
 

 

ACCEPTED FOR PUBLICATION IN EDUCATIONAL STUDIES IN MATHEMATICS. 

The published version may have slight modifications. 

 

Title: The Role of the Partitioning and Coset Algorithm Quotient Group Partial Meanings in a 

First Isomorphism Theorem and Proof Comprehension Task 

 

Authors: 

Kathleen Melhuish* 

Lino Guajardo   

Paul C. Dawkins   

Holly Zolt           

Kristen Lew 

 

Affiliation:  

Department of Mathematics  

Texas State University  

601 University Drive  

San Marcos, TX 78666, USA  

 

*Corresponding Author Information:  

Email: melhuish@txstate.edu 

  

  



 

 

The Role of the Partitioning and Coset Algorithm Quotient Group Partial Meanings in a First 

Isomorphism Theorem and Proof Comprehension Task 

 

Abstract 

In many advanced mathematics courses, comprehending theorems and proofs is an essential 

activity for both students and mathematicians. Such activity requires readers to draw on relevant 

meanings for the concepts involved; however, the ways that concept meaning may shape 

comprehension activity is currently undertheorized. In this paper, we share a study of student 

activity as they work to comprehend the First Isomorphism Theorem and its proof. We analyze, 

using an onto-semiotic lens, the ways that students’ meanings for quotient group both support 

and constrain their comprehension activity. Further, we suggest that the relationship between 

understanding concepts and proof comprehension can be reflexive: understanding of concepts 

not only influences comprehension activity but engaging with theorems and proofs can serve to 

support students in generating more sophisticated understanding of the concepts involved.   
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1 Introduction 

Comprehending mathematical theorems and proofs is an essential activity in many 

advanced mathematics courses. Researchers in recent years have studied how mathematicians 

engage in comprehending (e.g., Weber & Mejía-Ramos, 2011, Wilkerson-Jerde & Wilensky, 

2011), operationalized proof comprehension for the purpose of assessment (Mejía-Ramos et al., 

2012) and developed strategies to support students in engaging in comprehension (Samkoff & 

Weber, 2015). Concepts play an essential role in each of these studies ranging from instantiating 

examples (e.g., Weber & Mejía-Ramos, 2011) and drawing on definitions (e.g., Wilkerson-Jerde 

& Wilensky, 2011) to using definitions of concepts in a theorem to anticipate proof structure 

(e.g., Samkoff & Weber, 2015). Further, being able to identify accurate meanings for terms 

involved in the theorem and proof is correlated with other proof comprehension dimensions 

(Hodds et al., 2014).  



 

 

Understanding a concept is more complex than just a definition; indeed, modern 

mathematical definitions are shaped by proving (Lakatos, 1976), though we have little research 

evidence about how proofs aide students in concept formation. Several researchers have 

illustrated the important role that formal and informal meanings play in students’ reasoning when 

constructing proofs (e.g., Edwards & Ward, 2004; Moore, 1994). Dawkins and Karunakaran 

(2016) have argued for the “necessity of attending to mathematical meaning in proving research 

if we are to explain the emergence of student reasoning in situ” (p. 67). Research is still needed 

to identify what makes such ways of reasoning more and less productive for proof 

comprehension.  

Methodologically, studies of student proof comprehension tend to focus solely on student 

responses to isolated prompts for definitions, meanings, or examples. While a student’s response 

to any such question is vital, we argue that the meanings students evoke shape more of their 

activity in theorems and proofs than isolated prompts can uncover. Theorem and proof 

comprehension provide a specific context that is likely to influence what aspects of a relevant 

concept are attended to. By studying students’ meanings in context, we gain insight into the 

interaction between conceptual understanding and proof texts and techniques. We focus this 

study on a particular context: The First Isomorphism Theorem (FIT) in abstract algebra. We 

selected this theorem due to its essential role in an introductory course and its complexity in 

relating numerous concepts in abstract algebra. In this paper, we focus specifically on students’ 

meanings for quotient groups and how these meanings support or constrain student activity in 

this context. Further, we consider how the context of theorem and proof comprehension may 

provide opportunities for students to build more sophisticated meanings for quotient groups. We 

ask: 

● What partial meanings for quotient groups do students evoke in the context of 

comprehending the First Isomorphism Theorem and its proof? And how do these 

meanings shape their comprehension practice? 

● How does engaging with the concept of quotient group within the FIT and its proof 

occasion opportunity for students to develop more sophisticated meanings for quotient 

groups?  

2 Theoretical Background and Assumptions 



 

 

 In proof-based mathematics, students encounter objects that are defined formally and 

abstractly. These concepts are then represented using signs that “are not the mathematical objects 

themselves but stand for them in some way” (Presmeg et al., 2016, p. 9). Theories related to 

signs, semiotic theories, can support analysis of how students engage with mathematical objects. 

Godino et al.’s (2007) onto-semiotics provides a way to study students’ mathematical practice 

grounded in the essential role of signs and meanings. Our underlying assumption is that signs 

mediate meaning and meaning occurs in context and within a semiotic system. “A semiotic 

system is the system formed by the configuration of intervening and emerging objects in a 

system of practices, along with the interpretation processes that are established between the same 

(that is to say, including the network of semiotic functions that relate the constituent objects of 

the configuration)” (Godino et al., 2011, p. 255). Researchers have begun to take an onto-

semiotics approach in abstract contexts such as group theory (Sepúlveda-Delgado et al., 2021) 

and in the practice of proof construction (Molina et al., 2021). We focus on the discursive 

mathematical practice of comprehending a mathematical theorem and proof.  

