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Extreme daily values of precipitation (1939-2021), discharge (1991-2021), phosphorus
(P) load (1994-2021), and phycocyanin, a pigment of Cyanobacteria (June 1-September
15 of 2008-2021) are clustered as multi-day events for Lake Mendota, Wisconsin.
Long-range dependence, or memory, is the shortest for precipitation and the longest
for phycocyanin. Extremes are clustered for all variates and those of P load and phyco-
cyanin are most strongly clustered. Extremes of P load are predictable from extremes of
precipitation, and precipitation and P load are correlated with later concentrations of
phycocyanin. However, time delays from 1 to 60 d were found between P load extremes
and the next extreme phycocyanin event within the same year of observation. Although
most of the lake's P enters in extreme events, blooms of Cyanobacteria may be sustained

by recydling and food web processes.
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Weather stations around the world report rising frequency of extreme precipitation (1, 2).
Extreme precipitation events are expected to increase as the climate warms (3, 4), thereby
increasing flood risk (5) with adverse effects on communities, ecosystem processes, and
species capacities to adapt to change (6). Extreme precipitation drives hydrological
extremes (7) including drainage to lakes. In agricultural watersheds with highly nutri-
ent-enriched soils (8, 9), extreme precipitation events cause erosion of soils and sediments,
driving nutrient inputs to lakes (10-12) that support blooms of Cyanobacteria
(13-15).

High concentrations of Cyanobacteria, or blooms, in lakes or reservoirs are a serious
and expanding environmental problem (16). Consequences include hypoxia, mass mor-
tality of fishes, and adverse effects on human health (17-19). Limnologists define a bloom
as a period of net growth to high concentrations associated with several causal patterns
related to mixing, temperature, nutrients, and grazing (19).

Extreme values, defined as time series peaks over a threshold (20}, are rare, occur irreg-
ularly, and are an inherent feature of complex stochastic systems (7, 21) such as enriched
lakes with Cyanobacteria (22). Warm summer temperatures are a necessary precondition
for Cyanobacteria blooms (23, 24). Blooms are associated with calm winds and stable
stratification (25). Extreme nutrient pulses can be followed by extreme concentrations of
Cyanobacteria (26). Associations of extreme events in time can be identified by extreme
value models with covariates, including Pareto models used here (27, 28).

Precipitation and hydrologic flows may show persistent autocorrelations or long-range
dependence or memory (7). Long-range dependent (also known as long-range memory)
processes have autocorrelation functions that decay slowly over time (7, 29). The terms
of the autocovariance function p(t), where T is the time lag, decay as 77 with correlation
exponent y, (0 < y < 1. For a Poisson (independent) process y = 1. Slow decay, ¥ near 0, or
long memory, is associated with aggregation or clustering of extremes in hydrologic data
(30), although short-range autocorrelations can cause clumping of extremes in some
stochastic systems (21). Accumulation of nutrients in soils, sediments, or lentic waters
may slow transport and further increase long-range memory and time lags in nutrient
flows (31-33).

Lake Mendota, Wisconsin, USA, is a eutrophic lake that has experienced blooms of
Cyanobacteria since the 1880s (34-36). Long-term records of precipitation, discharge,
phosphorus (P} load, and Cyanobacteria present extreme values in recent decades (11, 12,
37-39). On average 29 d per year of extreme inputs account for 74% of the annual P
load to the lake (11). However, the relationships between extreme P loads and extreme
concentrations of Cyanobacteria have not yet been analyzed.

Here we analyze extremes of precipitation, discharge, P load, and the Cyanobacterial
pigment phycocyanin in long-term daily records from Lake Mendota. Specifically, we ask:
(1} Does long-range dependence {memory) increase from precipitation, to discharge and P
load, to phycocyanin? (2) Do cross-correlations and Pareto models suppest causal associations
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Significance

The rising frequency of extreme
precipitation is associated with
the rising frequency of extreme
nutrient flows from land to lakes,
but direct links of load extremes
to blooms of Cyanobacteria are
unresolved. In Lake Mendota,
Wisconsin, daily phosphorus load
is correlated with high
concentrations of Cyanobacteria
2-3 wk later. Extreme load events
provide large reservoirs of
nutrients that accumulate to
support future blooms of
Cyanobacteria. However,
responses of Cyanobacteria to
extreme storms and phosphorus
loads have long and variable time

delays.
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Fig. 1. {4) Correlation expanents y + 2 SEs for concurrent daily observations of
precipitation, discharge, P load, and phycocyanin. (8) Decay of autocomrelation
function, weight =17, versus lag t (days) for predpitation, discharge, P load,
and phycocyanin. Line colors are the same as the bars in panel A.

of phycocyanin to precipitation or P load? (3) Are extreme values
of precipitation, P load, and phycocyanin statistically independent,
or are they clumped in time? (4) Are extreme values of P load
followed by extreme concentrations of phycocyanin?

