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Lessons learned about incorporating high-leverage teaching practices in the undergraduate proof 
classroom to promote authentic and equitable participation 

 

Abstract 

In recent years, professional organizations in the United States have suggested undergraduate 

mathematics shift away from pure lecture format. Transitioning to a student-centered class is a 

complex instructional undertaking especially in the proof-based context. In this paper, we share 

lessons learned from a design-based research project centering instructional elements as objects 

of design. We focus on how three high leverage teaching practices (HLTP; established in the K-

12 literature) can be adapted to the proof context to promote student engagement in authentic 

proof activity with attention to issues of access and equity of participation. In general, we found 

that HLTPs translated well to the proof setting, but required increased attention to navigating 

between formal and informal mathematics, developing precision around mathematical objects, 

supporting competencies beyond formal proof construction, and structuring group work. We 

position this paper as complementary to existing research on instructional innovation by focusing 

not on task trajectories, but on concrete teaching practices that can support successful adaption of 

student-centered approaches. 

 

1 Introduction 

In the United States, there has been a substantial push for undergraduate mathematics to 

move away from a traditional lecture model (Abell et al., 2018; Saxe & Braddy, 2015). To 

support these efforts, there are a number of research-based curricula designed to center student 

thinking (e.g., Larsen et al., 2013); however, there remain a number of open questions related to 

instructional implementation strategies and the nuances of the proof setting. Moreover, recent 

results suggest that inquiry-oriented curricula can inadvertently produce inequitable outcomes 

(Johnson et al., 2022). Researchers have conjectured that these inequities may result from a 



 

 

number of sources including inequitable participation where certain students may take on more 

substantial roles in mathematical activity. Such conjectures align with well-documented status 

issues that emerge in group work in K-12 mathematical settings (e.g., Esmonde, 2009) and 

preliminary work in the proof-based setting (e.g., Brown, 2018).  

Much of the design-based research work at the advanced undergraduate level relies on 

content-driven rather than participation-driven design heuristics. By this we mean the 

overarching objective is for students to reinvent concepts, theorems, and algorithms (e.g., Larsen, 

2013; Rasmussen & Kwon, 2007; Wawro et al., 2012). However, disciplinary practices often 

undergird the reinvention processes (such as in the analysis of Rasmussen et al., 2015; Larsen & 

Zandieh, 2008). In our design project, we fore fronted participation in disciplinary practices as 

the primary student activity goal. In particular, we aimed to engage students in disciplinary 

practices that support constructing, validating, and comprehending proofs (and theorems) which 

we refer to as authentic mathematical proof activity (AMPA). To accomplish this work, we 

adhered to two participation related heuristics: 

● (Access) Providing access to opportunities to participate in authentic mathematical proof 

activity. 

● (Engagement) Promoting participatory equity in authentic mathematical proof activity 

engagement. 

By access to opportunities, we mean both that students are provided tasks and prompts that may 

engender AMPA and attention to whether they have the appropriate tools and resources to 

engage in robust ways. By participatory equity, we mean whether students, regardless of 

background and status, are engaging in disciplinary activity in meaningful ways.  

In order to support students in this activity, we identified and adapted a set of high 

leverage teaching practices (HLTP) studied in K-12 classrooms to the advanced proof-based 

setting (undergraduate classes where formal proofs are one of the primary objects of study). 

These practices are “routine aspects of teaching, which guide teachers to integrate students’ 

thinking, content knowledge, and equity” (Woods & Wilhelm, 2020, p. 106). Many such 

practices are identified in the elementary and secondary mathematics teaching literature (Hlas & 

Hlas, 2012) with studies that illustrate how such practices can unfold in a classroom (e.g., 

Herbel-Eisenmann, 2002; Staples, 2007; Stein et al., 2008) and studies connecting the use of 



 

 

such practices to more equitable learning environments (e.g., Boaler & Staples, 2008)1. We 

selected three teaching practices to center this contribution. These practices correspond to three 

components of lessons that are common to more student-centered instruction: launching tasks, 

managing group work, and students publicly sharing ideas in whole class discussion. We note 

that these are not the only HLTPs that could be designed, but we found these three to be 

particularly useful for planning and structuring lessons, especially in relation to our participation 

heuristics.  