Meaning plays an essential role in mathematical practice that Godino and colleagues 

attribute to two distinct and complementary aspects: (1) the meaning attributed to a sign (say, in 

definition or explanation) and (2) meaning in “usage” where a mathematical objects’ meaning 

relates to what can be done with it in the course of problem-solving. The meanings evoked shape 

the practice and the practices are reflexively constituent to meaning. At one level there are 

“representations (language), definitions, propositions, procedures, problems and arguments 

(primary objects)” (Font Moll et al., 2016, p. 112) that emerge in activity. At a higher level, there 

is one single, unified object that “can (1) be associated with different representations, (2) has 

several equivalent definitions and (3) has properties, etc.” (p.112). The emergence of (what the 

reasoner perceives as) a unified object is a key feature of onto-semiotics because the theory 

intends to explain how mathematical objects can emerge in social activity without a fundamental 

ontological status. Onto-semiotics provides rich tools for documenting how students can, through 

activity, construct a coherent and sophisticated understanding of an abstract object such as a 

quotient group. Such a stance aligns with other theories such as knowledge-in-pieces (diSessa, 

2018) where knowledge is not correct or incorrect, but rather as a set of partial meanings evoked 

in different contexts that can build in coherence. Throughout this manuscript, we use the term 



 

 

partial meanings to emphasize both a non-deficit view of student meanings and to acknowledge 

the multi-faceted and practice-based nature of mathematical concepts.  

While we see partial meanings as serving an overarching role in mathematical practice, 

we also appeal to semiotic object dualities to further operationalize students’ mathematical 

practice. Font et al. (2013) argue that mathematical objects in practice can be “grouped into dual 

facets or dimensions” (p. 111): 

● the expression and content (which we refer to as the sign and referent throughout this 

document) 

● ostensive (observable) and non-ostensive (imagined) 

● personal (to the individual) and institutional (which can refer to the local community of 

students or a larger community) 

● unitary (a single object/sign to be acted on in its totality) or systematic (decomposable 

into a system where its constituent parts/meanings can be acted on individually) 

● type (a general class) or example (a specific member of a class) alternatively referred to 

as intensive or extensive. 

Any mathematical object is subject to these dualities, and we suggest these dualities can provide 

a means to develop a more sophisticated understanding of mathematical objects. By this we 

mean, more connected, adaptive, and consistent with institutional meanings. They also provide 

opportunity for semiotic conflict, “disparity or difference of interpretation between the meanings 

ascribed to an expression by two subjects, being either persons or institutions” (Godino et al., 

2007, p. 133). These conflicts may or may not be observed by the participants. Conflicts can 

interfere with student communication with each other or the text, but also can serve as a space 

for students to negotiate meanings and progress in their coordination of partial meanings. For 

instance, the referent for an ostensive sign may be non-ostensive and imagined differently by 

various interlocutors. By producing some other ostensive representation of the referent of the 

original sign, students might more clearly negotiate its meaning. We use the term shift to capture 

movement between various dualities where successful shifts may reflect students making 

mathematical progress and/or developing more sophisticated and self-consistent meanings.  

Background: The First Isomorphism Theorem and Quotient Groups 

 We situate our exploration in the context of The First Isomorphism Theorem and its proof 

(Figure 1). We selected this theorem and the concept of quotient groups due to their complexity. 



 

 

The theorem involves both a homomorphism (given) and isomorphism map (needed) to establish 

that the quotient group and image of the homomorphism are isomorphic.  

 
Figure 1. Statement of the FIT used in our study.  

A panel of experts in abstract algebra instruction identified both the FIT and quotient 

groups as two of the most important topics in introductory abstract algebra and the most difficult 

by a sizable margin (Melhuish, 2019). Nardi (2000) illustrated that students may struggle to 

coordinate the roles of the homomorphism and isomorphism maps in the theorem. Further, Nardi 

points to issues retrieving relevant information and moving beyond recalled facts to productively 

engage with the theorem and produce its proof. More recently, Mena-Lorca and Parraguez 

(2016) found that students who used a more generalized theorem (equivalence relations partition 

a set) had more sophisticated conceptions of the theorem than students who relied on abstract 

algebra notions exclusively. Both studies point to rather substantial coordination of abstract 

objects to productively engage with the theorem. This coordination is apparent in studies of 

mathematicians whose meaning for homomorphism and quotient groups are fundamentally 

linked (Rupnow, 2021). The results from these studies suggest: (1) the FIT is a context worthy of 

exploring theorem and proof comprehension related to concepts and (2) there is potential for 

students to develop more sophisticated meaning for quotient groups that incorporates notions of 

homomorphism.   

We can then turn to the literature on quotient groups to anticipate some of the partial 

meanings that may be relevant to their comprehension activity. The coset algorithm often serves 

as students’ primary tool when working with quotient groups (Asiala et. al, 1997). This is where 

one takes a subgroup H and an element from the original group, g, and calculates g+H. This is 

repeated with each element from the original group. So long as the subgroup was normal, the 

distinct cosets form a quotient group. Hazzan (1999) suggests that relying on such a process 

could be an attempt to create a less abstract environment for students. Reliance on the algorithm 

may hide the group structure of quotient groups. Further, many students may lack mental 



 

 

imagery reasoning with cosets which can intercede with their ability to produce proofs (Nardi, 

2000; Ioannou & Iannone, 2011). 