Results

The concurrent daily time series of precipitation, discharge of
water to the lake, P load to the lake, and phycocyanin relative
fluorescence units (RFU) (ST Appendix, Fig. 54) were analyzed for

long-range dependence (Fig. 1). Precipitation is nearly independ-
ent (correlation exponent near 1), whereas phycocyanin (correla-
tion exponent near 0) has the strongest long-range dependence of
the four variates. Long-range dependence is intermediate for dis-
charge and P load. Fig. 1B presents decay curves for autocorrela-
tion functions showing rapid decay (low long-range dependence
or short memory) for precipitation and slow decay (high long-
range dependence or long memory) for phycocyanin, with inter-
mediate rates for discharge and P load.

Connectlons of Preclpitation, P, and Phycocyanin. Cross-
correlations show immediate effects of precipitation on P load and
delayed, variable effects of precipitation and P load on phycocyanin.
(Fig. 2). Changes in precipitation are positively correlated with
changes 1 d later in P load {Fig. 24) and with changes 13-18 d
later in phycocyanin (Fig. 28). Changes in P load are positively
correlated to changes 13-28 d later in phycocyanin (Fig. 2C).

Models for extreme values show that all of the rime series’
extremes fit Pareto distributions (40). The frequency and magni-
tude of extreme precipitation increased from 1940-2021. The
magnitude (mm) of 2-, 5-, and 10-y precipitation events continues
to increase (Fig. 34). The return time of 100-mm events has
declined from more than 5.5 y to less than 2.5 y over the period
of record (Fig. 35).

Extremes of precipitation are closely associated with extremes
of P load (Fig. 3 C and D)) through the fitted parameters of the
Pareto equation (40). Return level (kg/d) of extreme P loads
increases with daily precipitation more steeply as return time
increases (Fig. 3C). Return level (kg/d) of extreme P loads increases
with return interval of precipitation (Fig. 3.0).

The best-fitting Pareto model for phycocyanin extremes had no
significant effects of precipitation or P loads. Extreme phycocyanin
concentrations from daily time series (5] Appendix, Fig. 540) fir
a stationary Pareto model (scale = 0.42 with standard error
(s.e). = 0.079, shape = 0.30 with s.e. = 0L135). The stationary
Pareto model had lower Akaike Information Criterion (AIC) than
alternative Pareto models that represented scale or shape as func-
tions of precipitation, P load, or discharge.

Return Intervals of Extreme Values. Return intervals of extreme

values (i.e., the number of days between observations above the
Pareto threshold) of precipitation, water discharge and P load to
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Fig. 2. Cross-comelations versus lag in days of (4) log10 predpitation before log10 P load, (B) log10 precipitation before logl0 phycocyanin, and (C) log10 P
load before logl10 phycocyanin. Correladon coefficients are inverse-variance weighted means of annual values from 2008-2021. Horizontal lines show + 50 of

the pooled cross-comelation functon (CCF).
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Fig. 3. Pareto models for predpitation and P load. The values selected for the examples show trends of the fited Pareto models within the range of the data.
{A) Precipitation return level versus year for 2-, 5, and 10~y events. (B) Return time (years) of days with 100 mm precipitation versus year. (C) Return levels of P
daily load (kg/d) versus daily precipitation (mm) for events with return times of 2, 5, and 10 y. (0} P load retum levels (kg/d) versus return intenvals (y) for daiky
precipitation events of 10, 25, and 50 mm. The Pareto threshold for predipitatgon is 20 mmdd.

the lake, and phycocyanin were compared to Poisson expectations
to assess their independence (Fig. 4). For all variates, the indices
of dispersion exceed 1, and plots of observed probabilities deviate
from the Poisson distribution expected if events are independent
in time (Kolmogorov—Smirnov test P < 1 07"). The deviations for
precipitation are smaller than those of the other variates.

