had an upper bound then “there would be some constant that [it] would 

be less than or equal to.” The instructor-researcher requested they [formalize] the property, 

which led the students to produce Figure 4a. After the instructor-researcher requested they use 

their [existent definition] to define ‘no upper bound,’ Gabe explained the definition would be 

“the opposite of that statement [Figure 4a], an is greater than K.” He then [formalized] the 

property with support from the instructor-researcher who followed-up with questions to address 

language usage that violated the larger mathematics communities norms, thereby increasing the 

accuracy of the outcome (eventually producing Figure 4b). 

This episode evidenced that the authenticity of the students’ activity increased relative to 

the disciplinary practice dimensions compared to the activity described in the first episode. The 

 
10 This instructional decision is similar to Chorlay’s (2019) approach to supporting students in defining the infinite 
limit for sequences. 
 



 

 

students used both informal and translating tools (variety) together to create a definition of upper 

bound (complexity). While their upper bound definition had some ambiguity (e.g., n was not 

quantified), they were able to use this object as a tool to construct a new definition for ‘no upper 

bound’ (complexity). The instructor-researcher played an integral role in increasing authenticity 

to disciplinary practice by taking on some authority to link the tools to the objectives (e.g., use 

the upper bound definition to construct a no upper bound definition) and guided the students to 

use and generate the tools (agency). At the same time, their contributions remained central to the 

activity (alignment).  

For the remainder of the session, the students continued to reflexively use [examples] and 

[diagrams] to [analyze/refine] their prior properties as [existent objects] (Figure 4b and 4c) to 

specify sequences that tend to infinity. The instructor-researcher maintained authority while 

continuing to share agency by encouraging students to make refinements and challenging 

contributions as needed to address inaccuracies. By the end of the session, they constructed the 

following definition: “{an} converges to infinity if for any real number K there exists an am such 

that am >K and am+n>K where n is any positive integer”.  

a. 

 

has upper bound  

an < K 

where K is some constant real number 

b. 

 

no upper bound  

for any real number, K 

there is an an that is greater 

c. [for any real number, 𝐾]

 

[for any real number, K] 

If ax > K then ax+n>K 

                      where n=any positive integer  

Figure 4. Students’ defining properties   

 



 

 

4.2 Modern Algebra Illustration 

The second episode comes from a cycle of a designed-based research project, 

Orchestrating Discussion Around Proof (ODAP), which focuses on using K-12 pedagogical 

practices to promote student engagement in proof activities. The episode corresponds to the 

middle thirty minutes of a two-hour task-based interview session. The four participating students, 

Miguel, Andy, Jasmine, and Eric, were recruited based on their recent completion of an 

introductory undergraduate abstract algebra class. The session centered the theorem: Let G and H 

be isomorphic groups. If G is abelian, then H is abelian.11 This episode focuses on a portion of 

the task session with the overarching goal of constructing a statement from the initial theorem 

that remains valid, but does not contain any unnecessary assumptions (in this case, the groups 

need not be isomorphic, rather they need an onto homomorphism between them to preserve the 

commutativity).  

We selected this illustration for two reasons. First, unlike in the analysis illustration, the 

student authenticity dimensions shifted dramatically at different points. Second, it is an episode 

that illustrates an appropriation of a tool which can be used to support participatory claims. Prior 

to this point in the lesson, the students had been prompted to explore the theorem (including 

identifying assumptions and conclusions, and stating definitions of key terms such as 

isomorphic), begin proof construction, then compare two student proof approaches to identify 

similarities and differences. The comparison task led students to engage with a variety of tools to 

explore the proofs. The students were then prompted to decide whether all of the assumptions in 

the statement were needed [analyzing/refining] by using the proof. The students had suggested 

replacing “isomorphic” with “homomorphic.” With instructor-researcher guidance, they 

constructed a new statement. At this point, the student suggestions were the focal object 

(alignment), and students were primarily involved in generating tools (agency) and evaluating 

tools and objects (authority).  

4.2.1 Testing the New Statement with Examples. With the new statement, Suppose 

there exists a homomorphism from G to H. Then if G is Abelian, H is Abelian, the instructor-

researcher prompted students to use a specific tool: test the statement with [examples] or produce 

a counter[example]. The students quickly decided the statement was false and tried generating a 

 
11 See Melhuish et al. (2019) for a survey of common proof approaches to this theorem. See Melhuish et al. (2020) 
for a practitioner view on the overall lesson. 