Quotient groups also require a complex coordination where a coset is simultaneously an 

element in a group (unitary) and a set itself (systematic) (Brenton & Edwards, 2003). Large-scale 

results suggest many students have not made this coordination (Melhuish, 2019). Siebert and 

Williams (2003) suggest there are three interpretations for cosets: sets, element set combinations, 

and representative elements. Each meaning is tied to a different ostensive: {𝑎, 𝑏, 𝑐, . . . }, 𝑎 + 𝐻, 

and 𝑎, respectively. While their study was situated in the context of ℤ!, their implications 

spanned quotient groups more generally suggesting students need to be able to coordinate all 

three meanings.  

Larsen and Lockwood (2013) attempted to counter this reliance on the algorithm by 

having students begin their quotient group activity via partitioning. Students working from this 

perspective developed different approaches to quotient groups, notably attending to an operation 

being well-defined rather than relying on normality when determining if a subgroup is a group 

(Larsen et al., 2013). Due to the variety of partial meanings found in the literature, we anticipate 

that students may draw on a multitude of meanings for quotient group when engaged with the 

FIT. 

Onto-semiotic Analysis of the First Isomorphism Theorem and its proof 

 To orient the reader to the proof our study participants analyzed, we present some 

analysis of the proof (Figure 2) using onto-semiotic tools.  



 

 

 
Figure 2. The Proof of the First Isomorphism Theorem and Lemma Needed for the Proof 

adapted from Judson (2018) 

 

There are a range of challenges inherent in the notation of the theorem and proof, which relate 

directly to the sign/referent dichotomy and the ostensive/non-ostensive dichotomy. These 

dichotomies are related but distinct, since a sign’s referent may also be, at least partially, 

ostensive, as when 𝐾 = 𝑘𝑒𝑟(𝜙) [line 6]. That is, the sign K refers to the kernel of ϕ and 



 

 

information about that referent is made ostensive. An ostensive/non-ostensive duality may also 

be drawn upon without navigating the sign/referent dichotomy. For example, 𝜙(𝑔"𝑔#) =

	𝜙(𝑔")𝜙(𝑔#) [line 11] can result from manipulating the ostensive (applying the homomorphism 

property syntactically) without any semantic connection to the underlying concepts or contexts. 

In many cases though, there is a strong relationship between the sign/referent duality and 

ostensive/non-ostensive duality within proofs. The referent of an ostensive (observable 

expressions treated as signs) is most often non-ostensive, and thus comprehension would involve 

navigating both dualities simultaneously. One challenge we note in the expressions in the 

theorem and proof is that many objects play non-obvious roles. Groups (including subgroups) are 

more often denoted by single capital letters, meaning that expressions like 𝜙(𝐺) and 𝑘𝑒𝑟(𝜙) are 

uncommon group notation. The group 𝑘𝑒𝑟(𝜙) is later renamed to fit the convention [line 6]. This 

renaming appears helpful since it renders the cosets of the kernel into a more familiar expression 

for a coset (𝑔𝐾 rather than 𝑔𝑘𝑒𝑟(𝜙)); however, the new ostensive less obviously refers to a 

kernel.  

The isomorphism β maps elements of the quotient group to outputs of the homomorphism 

𝜙. Taking cosets as inputs plays on the unitary/systematic dichotomy since sets of elements are 

treated as singular objects, which is further complicated by the coset convention of working with 

the ostensive representatives of the set to stand for the equivalence class. To comprehend the 

theorem and proof, students at various times need to see cosets as unitary objects, but also 

decompose them into individual elements such as arriving at the implication from coset 

equivalence: 𝑔"𝑘 = 𝑔# [line 8]. Further, like almost any proof in abstract algebra, the proof 

proceeds in terms of the properties stipulated to the various, general objects (types) leaving the 

more particular objects that are members of that general class (examples) replaced by arbitrary, 

ostensive placeholders (e.g., 𝐺,𝐻, 𝜙).  

We provide one last example related more to practices than mere relationships of 

reference that portrays the role of the personal/institutional dichotomy. As discussed in the 

literature above, the coset algorithm implicitly forms a strong part of students’ personal 

meanings for cosets. This proof defies carrying out this algorithm as the arbitrary nature of the 

homomorphism and groups involved does not provide a particular list of kernel elements or an 

operation to use. Rather, the cosets are constructed using pre-images of the homomorphism, 

which induces a partition of the group 𝐺. Further, the proof relies on the normality of the 



 

 

subgroup to argue that this structure is in fact a quotient group. These institutional meanings 

have the potential to conflict with students’ personal meanings, if they are rooted in the coset 

algorithm. These examples all portray some of the many ways we see this theorem/proof as a 

rich opportunity to explore students’ proof comprehension and meanings for group-theoretical 

objects through the onto-semiotics lens 

 

Methods 

 This study is part of a larger project aimed at engaging students in authentic proving 

activity in abstract algebra (Melhuish et al., 2022). The project used a design-based research 

approach where tasks are developed based on hypotheses around how teacher actions and task 

choices can engender student engagement in a range of mathematical activities related to proof. 

The tasks and hypotheses were then modified through cycles of testing, first in a task-based 

interview setting and then in a classroom setting. For this paper, we focus on task-based 

interview data. 

Data and Setting 

We draw on two cycles of enacting a task with small groups of students who were guided 

to comprehend the FIT and its proof. The task-based interview was developed using Mejia-

Ramos et al.’s (2012) comprehension assessment framework. The components of the framework 

were converted into a series of tasks that included activities such as explaining the meaning of 

terms in the theorem, connecting the theorem to specific examples, anticipating the proof 

approach, summarizing the proof, connecting the proof to specific examples, and warranting 

lines within the proof.  