In this paper, we share insights from a design-based research project focused on adopting 

and adapting three K-12 HLTPs to an undergraduate proof-based setting where participation was 

explicitly foregrounded. The project included six implementation cycles: two in a lab setting, 

three with a research team instructor (Author 1), and one with an external instructor. We focus 

on ways we engineered the HLTPs in the proof setting to better support student access and 

engagement in AMPA. Our contribution to literature is two-fold. First, by centering HLTPs as 

objects of design, we are attending to collegiate instruction in explicit ways that are often 

backgrounded. This is especially essential when considering how these elements of instruction 

may shape more or less equitable classrooms. Second, instructional design in relation to formal 

proof and participation is infrequently the focus of design research. The overarching design 

question guiding our project was: How might HLTPs be adapted and incorporated into the 

advanced mathematics classroom to support students in authentic proof activity? For the scope of 

this paper, we focus on lessons we learned during implementation of HLTPs that helped us 

achieve our participatory learning goals. For each HLTP, we share two instances that reflect 

design shifts. These shifts reflect either proof-specific adaptations that occurred when 

implementing the HLTP (i.e., not salient in the K-12 literature) or a substantial task refinement 

that occurred between implementation cycles (in service of our access and engagement 

heuristics).  

2 Background on the High Leverage Teaching Practices 

We operationalize high-leverage practice through an integration of Woods and Wilhelm’s 

(2020) and Ball et al.’s (2009) definitions. Woods and Wilhem explain a high-leverage practice 

as, “routine aspects of teaching, which guide teachers to integrate students’ thinking, content 

knowledge, and equity” (p. 106). Ball et al. (2009) focus on “activities of teaching that are 

 
1 We note that these practices are not always explicitly referred to as high leverage teaching practices. 



 

 

essential to the work and that are used frequently, ones that have significant power for teachers’ 

effectiveness.” (p.461). We accordingly maintained four criteria. A high-leverage teaching 

practice is an aspect of teaching that (1) can be implemented routinely, (2) uses, shapes, or 

otherwise integrates students’ mathematical thinking, (3) has potential to increase equity, access, 

and/or engagement, and (4) is supported by research connecting the practice to students’ 

learning. In the section that follows, we provide evidence from the K-12 literature base that 

HLTPs can support students in accessing and engaging in robust mathematical activity.  We note 

that we selected three HLTPs that meet our criteria and that also had the characteristics of being 

plannable and serving to help structure classroom lessons. Our focal HLTP are reflective of 

larger grain practices (informed by works such as Smith et al.’s (1996), practices for 

orchestrating discussion or Thanheiser & Melhuish’s (2022) teaching routines.) HLTPs such as 

questioning (which is in-the-moment and not a larger structure) or lesson planning (which occurs 

outside of classroom instruction) were accordingly not the focus of design and refinement, 

though we engaged in these practices. For each HLTP, we provide a description, set of evidence, 

and reflection on how the HLTP has been documented to tie to equity and access. We note that 

the operationalizations below are a synthesis of our understanding of the practices from the K-12 

literature.  