 

 

counterexample. Students shared their strategies to generate [examples] such as, “... so, since we 

lost one-to-one and onto, maybe think of some element in H that doesn’t have a pre-image.” This 

comment also reflected the use of the [existent definition] of isomorphism (one-to-one and onto), 

[deformalizing] to the idea of no pre-image, and [logic] since they used the statement structure to 

determine counterexample properties. The students continued generating [examples] which were 

evaluated by the students such as Andy’s suggestion, “integers under addition [mapped] to all 

real numbers, under multiplication” which Eric countered, “that would just be the onto part, 

wouldn’t it?” The students continued making suggestions, but were not constructing a valid 

counterexample. 

Identifying the lack of accuracy in the students’ counterexamples, the division of labor 

shifted as the instructor-researcher scaffolded the tool generation, asking pointed questions about 

what needed to be true about G, phi, and H. Throughout the scaffolding, students suggested 

several abelian and non-abelian groups [examples] which the instructor-researcher challenged 

when inaccurate, prompting students to use [existent definitions] to determine if their [examples] 

met the needed criteria (sub-objective: test concept). After some discussion, the student and 

instructor endorsed the [example] groups, {1, -1} under multiplication (Abelian) and D8 (non-

Abelian), suggested by the students. 

The students expressed uncertainty for how to construct a homomorphism that was not an 

isomorphism between the groups. The instructor-researcher responded by writing the domain and 

codomain groups as a function [diagram] on the board and had the students suggest labels and 

requested an “easy” homomorphism. After a hesitant student map suggestion (“x=y”) [example] 

that the student then retracted “nevermind,” the instructor-researcher asked, “If we have a 

homomorphism, where do we know the identity has to go?” Eric answered, “the identity” and 

asked if the other element, -1, should be mapped to a different element in the codomain. The 

instructor-researcher questioned if it was necessary to choose a different element, to which 

Miguel noted that “it’s not 1-1 or onto” (implicitly using the [existent definition] of 

homomorphism/isomorphism). Endorsing this idea that a map need not be one-to-one nor onto, 

the instructor-researcher drew the identity map. 

The instructor-researcher then prompted students to use the [diagram] and link the 

counter[example] to the objective of testing the statement. Andy explained, “Because we have an 

abelian group that maps to a non-abelian group, therefore H does not always have to be abelian.” 



 

 

This contribution evidenced the students identified the [diagram] (in conjunction with the [logic] 

of the statement) as a tool to meet the objective of testing the statement. 

At the onset of this episode, authenticity was high in terms of centering student 

contributions, their conjectured statement and examples (alignment), as well as variety (formal, 

informal, some translating between the informal examples and formal statement) and complexity 

(tools were used together towards an objective), but other authentic student practice dimensions 

were middling. The instructor-researcher prompted what tool to use, but in the beginning the 

students did create the examples (agency). The instructor-researcher also endorsed the 

appropriateness of tool use, the examples, towards the objective, testing the statement, by 

relating them in the prompt; however, there was some evidence of student authority with Eric 

evaluating Andy’s tool. At the beginning of the episode, accuracy was quite low as neither the 

statement being tested was accurate, nor were the counterexamples generated by the students.  

The low accuracy of the counterexamples appeared to shift the division of labor. The 

students’ agency was reduced in terms of creating the homomorphism where the instructor-

researcher introduced the diagram and asked a series of scaffolding questions to arrive at the 

identity homomorphism. Student contributions, examples and statements, were the focus for 

most of the episode, but the instructor-researcher also recognized inaccuracies and more 

substantially contributed to the final counterexample, lowering alignment. Authority was 

similarly mixed as the instructor-researcher prompted students to use definitions to determine if 

(non-accurate) examples, suggested groups, met the required definitions. However, the students 

ultimately made those evaluations. The shift in the system to the instructor-researcher taking on 

more agency in developing the counterexample aligned with higher disciplinary authenticity, 

especially accuracy. We note after the construction of the counterexample, we see a shift to 

students taking on more authority as they are the ones involved in evaluating whether the 

counterexample met the testing objective.  