All study participants had recently completed an introductory abstract algebra course that 

focused primarily on introducing group theory concepts including quotient groups and typically 

spent one lesson (or one part of a lesson) talking about the FIT, including its proof. We worked 

with all students who volunteered for the study. In cycle 1, we met with two undergraduate 

students (Elena1, Elsa) for three hours split between two sessions, and in cycle 2, four 

undergraduate students (Jasmine, Eric, Andy, Miguel) in one two-hour session. Prior to the first 

cycle, we conducted a pre-interview finding that neither student recalled details of the FIT. For 

 
1 All names are pseudonyms.  



 

 

both groups of students, they engaged in a task that involved creating and analyzing cosets with 

ℤ! groups in the task-based interview prior to the FIT interview, so we were confident that 

students had basic knowledge of constructing the elements of quotient groups and comfort 

working with the ℤ! groups. Of our participants, five had a traditional introduction on quotient 

groups building from equivalence classes and coset generation and one (Elsa) had an instructor 

who used an inquiry-oriented curriculum where students partitioned groups first and introduced 

the coset generation algorithm later. Most had formal definitions provided with examples while 

one student was introduced to examples first and then encountered the formal definition.  

Across both sessions, the first author of this paper served as primary instructor-

researcher, and another member of the research team served as a second instructor-researcher 

asking additional questions. Both sessions were observed by members of the project team who 

took field notes. Additionally, the sessions were video-recorded and transcribed, and student 

work was collected.  

 

Methods of Analysis 

 We began analysis with cycle 2. A member of our research team reviewed the video and 

transcript identifying a series of episodes where there appeared to be a personal/institutional 

conflict related to quotient groups or functions. Three members of the research team then 

analyzed these episodes in terms of semiotic conflicts, resolutions, dualities, and representations. 

After this initial pass, the team met to resolve any discrepancies and to develop more 

sophisticated operationalizations of the analytic tools. This afforded refined interpretations of the 

students’ practice. Due to the complexities involved, we focused specifically on quotient groups 

for the next round of analysis.  

We reviewed the data to identify any moments when students discussed quotient groups 

inclusive of cosets, the canonical homomorphism, or quotient groups, themselves. Episodes 

started just before the concepts came up, for context, and ended once the students moved on to a 

different topic. All episodes (across both cycles) were then analyzed independently by two 

researchers to arrive at a series of analytic memos documenting evidence of (1) partial meanings 

evoked, (2) dualities, (3) semiotic conflicts, and (4) semiotic shifts. A partial meaning was 

ascribed at any point in which a student was in activity with the focal mathematical object: 

quotient groups. Any relevant dualities were documented at this point along with any semiotic 



 

 

conflicts. Finally, we also documented semiotic shifts at any place where students navigated a 

duality (and noted if instructional prompts led to shifts to better understand the context). The 

independent coders met, and coding discrepancies were resolved via discussion. From this 

analysis, we developed a narrative of both groups’ activity.  

 

Results 

In this section, we provide a description of our two cycles of implementation focusing 

first on how divergent partial meanings shaped the comprehension activity across the two groups 

of students. We begin by sharing an overview of the many partial meanings for quotient groups 

we documented in the students’ practice (Table 1), which we elaborate in the episodes that 

follow. Though we present the meanings separately, they do not operate as such. For example, 

students may evoke the coset algorithm while also attending to group structure. In fact, we argue 

that coordinating multiple meanings is evidence of greater sophistication in students’ practice 

around quotient groups. In the next subsections, we provide an overview of cycles where 

students drew on partial meanings related to the coset algorithm and partitioning, respectively. 

We focus primarily on theorem comprehension in these narratives, then conclude with several 

additional themes related to proof comprehension. 

 

Table 1. Partial meetings related to quotient groups 

  Description Related Partial 
Meanings 

Quotient 
Group (QG) 
Creation 

Coset 
Algorithm 

The standard approach to creating the coset 
elements in quotient groups via the definition: 
a+H where H is a subgroup and a is a group 
element. This algorithm can be proceduralized 
and may be divorced from group structure as it 
produces a list of cosets (Hazzan, 1999).  

QG as coset algorithm 

QG as list of cosets 

Partitioning Cosets induce a partition of the original group. 
Partitioning 𝐺 into sets that form a new group 
can serve as an alternate procedure for creating 
a quotient group (Larsen & Lockwood, 2013).  

QG as partitioning 𝐺 

QG cosets composed of 
elements from G 

QG cosets are distinct 
sets 



 

 

Homomorphism 
Preimage 

A quotient group can be thought of as the pre-
images of a homomorphism and 
correspondingly created by identifying pre-
images 

QG as homomorphism 
pre-image sets 

Factoring Out The language of “factor group” may evoke a 
notion that something is being removed – the 
normal subgroup 

QG as all 𝐺 excluding 
the identity subgroup 

The 
Structure of 
Quotient 
Group and 
its Elements 

Normal 
Subgroups 

The cosets of a normal subgroup form a 
quotient group. The normality requirement is 
often part of formal definitions and is necessary 
for proofs.  

QG are induced by 
normal subgroup 

Group Structure Students may or may not attend to QG as a 
group itself (Asiala et al., 1997 Hazzan, 1999;  
Melhuish, 2019).  

QG is a group  

Coset Duality 
(Set and 
Element) 

Cosets are sets of elements from the original 
QG. Students may sometimes foreground 
cosets as sets rather than elements (e.g., 
Melhuish, 2019) or as individual elements 
rather than sets (Asiala, et. al., 1997). 
Coordinating both meanings is important. 