2.1 Launching Complex Tasks 

One essential practice is launching (and maintaining) tasks in a way that students can 

make sense of the task and engage productively (Woods & Wilhelm, 2020). This includes 

supporting students in understanding the relevant contextual features and mathematical ideas and 

relationships prior to engaging in problem-solving along with supporting students in developing 

a common language (Jackson et al., 2012; Jackson et al., 2013). Jackson et al. (2013) 

documented that complex task launch was a positive predictor of students’ opportunity to learn 

in whole class discussion. Such results are consistent with other studies of task launch and 

maintenance by specific instructors (Khisty & Chval, 2002; McClain & Cobb, 1998). Tools for 

K-12 teachers, such as Smith et al.’s (2008) task launch protocol, have served as a means to 

operationalize some of this work. The protocol involves reflecting on definitions, concepts, and 

ideas as well as what prior knowledge/relevant life experiences students need to engage with a 

particular task. Further, the work to make mathematical contexts, language, and ideas accessible 

does not have to come at the launch of the task, but also occurs in conjunction with students 



 

 

engaging with problems (Khisty & Chval, 2002; Livers & Bay-Williams, 2014; Moschkovich, 

2013) where issues related to vocabulary or questions of context can be addressed as they 

emerge. 

Complex task launch has been associated with increased opportunity for students of 

various backgrounds to learn (Khisty & Chval, 2002; Spooner et al., 2017). Mathematical tasks 

are embedded with contexts and content that may not be meaningful to students and can serve as 

barriers rather than opportunities (Sullivan et al., 2003). Attending to task launch and 

maintenance can serve to mitigate these issues by establishing common understanding of the 

mathematics and task at hand (Staples, 2007). We operationalize this HLTP as: 

The teacher engages students in making sense of tasks via attending to relevant 

mathematical language, ideas, relationships, task contextual features, and 

development of a common understanding of the task goals and context. This 

practice occurs prior to or in parallel with problem-solving, but does not scaffold 

or directly instruct on solutions to the task. 

2.2 Structuring Group and Partner Work 

Group and partner work often serve as an essential role in student-centered classes. 

Structuring these interactions shapes the opportunity for students to productively work with one 

another and with the mathematics (TeachingWorks, 2018). In order to do this, teachers can 

socially and mathematically structure group work so students have clear aims, goals, and 

expectations on what to do and how to interact. Webb’s (2009) literature review points to 

variations in this HLTP including: positioning students as having diverse contributions (and 

describing these), providing instruction on how students can participate actively, providing 

explanation prompts (explicit, targeted things to talk about), focusing on questioning or debate, 

or role specialization. Structured group work has the potential to increase learning outcomes 

(Gillies, 2003) and promote high level reasoning and discussion (Cohen, 1994). 

Setting up group and partner work productively is important to promote respectful 

interactions between students and mediate for issues of status that can lead to group work being 

dominated by students perceived as “high status” (TeachingWorks, 2018; Cohen, 1994). In 

Esmonde’s (2009) review on supporting equity in group work, they similarly point to structures 

such as roles or scripts that have been linked to supporting more equitable interactions where 

students are positioned as competent contributors of mathematics. Although, they caution that 



 

 

the teacher’s role includes continuing to manage groups to ensure roles or scripts are taken up. 

We operationalize this HLTP as: 

The teacher structures and manages partner and group work in order to engage 

all students meaningfully in mathematical activity. This can include scripts, clear 

mathematical activity expectations, and/or roles that provide guidance for how 

students are to interact with each other and the mathematics. 

2.3 Selecting and Working with Public Records of Student Ideas 

The third HLTP we consider takes place in whole class where student strategies are 

publicized and become the focus of discussion (TeachingWorks, 2018; Wilburne et al., 2018). 

Stein et al. (2008) illustrated how this HLTP unfolds as teachers anticipate, select, sequence, and 

then work with public records of student ideas to focus students on key mathematics. By having 

students present ideas and working with them publicly, common ground can develop as students 

have the opportunity to make sense of each other’s thinking (Staples, 2007). This teaching 

practice emphasizes not just students sharing strategies and ideas, but that these contributions 

become the focus of continued discussion. Students may be prompted to make sense of each 

other’s ideas, critique and debate claims and approaches (Lampert, 1990; Staples, 2007), and 

compare across strategies (Durkin et al., 2017). Engaging students with multiple student 

strategies, and in particular, focusing students on comparison, can lead to students developing 

more flexible mathematical knowledge. 