4.2.2 Analyzing and Refining (Reappropriating the Diagram) to Construct a New 

Statement. For the sake of brevity, we conclude this illustration by sharing some of the initial 

student activity in the next portion of the task. Once there was agreement on a counterexample, 

the instructor-researcher prompted for continued [analysis/refinement] based on their prior 

outcome (the constructed statement was invalid) to construct a new version of the statement: 

“So, potentially we need something more than just homomorphism. And I guess that question 



 

 

becomes, ‘What other things do we need to be able to make this argument?’” The instructor-

researcher suggested the students use whatever tools they would like such as the prior [existent 

proofs] or [examples]. The students spontaneously began using the [diagram] from the prior 

exploration, with Andy explaining “I mean either way, if you just say one-to-one, then this 

example automatically goes away” with Eric and Jasmine elaborating, “So, yeah it would still be 

wrong” and “Yeah, it contradicts.” They continued using the [diagram] (Figure 5) to 

[analyze/refine] their conjecture moving from just homomorphism to conjecturing that 1-1 and 

onto are also necessary.   

 
Figure 5. Function diagram 

 

 This episode illustrated increased authenticity to the students compared to the prior 

episode. The students spontaneously re-appropriated a diagram (high agency), connected the 

tools to objectives explicating that their example contradicts a version of the statement with only 

1-1 (high authority), and the student contributions remained centered (high alignment). Although 

their conjectured refinement was not completely accurate, there was some variety and 

complexity in tool use. Over the next thirty minutes, the students (with some instructor-

researcher questions) continued to debate about needed assumptions using both the [diagram] 

and the [existent proofs] along with [warranting, logic, definitions, and structure] towards the 

statement construction objective. Overall, this episode suggests that temporarily decreasing 

student authenticity can shift to increased student authenticity. Furthermore, the students began 

to appropriate tools without needing explicit prompting from the instructor-researcher.  

5 Discussion 

 In this paper, we contribute to the larger literature base on authentic mathematical activity 

and its dimensions by focusing on ways that observable student (and instructor) activity can be 

analyzed rather than forefronting task design (Herrington et al., 2014; Strobel et al., 2013), 



 

 

assessment (Gulikers et al., 2004; Koh, 2017), or outcomes after learning sessions (Radović et 

al., 2021; Sutherland & Markauskaite, 2012). Furthermore, we are meeting a need to 

operationalize activity specific to the advanced undergraduate setting in which the formal proof 

and the practice of professional mathematicians play a more salient role. We join other 

researchers in taking a participatory stance to learning at this level (e.g., Biza et al., 2014; Nardi 

et al., 2014; Rasmussen et al., 2015), and contribute a framework serving a complementary 

purpose: providing a concrete way to analyze authenticity in student-teacher activity systems. 

That is, we focus on the in-the-moment, observable activity with emphasis on elements of 

professional mathematician activity related to the formal proof system. Our perspectives are 

aligned with broader authenticity requirements set out by other scholars (Stylianides et al., 2022) 

interested in promoting student engagement in goal-directed actions of professional 

mathematicians in the context of proof. We directly reflect Stylianides et al.’s  criteria: aligned 

with the activity of the professional mathematician community, containing features that are 

essential to activity and not features that are antithetical, and classroom goals aligned with 

mathematician goals. We note they suggest one additional criterion, “The classroom activity and 

goals were pedagogical and developmentally appropriate for the classroom” (p. 5) which while 

not directly observable with our frameworks, can be evidenced by students having  agency and 

authority in division labor. Thus, we position the AMPA framework as fulfilling a distinct need 

in this setting to document, deconstruct, and make claims about students’ progressive 

engagement in authentic mathematical proof activity.  

We argue that analyzing activity systems, with particular attention to tool use, can 

support making participatory claims about authentic activity, and provide nuance into the multi-

dimensionality of authenticity. Authentic mathematical activity has many conceptualizations and 

often hinges on the tension between discipline authenticity and student authenticity (e.g., 

Lampert, 1992; Weiss et al., 2009). Our claims of engagement in authentic mathematical proof 

activity draw on six tool-use dimensions: disciplinary practice (variety and complexity of tool 

use), disciplinary content (accuracy of tools and outcomes), student practice (agency to generate 

and use tools, authority to evaluate and link tool use), and student content (tools and outcomes 

align with student contributions). 

 The AMPA framework provides a means for close-in analysis of student activity, an 

important aspect of authentic learning environments. Throughout the authenticity literature, the 



 

 

instructor’s role is salient (e.g., Herbst & Chazan, 2020; Lampert, 1992;  Stein et al., 2004; 

Tochon, 2000), and we suggest the AMPA dimensions provide a lens, particularly in the proof-

based setting, for capturing instructional tensions and better understanding the role of the 

instructor in student-teacher activity systems. Furthermore, analyzing such activity systems over 

time can provide a means for participatory learning claims (expanded in the next section). Such 

analyses can be complementary to more holistic approaches such as Stein et al.’s (2004) 

framework, which situates authentic learning as not just disciplinary activity, but also part of a 

system that includes instruction, assessments, learning goals, and the specific needs of students 

relative to classes. 