Cosets as sets 

Cosets as elements 

Cosets and 
Representative 
Element 
Relationships 

The representative element of a coset can serve 
as a proxy for the coset itself and is often 
accessible either as just the element or in the 
form element + set (Siebert & Williams, 2003). 
In context, necessary meanings involve 
coordinated its membership and arbitrary nature 
with the coset 

Cosets representatives 
are not unique 

Coset representatives are 
members of that coset 

 

The Coset Algorithm Partial Meaning and FIT Comprehension 

 Our cycle 2 group of students primarily drew on the coset algorithm partial meaning 

when engaging with the tasks. We anticipated such deference based on our literature review. The 

session began with the students identifying important concepts involved in the statement of the 

FIT (sign→referent2) noting “factor group” as one of the key concepts involved. When the 

instructor-researcher asked what is meant by factor group or quotient group, the students’ 

responses included “a list of cosets” or “it’s one of the cosets, right or left, depending.” The 

instructor-researcher responded by writing a generic example of a group and subgroup (𝐺 =

{𝑒, 𝑔", 𝑔#, …	 , 𝑔$}; 𝐻 = {𝑒, ℎ", ℎ#}) on the board prompting type→example and non-

 
2 For ease we use this notation to indicate our codes of semiotic shifts that either occurred or were invited by the 
instructor.  



 

 

ostensive→ostensive shifts. Eric explained the resulting quotient group saying, “You take some 

element of G and either depending if we’re building left or right whatever the operation is you do 

that operation on H.” At this point, none of the students raised the partial meaning of group 

structure, reminiscent of the common personal/institutional conflict from the literature. After the 

instructor-researcher resolicited the meaning of the quotient group from the instructor-researcher, 

Miguel and Eric again drew on coset algorithm meanings. Miguel suggested that “the set of all 

the cosets, that’s 𝐺” and Eric stated they do not remember and need to write out the kernel of 𝜙. 

In contrast, Andy and Jasmine focused on the term “factor” with Andy suggesting, “I thought it 

was all the elements excluding those that had been factored out. I could be wrong though.”  

The instructor-researcher recognized the personal/institutional conflicts and prompted the 

students to attend to the group structure by focusing on the group part of the name (“We’re 

calling it quotient group so hopefully this thing we’re building is a group of some sort”) and 

returned to the generic example to ask what elements of the quotient group would look like (non-

ostensive→ostensive). Miguel expressed hesitation stating, “I can’t think of what they look like.” 

Andy and Eric draw on the group structure partial meaning to suggest, “the identity will be 

included.” The instructor-researcher asked what the identity would be, and Eric suggested the 

element “𝑒” before Andy asked whether 𝐻 was a subgroup. This prompted Eric to reconsider and 

suggest that “[𝐻] would just be e then.”  

At this point, we observe complexities introduced by the naming conventions in group 

theory (signs). Eric’s initial response of 𝑒 may reflect a partial meaning where a coset is a set of 

elements rather than a single element (systematic rather than unitary). However, when discussion 

focused on the subgroup 𝐻, Eric shifted from 𝑒 as serving an example to a type providing the 

label for the identity coset (the sign shifted referent). The students then continued to build cosets 

from the generic example, providing signs. We conjecture that the sign, “𝑒" (ostensively 

available) played a substantial role in the meanings students evoked. 

In the next portion of the task, students worked in pairs to connect the FIT to specific 

examples (type→example). Jasmine and Eric worked on the example of 𝜙: ℤ"# → ℤ% where 

𝜙(𝑥) = 𝑥&'(	%, and Andy and Miguel worked on the example 𝜙:	ℤ → 	ℤ* where 𝜙(𝑥) = 𝑥&'(	*. 

The task included a prompt to create a function diagram, an ostensive that can provide insight 

into the theorem. In both pairs, the students created a function diagram encoding the relevant 

homomorphism. The students also used the coset algorithm to create cosets using the kernel. 



 

 

Figure 3 reflects the two distinct ostensives: the function diagram (top) and cosets (bottom). 

Miguel began coordinating with the mapping noting that “There’s an isomorphism with the 1,2,3 

[from the image]. I don’t know how to explain that.” He questioned, “So what is our quotient 

group? This is our quotient group [pointing to the three non-identity cosets]?” Andy hesitantly 

asked in response, “Yes. So, then our quotient group only has three elements then why not this 

one [the identity coset]?” reminiscent of the “factoring” partial meaning conflict from earlier in 

the discussion. The need for an isomorphism appeared to support Andy in recognizing the 

conflict with the factoring partial meeting. Jasmine and Eric had a similar set of cosets and a 

function diagram (Figure 4), but questioned where the “1-1” portion was. This may indicate they 

were not yet seeing the cosets as single elements (systematic rather than unitary).  

 

 
Figure 3: Function diagram from Andy and Miguel  

 

Noticing ongoing conflicts in moving from type to example, the instructor-researcher 

decided to initiate a whole group discussion about one example. Jasmine and Eric explained their 



 

 

function diagram (Figure 4) identifying where each element mapped. Andy’s explanation 

suggests the ostensive supported a semiotic shift: 

Andy: Although with this, at least I’m starting to really see the coset groups forming 

individual elements. 

Instructor-researcher: So you’re saying you split up where are you seeing these coset 

groups forming in here? 

Andy: Where each map to... each elements that map to each individual element in ℤ%. 

Grouping elements by “where each map to” is the first evidence that students began developing a 

partial meaning for quotient groups related to homomorphism (the idea that every 

homomorphism induces a quotient group on the domain is central to the FIT). 