Extremes of precipitation (Fig. 44) increase over time (Kendall
rank correlation 0.307, P < 0.0001). Coefhcients of dispersion
exceed 1 for precipitation (Fig. 4E), consistent with clusters of
extremes, but have no significant trend with time. Comparison
to the Poisson distribution (Fig. 4/) shows a rather close fit.
MNonetheless, short gaps between events are slightly less common
than expected and long paps between events are slightly more
common than expected.

Annual extremes of water discharge into the lake (Fig, 4B) vary
among years, but an upward trend is discernible (Kendall rank cor-
relation = 0.338, P = 0.007). No extreme discharge events occurred
in 2012 and the coefficient of dispersion cannot be calculated for
that year (Fig. 4F). For the other years, the coefhcient of dispersion
is above 1 indicating clusters of extremnes. Despite the inter-year var-
iation, the coefficient of dispersion tends to decline over time (Kendall
rank correlation = -0.274, P= 0.0277). Departures of discharge from
the Poisson distribution (Fig. 4C) show that short gaps between
extremes are less common than expected and long gaps between
extremes are more commeon than ex .

Annual extremes of P load to the lake appear to increase over
time (Fig. 4C), but the trend is not significant at the 5% level

PNAS 2022 Vol 119 No. 48 e2214343119

(Kendall tau = 0.238, P = 0.087). Dispersion coefhcients exceed
1, indicating clusters of extremes, with no obvious trend through
time (Fig. 4G). Departures from the Poisson distribution indicate
that short gaps between extremes are too few and long gaps
between extremes are too many (Fig. 4K).

Annual extremes of daily standardized log10 phycocyanin show
no significant trend over the 14 y of data (Fig. 40). No extremes
were observed in 2016, and the coefficient of dispersion cannot
be computed. In other years, the coefficient of dispersion exceeds
1, indicating aggregation of blooms in time (Fig. 4H). The appar-
ent decline of dispersion over time is not significant. Comparison
with the Poisson expectation shows that short gaps are too rare
and long gaps are too common (Fig. 41).

Of the 169 P load extremes observed during 2008-2021, 124
{73%) were followed, after a time delay of 1-60 d, by an extreme
value of phycocyanin in the same year of observations (Fig. 5).

Discussion

The trend of rising average precipitation with increasingly frequent
extreme values over a threshold is noted for many ecosystems (6,
7), and the Yahara watershed of Lake Mendota is among them (12).

In the Yahara watershed, extremes of precipitation, P load, and
phycocyanin RFU are non-independent and tend to occur in
clumps, such as multi-day periods of extreme rain, P load, and
phycocyanin (Fig. 4). Daily mean precipitation and P load are
lag-correlated with concentrations of phycocyanin, However,

https/doi.org/10.1073/pnas 2214343119 3 of 7
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Fig. 4. Characteristics of extreme daily events for (A, E, [) precipitation, (B. F. /) discharge, (L, G, K) P load, and (D, H, L) phycocyanin. For each variate we present
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Pareto models for phycocyanin extremes are stationary, with no
significant trends over 14 y nor discernible effects of precipitation,
discharge, or P load.

It is important to recognize that a high proportion of the annual
P load arrives during extreme runoff events (11, 12). Once the P is
in the lake water or sediments it can be recycled for many years (41,
42) and potentially support Cyanobacteria until it is flushed from
the lake or added to permanent sediments. Extremely dry years have

Extreme P Loads and Blooms

N ﬂ_f_mrm

0 10 20 30 40 50 60
Days After Extreme Load

Fig. 5. Freguency distribution of tme lags (days) from an extreme walue
of P load to the next extreme value of phycocyanin within the same year of
observations. Forty-six of the 170 extrerne P load events were not followed
by an extreme value of phycooyanin within the same year and are omitted
from the plot
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the opposite effect: P and pigment concentrations are unusually low,
and the water is clear (37). However, excess nutrients can build up
in soil during dry years and contribute to “weather whiplash”™ of
unusually high nutrient loads in wet years (43).