In Jackson and Cobb’s (2010) reflection, they noted that discussion of student thinking 

plays an important role in equitable teaching. By sharing ideas publicly and engaging in 

discussion, students do not just have a chance to hear each other’s thinking, but “provides all 

students including students who are currently struggling with the particular mathematical ideas at 

hand, with adequate supports so that they might understand others’ explanations” (p. 5, 

referencing McClain, 2002). Furthermore, by having the students present and analyze ideas, they 

may increase their mathematical agency (Brown, 2009), and classrooms that include public 

discussion of students’ multiple representations and strategies have been linked to more equitable 

assessment outcomes (Silver & Stein, 1996). 

We operationalize this HLTP as: 



 

 

The teacher orchestrates mathematical discussion where (1) students publicly 

present ideas and (2) students are prompted to meaningfully engage with the 

ideas through analyzing, critiquing, and/or comparing across student ideas. 

2.4 Motivating the Study of the HLTPs in Undergraduate Proof Classes 

There is a growing body of literature regarding inquiry-based mathematics education 

(Bouhjar et al., 2021; Larsen et al., 2013; Laursen & Rasmussen, 2019) in advanced 

mathematics courses, including proof-based classes. We argue there is a need to adapt and 

study HLTPs in proof-based classes for two reasons: (1) inquiry instruction is not equivalent 

to equitable instruction and thus there is a need explore ways to intentionally promote access 

and equity in student-centered instruction and (2) while there are substantial histories of 

inquiry curriculum development in proof-based courses (e.g., Starbird, 2015; Larsen et al., 

2013), there is far less attention to instructional practices. Melhuish, Fukawa-Connelly et al. 

(2022) found that the majority of the literature on instruction in student-centered proof-classes 

focused on either student outcomes (such as student performance or affect markers) or 

instructor beliefs, knowledge, and instructional challenges. The instructors’ role is often 

backgrounded in service of other research goals. For example, group work is often a 

substantial component of inquiry-oriented instruction (e.g., Andrews-Larson et al., 2017; 

Rasmussen et al., 2015); however, studies rarely address how that group work is enacted 

beyond description of the task. We our study as complementary to this literature on student 

activity and curriculum, but unique in that we expand the object of design to incorporate 

specific elements of teaching, namely our three focal HLTPs.  

Finally, we recognize the need to study the HLTP in these courses rather than just 

directly adopt them from the K-12 setting. While we hypothesized the fundamental roles of 

the HLTPs may stay consistent, their enactment in proof-based courses is likely to be shaped 

by the unique context of working in the formal representation system of proof (Weber & 

Alcock, 2004). There is a substantially increased level of abstraction (Hazzan, 1999) and new 

ways of argumentation that are beholden to idiosyncratic mathematical conventions (Lew & 

Mejia-Ramos, 2019) and specific norms and values of the mathematician community 

(Dawkins & Weber, 2017). Much of the literature in this area points to the challenge of this 

transition for students (Stylianides et al., 2017), and thus we anticipate that engaging students 



 

 

in authentic mathematical proving activity will be a non-trivial task and involve substantial 

intentionality and engineering.  

3 Authentic Mathematical Proof Activity and Participation Heuristics 

In undergraduate proof-based courses, typically taken by mathematics majors and future 

secondary mathematics teachers, the primary object of study becomes the formal mathematical 

proof. We take a participatory stance on student learning borrowing the notion of productive 

disciplinary engagement from science education (Engle & Conant, 2002). That is, our goal was 

to engage students in activity that resembles the work of research mathematicians. We 

hypothesized that HLTPs can support our student activity goals by providing structures and 

mechanisms to engage students meaningfully with tasks and each other.    