 

 
Figure 4: Function diagram from Jasmine and Eric 

 



 

 

The instructor-researcher asked the students to identify the parts of the theorem in the 

examples. The students articulated that they need the kernel, whose referent Eric and Jasmine 

identified as the elements 0, 3, 6, and 9, and Miguel identified as the “purple lines.” The 

instructor-researcher asked, “We’ve had homomorphism, you pulled out a kernel. Where is our 

isomorphism here? Where is our quotient group here?” Miguel responded, “I feel like you need 

the factor group first to see the isomorphism.” This suggested Miguel was not reasoning about 

the quotient group as preimages of the homomorphism (as Andy did). Rather, Miguel returned to 

the coset algorithm partial meaning:  

So, I just started with what we have here, kernel of 𝜙. Just going to rewrite it. And 

then what we said from the left I added the next operation of our 𝐻, 1 + 𝑘𝑒𝑟(𝜙) yield 

1, 4, 7, 10 and then the last one, 2. So 2 + 𝑘𝑒𝑟(𝜙), ... 2, 5, 8, 11 and then that’s how I 

build the cosets with that one. 

The instructor-researcher re-prompted the students to identify the isomorphism 

(sign→referent), to which Miguel noted that the quotient group and image have the same order. 

The instructor-researcher further invited the students to use their diagram to identify cosets 

(systematic→unitary):  

Instructor-researcher: And can we actually see where these cosets somewhere over 

here in this picture? 

Miguel: If you got all the purple lines, how he drew that- 

Eric: They would regroup it like that 

Miguel: Yeah. You would have a purple little bubble for ℤ"#. 

The students grouped the elements based on their image (represented by line color). Eric 

explained, “So you put the factor group like an element. You put the 0, 3, 6, 9 bracketed off and 

that becomes the one element.” This provides evidence of an emerging homomorphism-induced 

quotient group partial meaning. Instantiating the theorem promoted attention to the 

unitary/systematic duality where cosets are both sets and individual elements. Figure 5 shows the 

final ostensive created to express the grouping by image. Miguel and Eric noted that the red 

circles would be “your factor group.”  

 



 

 

 
Figure 5: Function diagram with isomorphism present 

 

 The coset algorithm was the most consistent partial meaning drawn on throughout the 

task. At some points, the partial meaning appeared to constrain activity, especially when other 

meanings for quotient group were backgrounded. However, the algorithm meaning was quite 

productive in creating examples and ostensives that aided in comprehending and ultimately 

coordinating with the mappings involved in the theorem – allowing for opportunity to develop a 

homomorphism pre-image meaning. 

The Partitioning Partial Meaning and FIT Comprehension 

Unlike the students in cycle 2 who relied on the coset algorithm, the students from cycle 

1 drew substantially on the partitioning and group structure partial meanings. When asked to 

share their meaning for “quotient group,” Elena explained: 

It has to do with distinct cosets. Where if we had, let’s say, 𝐺 has 12 elements and our 

denominator, I guess of this fraction looking thing. That is groups that are made up of 

elements from a larger [group]. And so, the magnitude of those groups divided 

themselves. I don’t know – that it would be another group itself. 

We note two semiotic features of this explanation. First, the meanings articulated align with 

structural features of cosets (distinct, made up of elements from a group) that are naturally 

congruent with partitioning, which is reflected in the language “divided.” Elena also introduced a 

specific order to share her meaning (type→example). The theorem’s implied relationship of 

order likely prompted her attention to magnitude.  



 

 

At this point, the instructor-researcher explicitly asked what the elements in 𝐺/𝑘𝑒𝑟(𝜙) 

would look like (non-ostensive→ostensive) in order to better understand the division language. 

After an initial voicing of the same personal/institutional conflict as the cycle 2 students (all 

elements not in the kernel – factoring out meaning), the students quickly returned to partitioning 

language like “sort[ing] into cosets,” “main group divided by the identity 𝐻 and that will give us 

the other elements,” and “you split it into different cosets.” We conjecture that use of dividing 

rather than factoring language may have supported a quick resolution to this conflict. 

This partitioning meaning appeared quite productive for interpreting the FIT, as 

evidenced when the students were invited to create a diagram (ostensive) for the homomorphism 

𝜙: ℤ+ → ℤ# defined by 𝜙(𝑥) = 𝑥&'(	#	(type→example). The students first identified the kernel, 

then attended to the orders: 

Elsa: So then it would be ℤ+ divided by that group, would give us what’s left, which 

is just  

Elena: Yeah. I think if we go back to the absolute value ... 0, 2, 4, we wind up with 

six elements over three elements 

Elsa: Has to have two 

Elena: Right, and that would make sense, because there are three elements here and 

there’s three elements left, so there’s two cosets. I don’t know if it has a relation. You 

know there’s only two relationships really? One that goes to the identity and the other 

that goes to one. 

We can observe several features of the meanings at play. First, the idea of “divid[ing] up the 

group” indicates a partitioning meaning. Elena also coordinates this meaning with the 

homomorphism map where there are only two “relations” or “relationships” because there are 

only two elements to map to. Such coordination of meanings reveals sophistication in reasoning 

about the concepts in the FIT. This is further evidenced by their shift to an example and 

ostensive diagram relating the cosets and the homomorphic image, as well as the orders in the 

theorem (“absolute value”). We claim that a homomorphism-induced coset meaning was 

emerging. This meaning is drawn on throughout the discussion such as when the students 

identified the isomorphism in their example (type→example). 