Extreme precipitation events can persist over several days (44)
causing statistical dependencies (Fig. 1) that propagate from water-
shed to lake mixing, water transparency, and metabolism (45).
Soil moisture can build up over successive rain events thereby
priming the soil for runoff, drainage, and erosion over time.
Consequently, dusters of extremes are more common than
expected if events are independent (21, 30). Alternative statistical
models for non-independent phenomena include the negative
binomial for spatial patterns in ecology (46), the beta-binomial
for spatial-temporal dependencies in river discharge (47), or the
stretched Poisson for return intervals with correlation exponents
below 1 (30). Such models could be investigated for systems of
precipitation, P load, and Cyanobacteria.

Watershed processes amplify the dependencies over time. Lags
and hysteretic shifts in nitrogen loading through nested subwa-
tersheds showed decadal dependencies (33). Legacies of P accu-
mulation generate long-term memory in P flows at continental
scales (32). In the Yahara basin, multi-day precipitation events
expand into longer series of days with extreme P loading to the
lake. Extremes of precipitation translate rapidly into extremes of
P load (Figs. 24 and 3 C'and D)), and the P residence time is longer
than the water residence time of 4.4 y (37, 48).

It would be reasonable to expect that periods of high nutrient
load lead directly to blooms of phytoplankton as found in other
lakes (26). However, we found that cross-correlations of phyco-
cyanin lagged P loads by 13-28 d (Fig. 2C), and tme delays
between a P load extreme and the next phycocyanin extreme

pnas.org
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ranged up to 60 d (Fig. 5). Moreover, a general pattern of low and
high alternate states of phycocyanin persists over a wide range of
P load rates (49). Alternative stable states of phycocyanin appear
as large shifts between low levels and bloom states (49), with high
stochasticity and potentially rapid fickering between alternative
states (50).

As water moves from the atmosphere over land to the lake,
terrestrial processes increase long-range dependence for discharpe
and P load, and lake processes further increase long-range depend-
ence of phycocyanin blooms (Fig. 1.B). Phycocyanin blooms may
be sustained by accumulated nutrients and endogenous lake
dynamics (such as recycling from sediments) rather than a single
extreme loading event (51). The long-term memory of phycocy-
anin, despite rapid daily fluctuations, is consistent with other
syntheses. For example, decades of enriched soils and long-term
nutrient flow to lakes (52}, internal loading by sediment-to-water
nutrient flux (41, 42, 53), and food web processes induding graz-
ing and nutrient regeneration (19, 54, 55) may enable blooms of
Cyanobacteria year after year regardless of fluctuations in P load.
The current water quality of the lake derives from climate trends,
intensification of agriculture, urban expansion, and invasions of
non-native plants and animals over recent decades (56). Together
these generate long time lags, extreme events, and management
surprises (57, 58). Projects to improve future water quality must
adjust soil nutrients to match crop needs (59, 60) while coping
with enriched sediments, increasing frequency of extreme precip-
itation, floods, and nutrient loads, unexpected assemblages of
species, novel ecosystem behaviors, and rising demand for land
and water resources. I[mpacts on food, water, and human well-be-
ing call for new approaches and collective action (61). The chal-
lenges of lakes in agricultural landscapes exemplify current global
challenges that evoke transformative approaches for stewardship
of land, water, and nature (62, 63).

Methods Summary

Yahara Watershed and Lake Mendota. The Lake Mendota watershed in
southern Wisconsin, United States (43.2°N, 89.4°W) drains a 604 km’” area of
land devoted to dairy, com, and soybean produdtion, part of the Madison met:
ropolitan area, and remnants of native vegetation (35, 64). The region has been
significantly altered by intensification of dairy agriculture, expanding demand
for biofuels, urban development, and climate change (65, 66). The watershed of
Lake Mendota exemplifies Upper Midwestern watersheds, with an urbanizing
agricultural landscape upstream of four large |akes with relatively poor water
quality and frequent outbreaks of harmful algal blooms (49, 66, 67).

Hydrological Data. We analyzed daily discharge and P load data for the two trib-
utaries of Lake Mendota, Pheasant Branch at Middleton (United States Geological
Survey (USGS) No. 03427948; 4310336 N, -B9.5117 W; 1994-2021), and the
Yahara River at Windsor (USGS No. 054277 18; 43.20885 N, —B89.3528 W; 1991-
2021). Among the tributaries to Lake Mendota, Pheasant Branch and the Yahara
River have the longest available time series for discharge and P load. These two
tributaries account for more than 29% of the annual total P load to Lake Mendota
and statistically they explain 96% of the variance in total annual P load to Lake
Mendota from all tributaries combined (37). Thus these tributaries are a surrogate
estimate of loading rates from the entire watershed. We combined the discharges
and P loads from these two tributaries.