5.1 Summary and Discussion of the Illustrations 

To evidence the flexibility and usability of the AMPA framework, we shared illustrative 

analyses of teacher-student activity systems across two distinct research projects. While the 

projects differed in content area, student experience with proof, and design heuristics, our 

authenticity analyses were productive for describing complex mathematical activity and 

exploring authenticity. We suggest our theoretical exploration supports a multidimensional view 

of authenticity and provides ways that such analyses can lead to participatory learning claims. 

5.1.2 Activity Systems, Authenticity, and the Instructor’s Role. At the onset of the 

algebra episode, student authenticity dimensions were quite high, reflecting student agency in 

generating and using tools, their contributions being centered, and students linking their tools to 

the objectives. These dimensions ebbed as students made less accurate contributions and 

struggled generating a counterexample. The instructor-researcher assumed more authority and 

agency by prompting students to evaluate their contributions (authority) and scaffolding a 

counterexample that would be considered valid in the mathematician community (agency). By 

scaffolding the counterexample, the alignment with student content dimension lowered as the 

example was largely structured by the instructor-researcher. This temporary decrease in student 

authenticity was followed by increases in all student authenticity dimensions when the students 

spontaneously appropriated the diagram to make new conjectures.  

In the real analysis illustration, we see a slightly different management of authenticity 

tensions. Rather than an ebb-and-flow in the student-authenticity dimensions, the instructor-

researcher played a consistent role: prompting for students to generate and use specific tools such 

as examples (agency), while explicating the complex manner students would use a variety of 



 

 

tools toward an objective as well as evaluating the accuracy of student contributions, (authority). 

This authority (and to some degree agency) seemed to be in service of increasing discipline 

dimensions such as variety of types of tools, complexity in using tools together and shifting prior 

objects to tools for more usage, and accuracy of the tools and outcomes involved. In contrast to 

the algebra example, alignment never decreased. That is, throughout the episode the tools and 

objects involved were created solely by the students. Fluctuations and balances in authenticity 

dimensions emphasize the instructor’s role in managing tensions between the discipline and 

students in ways that can position students to appropriate new tools and expand viable 

objectives. 

5.1.2 Activity Systems, Authenticity, and Participatory Learning Claims. Finally, we 

can consider how we might evidence claims of learning from a participatory perspective by 

identifying ways that classroom activity systems more closely resemble mathematician activities 

as evidenced by expansions in activity systems (Greeno & Engeström, 2014) and appropriation 

of tool use (Grossman et al., 1999; Nelson & Kim, 2001). Expansion involves increases in the 

variety of tools in use and complexity in their usage as new configurations become acceptable in 

the community and former goal-directed action outcomes become tools for continued 

mathematization (discipline authenticity dimensions). Tool appropriation is reflected in students 

having an increased role in the division of labor where they become the ones to increasingly 

select, generate, and use tools (student authenticity dimensions). 

As the episodes we shared come from single teaching sessions, we are hesitant to make 

over-time participatory learning claims; however, we can point to areas that show promising 

evidence of expansion in the activity systems and appropriation of tools. In the real analysis 

example, there were several points when prior objects shifted to the role of tools, evidencing 

potential for expansion. As one example, the students used tools to construct an ‘upper bound’ 

definition, and then used their upper bound definition (with other tools) to construct a ‘no upper 

bound’ definition. In the algebra example, we shared some evidence of appropriation of a 

diagram tool. At one extreme, the students struggled to construct a counterexample with the 

instructor-researcher ultimately introducing a diagram to help co-construct a valid 

counterexample. At the other extreme, students spontaneously used this diagram and modified it 

towards their objective of constructing a new statement. Future studies can use the AMPA 



 

 

framework to attend to potential tool appropriation and expansion in a similar way but over 

multiple teaching sessions to evidence claims of students’ participatory learning. 

5.2 Limitations 

 Our goal was to provide insight into authentic mathematical proof activity via attention to 

both the discipline and students. Our claims focus on student activity that can more closely 

resemble or be seen as analogous (Herbst & Chazan, 2020) to mathematicians’ work. Designing 

for such activity involves recognizing which elements of professional practice are appropriate for 

the particular context and students. As argued by Sutherland and Markauskaite (2012), 

“Authentic learning experiences are activities, which motivate and support students learning by 

providing them with experiences that give students ‘real-world’ experiences but protect them 

from harmful or irrelevant elements” (p. 749). In our framework, we have not provided insight 

into how to select or emphasize elements of professional mathematician practice. We note we 

have limited our selection of tools and objectives in ways that remain focused on epistemic aims 

and are considered relevant elements in the classroom (in alignment with Weber and Melhuish’s 

(2022 

) suggestions for promoting authentic mathematical proof activity without preserving harmful 

elements of professional practice).  