Overall, we observe the partitioning partial meaning appeared to support the cycle 1 

students in quickly coordinating with a homomorphism-induced partition partial meaning. In 



 

 

general, these students had less personal/institutional semiotic conflict in the FIT context. It 

afforded them more sophistication in coordinating meanings for quotient group, supporting the 

emergence of a single perceived structure as described in the theorem/proof.  

How Partial Meanings Play out within Proof Comprehension 

 We noted above how certain partial meanings better supported sophisticated reasoning 

about the concept of quotient group in the FIT. Since these meanings were emergent, we claim 

this reveals how comprehending of such theorems and proofs contributes to concept formation 

(the emergence of quotient groups as objects from a homomorphism). However, different partial 

meanings influenced proof comprehension in various ways. Samkoff and Weber (2015) 

explained how discussing the definition of concepts in a theorem can support proof 

comprehension, if the definition anticipates the proof structure. While we saw similar evidence, 

we also found partial meanings influence 1) perceived proof structure, 2) warranting statements 

in proofs, and 3) the emergence of semiotic conflicts; these are all potential learning 

opportunities. Our semiotic lens allows us to go beyond Samkoff and Weber’s goal that students 

comprehend the proof (personal/institutional) to understand how proof comprehension can 

provide opportunities for students to develop more sophisticated understandings for concepts like 

quotient group. 

  Comparing across the two groups, we can see how the normal subgroup partial meaning 

of quotient group was essential to the proof structure. When reading the signs in the lemma 

statement (the kernel is normal) and its proof, the students in cycle 1 successfully drew on the 

normal subgroup partial meaning to articulate why the lemma was needed. Elena explained, “So, 

that factor group, we have to first establish that the kernel is normal to the group to be able to 

have a group in the first place.” In contrast, cycle 2 students focused on the relationship between 

normality and coset algorithm. When asked why normality was needed, Andy shared: 

Because first of all for this subgroup I don’t know about normal yet, for a subgroup it has 

to be a subgroup so we can properly draw out cosets then map 1-1 on this mapping that 

we have normal because the right and left, no matter which way you apply it, you need to 

be able to achieve the same cosets.  

We interpret Andy’s reference to drawing cosets as a reference to the coset algorithm. Eric 

elaborated, “Because it’s normal. Or we could have put the 1 and the 2 on the other side and 

would have still given us the same thing” referencing the 1 + 𝑘𝑒𝑟(𝜙) and 2 + 𝑘𝑒𝑟(𝜙) 



 

 

ostensives from their earlier example. This focus on the coset algorithm superseded any explicit 

focus on the role of normality in forming a quotient group. The evocation of a meaning that 

aligns or does not align with proof structure is reminiscent of Samkoff and Weber’s (2015) 

findings. 

 We also observed the evoked meanings influence warranting. For example, when 

addressing the line, 𝛽(𝑔"𝐾𝑔#𝐾) = 	𝛽(𝑔"𝑔#𝐾), Elena explained, “Well, if we know that the 

cosets 𝑔"𝐾 and 𝑔#𝐾 are part of the factor group 𝐺/𝐾, then these products should also be, I guess 

cause it’s a group.” We see the students identifying what 𝑔"𝐾 and 𝑔#𝐾 are (sign→referent) and 

evoking the group structure meaning (unitary→systematic as students deconstructed the factor 

group structure to reason about a specific property) to provide the warrant for closure. In 

contrast, the cycle 2 students did not evoke a group structure meaning at any point during proof 

comprehension. 

 We conclude by examining the discussion in both groups around the line including 

𝑔"𝐾 = 𝑔#𝐾 to illustrate how the relationship between meanings and proof comprehension is 

reflexive (each supports the other). When the students encountered this line, the instructor-

researcher asked what type of object 𝑔"𝐾 was (sign→referent) and what it means for two cosets 

to be equivalent (unitary→systematic to reason about the cosets in terms of their members). In 

cycle 1, Elena and Elsa shared different partial meanings with Elena responding, “their elements 

are equal” (set equality), and Elsa, “That they map to the same thing in our 𝜙(𝐺) group” 

(homomorphism partitioning). Both partial meanings are valuable in this context and can play 

complementary roles in coordinating general ideas about sets and their new emerging meaning 

related to the homomorphism-induced partition. These meanings later supported shifts between 

the proof and their specific examples.  

 In contrast, the cycle 2 students continued to rely on their coset algorithm partial 

meanings; however, in this case the meaning supported them in their comprehension activity. 

When asked what 𝑔"𝐾 = 𝑔#𝐾 meant, Miguel and Eric voiced conflicting personal meanings, the 

sets are the “same” (set-wise) or “match” (element-wise), respectively. This conflict likely 

reflects an important aspect of the meaning of sets: order does not matter. The instructor-

researcher then prompted, “What does 𝑔"𝐾 look like, what would that coset look like 

generically?” (non-ostensive→ostensive). Andy explained, “It would look like the kernel with 

some operation applied to it. Would 𝑔" operation apply to it.” They used the coset algorithm to 



 

 

create a generic coset: 𝑔#𝐾	 = {𝑔#, 𝑔#𝑘", 𝑔#𝑘#, … }. This ostensive supported explication of the 

conflict between how two generated cosets should relate. Miguel advocated for the elements to 

match (𝑔" and 𝑔# being the same as 𝑔"𝑘" and 𝑔#𝑘", respectively). We conjecture that Miguel was 

grappling with the unitary/systematic duality by focusing on equivalent individual elements 

rather than the coset as a single object. Eric countered that the elements would be the same, but 

“not necessarily those... all the elements in 𝑔#𝐾 there’s an element that matches them somewhere 

in 𝑔"𝐾.” Jasmine revoiced this idea, “So somewhere along the line there would be 𝑔# in the 𝑔"𝐾 

function.” The group of students appeared in agreement, and they quickly returned to the proof 

line to justify the claim that 𝑔# had a matching element. Engaging with this line of the proof 

provided opportunity for a conflict to become explicit, and for the students to use their coset 

algorithm meaning to create an ostensive that supported resolution. 