Discharge and P load were measured by USGS and downloaded from theirweb-
site (ittp: /waterdata.usgs. gov/nwis/sw) using the dataRetrieval]) package (68, 69).

Precipitation Data. Continuous daily precipitation data were obtained for
Madison Dane County Regional Airport (Cooperative Observer Network |D
474941; Global Histarical Climatology Network ID USWO00014837; coordinates
43133 N, -89.349W; elevation 264 m; Daily Data Range: October 1, 1939 to
December 31, 2021). We define extreme precipitation values and retumn intervals
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based on calendar day totals and not for events that span 2 24-h period over two
consecutive calendar days.

Phycocyanin Data. Concentrations of phycocyanin, a characteristic pigment
of Cyanobacteria, were monitored every minute at a central station (43.0995 N,
-89.4045 W) in Lake Mendota during the ice-free seasons of 2008-2021 (70).
Phycocyanin and chlorophyll data were recorded every minute using Turner
Designs Cyclops 7 sensars suspended 1.0 m below the buoy unfil 2019. From
2019 to 2021, the sensor was a ¥YSI EXO2 sonde. Water temperature at the sen-
sor array and meteorology data for the atmosphere at the buoy, induding wind
speed and direction, were also recorded every minute. A complete list of sensors
used over time is posted with the data (70). The duration of the measurements
is around 175 d each year. We used data from June 1-September 15 (days of
year 152-258) when blooms are common (71). Phycocyanin sensor readings
were expressed as RFL. Log(RFU) is directly related to the log of phycocyanin
concentration (72). We calculated daily means of log-transformed RFU using data
from 00:00-04:00 and 22:00-24:00 each day to minimize quenching during
daylight hours (71). Different sensors and maintenance regimes were used in
different years, and these factors could affect the mean and SD of sensor readings
within a year. To facilitate comparisons among years, daily means of the log(RFU)
within each yearwerestandardized as z-scores 2 = (x — ) / o where meanp
and 5D « are estimated over all days each year (49).

Statistical Analysis. All calculations were conducted in B 4.2.0 (73). Time
series plots and descriptive statistics were calculated with R scripts and data
presented online (69).

Cross-correlations for concurmrent daily series were computed for each yearand
then pooled among years as weighted averages with inverse variance weights.
The variance of a product-moment correlation coefficient r for a given lag in a
given year is {1 - 7F/{n - 2) where n is the number of days used to calculate
the correlation (74).

Extreme values, trends in extremes, and dependencies among extremes were
assessed by fitting generalized Pareto distributions to each of the daily time series
using the fevd() function of the extRemes() package (28). This procedure provides
maximum likelihood estimates of location p, scale &, and shape & parameters
(12).The threshold u for each time series was estimated according to Coles (40)
as implemented by Carpenter et al. {12). These threshold values were used for
peak-over threshold analyses of return intervals described below. R scripts and
data for Pareto analyses are presented online (75).

Using threshold estimates from fits of Pareto models, we identified dates
of threshold exceedances (extreme values) for precipitation, discharge, P load,
and phycocyanin. For each variate, we cloulated retumn intervals (durations of
gaps between exceedances). For each variate's return intervals in each year, we
clloulated the index of dispersion (variance/mean) to assess independence or
dependence of events from year to year. Trends in the number of extremes per
year and the index of dispersion were assessed by Kendall rank correlation using
the cor() function of 7 (74).

If extreme events are independent, then the return intervals (gaps
between extreme events) are also independent and distributed according
to the Poisson distribution (77). For a large sample of return intervals for a
given threshold g with mean return interval R, (i.e. the mean rate of extreme
eventsisd=1/ Rﬂ'}' the probability of one extreme in a return interval of
length ris (77).

Py(r)=rae™". []

If extreme events are dependent, or dumped, in time then observed proba-
bilities will deviate from [1]({30) as shown below. For a Poisson distribution the
variance and mean are equal, hence the ratio variance/mean, clled the index
of dispersion, is 1 (44). For events that are dependent, the variance exceeds the
mean and the index of dispersion is greater than 1 {46, 78).