We also acknowledge that our own theoretical assumptions impact how we interpret 

activity and authenticity. We took a broad approach to proof-related activity which may not 

reflect other views on formal proof.12 Further, by focusing on tools, we provide one image of 

authentic mathematical proof activity; however, researchers with a different perspective may 

reasonably attend to different aspects of teacher and student activity. For example, others may 

see authenticity of tasks (e.g., Herrington et al., 2014; Weiss et al., 2009) – the degree the tasks 

are genuine – as an essential component of such activity. We relied on the assumption that 

teachers provide tasks that evoke authentic mathematical proof activity, yet such tasks may be 

contrived within the bounds of classroom settings. For example, in the abstract algebra episodes, 

students compared across two proof approaches. This is a task that may be somewhat artificial to 

the discipline; however, we would argue that the task provided an opportunity to engage in 

authentic mathematical proof activity. 

 
12 See Balacheff (2008) for a discussion of approaches to proof. 



 

 

Additionally, there are likely important facets of mathematicians’ work that have not 

been addressed in existing research on mathematicians. Relying on a literature synthesis may 

reproduce problematic inferences by relying on artificial task-based interviews or idiosyncratic 

mathematicians’ reflections (as cautioned in Mejía-Ramos & Weber, 2020). We attempted to 

minimize such biases by triangulating sources and requiring evidence from empirical studies of 

multiple mathematicians before including a tool in our framework. Further, motives (e.g., 

evaluating aesthetic) or tools (e.g., computers) were excluded if not prominent in the student 

literature. We suggest that the AMPA framework could be adapted to incorporate additional 

objectives and tools as needed.  

Finally, we want to acknowledge the scope of our framing. Our goal was to provide 

insight into the authenticity of activity via attention to both the discipline and students. This 

approach does not call attention to other constraints in the classroom setting such as those 

imposed by the institution. It is artificial to presume that all instructor actions are tied to 

authenticity dimensions, and a researcher wanting to more deeply analyze instructional practice 

may consider other tensions such as those elaborated in Herbst and Chazan (2020). 

5.3 Implications and Future Research 

In our own work as design-based researchers, we have found the AMPA framework 

useful for both designing tasks and analyzing the activity when implementing such tasks. In both 

of our projects, we designed tasks in which students would be actively involved in the use of 

tools with a particular focus on how informal tools could be integrated into students’ activity in a 

proof context. By operationalizing tools, objects, and motives at this grain-size, we can 

(re)design task sequences around what tools students could be prompted to use and for what 

motives. Additionally, we can intentionally plan for expansion of activity systems and how we 

might support students in appropriating tools. 

We also see this framework as useful for researchers who are looking to analyze and 

document authentic mathematical activity in the proof-based setting. Our analytic lens can aid in 

making claims about authenticity in relation to students and the discipline across a number of 

essential dimensions. Shifts in tool use can point to evidence of learning via appropriation and 

expansion of what tools are permissible in undergraduate activity systems. A natural expansion 

of this work would be using this framework in conjunction with other analytic tools that focus 



 

 

more on content, argumentation or managing layers of analysis between the individual and 

activity system (such as the approach advocated for by Rasmussen et al., 2015).  

 Lastly, we argue for the potential of our framework in expanding what competency can 

look like in the undergraduate mathematics classroom. Herbst and Chazan (2020) recently 

argued, “Images of mathematical practice, from history and from the present may support a 

teacher in more generously and generatively interpreting what students do as being similar to 

mathematicians’ work” (p. 1156). We suggest our framework can serve as a basis for broadening 

views of competence in undergraduate proof-based classrooms. We focus not on whether 

students are engaged in disciplinary activity, but in what ways and to what degree. As noted by 

Hanna (1991) “competence in mathematics might readily be misperceived as synonymous with 

the ability to create the form, a rigorous proof” (p. 60). The activity of mathematicians is not 

limited to the formal rhetoric system, and students can use, with some guidance, a similar array 

of disciplinary tools in sophisticated ways. By offering some common language, the AMPA 

framework allows us to articulate and document the ways in which students do so.  
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