 

Conclusion and Discussion 

The FIT provides a context where students can develop additional meaning for quotient 

groups in terms of their relationship with homomorphisms. While much of the literature on 

quotient groups focuses on meanings connected to coset generation and partitioning to form a 

group, Rupnow’s (2021) interviews with mathematicians suggest that homomorphisms inducing 

equivalence classes (and thus a quotient group) is an additional, essential partial meaning. 

Further, this meaning is reflected in textbooks such as Pinter (2010) who explained that “the 

notions of homomorphic image and of quotient group are interchangeable” (p. 157). Our findings 

echo these claims that homomorphism inducing a partition is a productive meaning for quotient 

groups (and their creation) that coordinates with other meanings. Further, our study suggests that 

students’ pre-existing partial meanings for quotient groups may anticipate (partitioning) or lead 

to conflicts (coset algorithm) with the homomorphism partial meaning reflected in the FIT. Cycle 

1 students appealed to the partitioning meaning consistently and quickly integrated the 

homomorphism meaning. In contrast, the cycle 2 students relied primarily on the coset algorithm 

meaning, initially treating the quotient group and homomorphism map as independent objects. It 

was through reorganizing the ostensives (mapping diagrams, Figures 4 and 5) in the examples 

that they coordinated the objects to develop a common referent.  

The contributions of this paper are twofold. First, we documented a series of partial 

meanings for quotient groups emerging in proof comprehension. While some partial meanings 



 

 

had been identified separately before, we observed how they interacted with each and how 

meanings and comprehension activity co-emerge as students engage the FIT. We also 

documented partial meanings not found in the literature (such as “factoring out”) and how the 

partial meanings related to the FIT and signs used. For example, “dividing” seemed to connect to 

a partitioning meaning more than “factoring.” Furthermore, having to identify an isomorphism 

surfaced the personal/institutional conflict between the factoring partial meaning (removing the 

identity) and the normative quotient group structure. The FIT and its proof rely on the 

homomorphism preimages to induce a quotient group and alternates between unitary and 

systemic interpretations of cosets. Such proofs incentivize and support the emergence of rich and 

varied partial meanings. 

The previous point reveals the inherent value of our use of the onto-semiotics lens. That 

framework intends to explain how mathematical objects can emerge through practice while 

having no ontological status. We have used it rather to document how students construct a single 

object (homomorphism-induced quotient group) through their semiotic activity around a theorem 

and proof (as well as the diagrams and examples prompted by the instructor-researcher). The 

formal mathematics involved in theorems and proofs involves a lexical density and degree of 

abstraction that lends itself well to an analysis of how students construct meaning and manage 

semiotic dualities.  

Prior researchers have suggested that illustrating the theorem or proof with examples or 

trying to anticipate the proof are productive (Mejía-Ramos et al., 2012; Samkoff & Weber, 

2015), our study illustrates in greater depth how exploring examples can support proof 

comprehension and how this can be targeted in instructional design. In our case, those activities 

supported the construction and coordination of partial meanings, which contributed to proof and 

theorem comprehension. Furthermore, we can reflect on ways the instructor-researcher 

introduced or amplified semiotic conflicts to provide space for resolution. By engaging students 

with specific homomorphisms, they were positioned to transition from example to type. The 

instructor-researcher played a role in prompting students to move between the more general 

statements and the specifics of their examples throughout the activity. We also see the instructor-

researcher attending to conflicts between personal and institutional meanings such as the group 

structure component of quotient groups and engaging students in conversation about these ideas. 

That is, the instructor-researcher introduced conflicts by setting up a task where students needed 



 

 

to traverse between example and type and relying entirely on the coset algorithm was 

insufficient. They also amplified conflicts related to institutional meanings as they arose. Often, 

the instructor-researcher then prompted engagement with and creation of ostensives as a concrete 

means to surface and resolve conflicts and engage students in making important transitions. 

We also wish to note that semiotic conflicts and resolutions are informed by contexts 

beyond the scope of our task-based interview study. That is, the students’ prior experiences with 

instructors and textbooks may have primed certain conflicts, and both the students and instructor-

researcher served to unearth a particular set. For example, Font and Contreras (2008) illustrated 

how the authors of textbooks leave the reader to establish semiotic functions that are key to 

understanding, which may account for the conflicts we observed in our study. Further, our 

students came from different introductory abstract algebra courses, and their instructor 

presentations likely influenced their activity in our study. We suggest additional research into the 

students’ broader learning ecology to understand the role of textbooks, instructors, and semiotic 

functions in relation to proof comprehension. 

The final point we make about our findings relates to the reflexive relationship between 

concepts and proving. Lakatos (1976) described certain definitions as expressing proof-generated 

concepts. This suggests that proofs contribute to concept formation. Our example of how reading 

the FIT (and our instructional supports thereof) built upon and connected partial meanings (for 

cycle 1 students) or helped foster the emergence of new partial meanings (for cycle 2 students). 

This is a practical illustration of a proof-generated concept in student experience, though in 

practice it co-exists and interacts with other partial meanings in complex ways.  
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