For observed retum intervals, we calculated cumulative rank distributions of /R,
following Bunde et al. {30). For a given variate, we calculated 1 minus the relative
rank of /R, (rank divided by the total number of events) and then plotted this
quantity versus r/R,_. We compared these distributions with the Poisson distribu-
tion using Kolmogorow-Smimov tests of the null hypothesis that data and Poisson
expectation are drawn from the same distribution (fundtion ks.test{) with two-sided
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option in R). As an additional visual test, we compared return intervals for observed
time series of each variate with those of the randomly shuffled time series. Shuffled
data were generated by the shuffle) fundion of the permute library in R (76, 79).

The comelation exponent y was estimated by Detrended Fluctuation Analysis
(DFA)(29) We fitted DRFA models to daily time series of precipitation, P load, and
phycocyanin using the dfa() fundtion of the nonlinearTseries library (76, 80). The
log-log plot of the resulting fluctuation function should be linear overthe relevant
time scales to estimate the correlation exponent (29, 81). We evaluated linearity
by comparing  linear model to higher-order polynomials using AIC. When the
linear model fits the data the slope « measures "self-affinity” of the fime series,
also called “long-term memory” since the correlation exponent ¥ approaches 0
a5 e approaches 1. The correlation exponent and self-affinity are related by the
equation: ¥ = 2(1 — &). Since ¥ = 1 for independent or Poisson-distributed
extremes, which have no temporal dependence or memory, the difference 1-
indicates dependence of extremes. Estimates of y near zero indicate high levels
of long-term dependence or memory (7).
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31 Time Series: Precipitation, Phosphorus Load, and Phycocyanin
32

33 Figure S1. Daily precipitation 1940-2021
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48 Figure S2. Daily discharge as m3d" to Lake Mendota from Yahara River and Pheasant Branch combined,
49 1990-2021. Note log y-axis.
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51
52 Figure S3. Daily P load to Lake Mendota from Yahara River and Pheasant Branch combined, 1995-
53 2021. Note log y axis. These two tributaries combined account for 30% of the P load to Lake Mendota
54  from all sources and together explain 96% of the variance in P load from all sources (1)
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Figure S4. Time series from the
days when precipitation, P load, and
phycocyanin were all available for
Lake Mendota. (A) precipitation (mm
d™), (B) discharge from Yahara River
and Pheasant Branch to Lake
Mendota (m3 d*; note log y axis), (C)
P load from Yahara River and
Pheasant Branch combined to Lake
Mendota (kg d-1; note log y axis),
and (C) phycocyanin log10 relative
fluorescence units (RFU) measured
in Lake Mendota (Z scores, units of
standard deviation).
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Long-Range Dependence

Long-range dependence, or memory, is indicated by the correlation exponent y estimated by detrended
fluctuation analysis (DFA) (2). The main text presents correlation exponents for concurrent days when all
four variates were measured. Here we present DFA results using all available data for each variate. Data
and R scripts for DFA are presented online (3).

For a Poisson distribution with minimal long-term dependence or memory y = 1. Analyses of all available
data show that departures from a Poisson pattern increase from precipitation to discharge to phosphorus
load, with phycocyanin presenting slightly less long-term dependence than phosphorus load (Table S1).
The fluctuation plot for phycocyanin was quadratic, despite detrending within each year to remove
seasonality, and the estimate of vy is therefore biased (4). For the other three time series the fluctuation
plot was best-fit by a linear model according to AIC, consistent with assumptions of DFA. Thus the
phycocyanin data may not meet the assumptions for estimating the correlation exponent. Other studies
demonstrate alternate states with rapid transitions between low and high levels of phycocyanin (5).
Annual repetition of alternate states suggests long-term memory of nonlinear stochastic dynamics that
may be difficult to measure with correlation exponents.

Table S1. Detrended fluctuation analysis results using all available data for daily time series of
precipitation, P load, and phycocyanin. Phycocyanin data were detrended within each year to remove
seasonal effects.

Time series Days of data | Self-Affinity a Correlation Exponent y (s.e.)
s.e.
Precipitation 30042 8.53)1 (0.0023) 0.939 (0.00465)
Log(Discharge) 11684 0.895 (0.010) 0.203 (0.0114)
Log(P load) 9770 0.962 (0.013) 0.0769 (0.0130)
Log Phycocyanin | 1438 0.943 (0.018) 0.114 (0.036)
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