3.1 Proof Foci of Tasks and Activities: Proof Construction, Validation, and Comprehension  

Most of the extant research in undergraduate proof settings focuses on students’ abilities 

in the realms of proof construction, proof validation, or proof comprehension (Stylianides et al., 

2017; Selden & Selden, 2017). Proof construction can be broadly conceived of as the 

development of an argument which often contain conclusions (the statement to be proved), data 

(which provides the foundation of the argument), and warrants (which provide the justification to 

connect the data to the conclusion) in alignment with Toulmin’s (1958) argumentation scheme 

(Simpson, 2015). A mathematical argument is then a formal proof when it “dr[aws] on symbolic 

notation and logical reasoning” (Fukawa-Connelly, 2012, p. 333). The proof construction 

process can stem from informal ideas such as those that come from exploring examples or 

diagrams that can then be formalized through activities such as elaborating, syntactifying, and 

rewarranting (Zazkis et al., 2016). 

While proof construction is most prevalent in the literature (Mejía-Ramos & Inglis, 

2009), proof validation is also an important aspect of mathematician activity (Weber, 2008; 

Weber & Mejía-Ramos, 2011). Weber and Alcock (2005) have suggested validating a proof is 

exploring whether “If (a subset of the previous assertions in the proof), then (new assertion)” (p. 

37) is warranted at each line of proof.  Studies have suggested that mathematicians validate in 

two phases: determining the structure of the argument and then checking each line of the 

argument. As such, validating activity may be identified through the lens of organizing 

information into what is known and what needs justification, evaluation of warrants of claims, 

and appropriateness of proof structure. 



 

 

Finally, proof comprehension is an essential aspect of mathematicians’ activity (e.g., 

Melhuish, Vroom et al., 2022; Weber & Mejía-Ramos, 2011). Mejía-Ramos et al. (2012) have 

developed a framework for assessing proof comprehension highlighting two main dimensions: 

local understanding (which can be gleaned from a small number of statements within a proof) 

and holistic understanding (which cannot). In particular, their model identifies three aspects of 

local understanding – meaning of terms and statements, logical status of statements and proof 

framework, and justification of claims – and four aspects of holistic understanding – 

summarizing via high-level ideas, identifying the modular structure, transferring the general 

ideas or methods to another context, and illustrating with examples. Thus, we operationalize 

proof comprehension as attending to local and global aspects of an existing proof to understand 

both the argument and its constituent parts. 

3.2 Authentic Mathematical Proving Activities (AMPA) and Participation Heuristics 

In order to account for student activity in classroom settings, we developed the Authentic 

Mathematical Proving Activities (AMPA) framework (Melhuish, Vroom et al., 2022) via a 

synthesis of the literature on mathematician activity to further operationalize their objectives 

(objects, motives) and tools in their activity systems. The objects of activity include proofs, 

concepts, and propositions. With regards to each of these objects, we identified three main 

motives related to these objects reflective of comprehending, constructing, and validating. 

Activity then consists of objectives, combining these objects and motives (e.g., constructing a 

proof, comprehending a proposition). Tools are then used to achieve these motives.  For the 

purpose of this paper, we do not expand on all of the framework’s tools, but provide some 

examples to situate our goals and results which focus on instructional elements more so than 

student activity. We note that these tools include processes such as analyzing and refining (the 

activity of exploring and modifying an extant object (proof, statement, or concept) via examining 

assumptions and implications) or warranting (identifying implicit/explicit warrants in a 

particular claim). They also include other resources such as using diagrams, examples, or logic. 

We consider a student engaged in AMPA when they are taken on authority and agency in using 

disciplinary tools towards disciplinary objectives.  

 With this goal in mind, we elaborate the two participation heuristics we shared in the 

introduction: 



 

 

● (Access) Providing access to opportunities to participate in authentic mathematical proof 

activity. 

● (Engagement) Promoting participatory equity in authentic mathematical proof activity 

engagement. 

The access-related heuristic focuses on whether students have the opportunity to engage in tasks 

that can lead to AMPA. Such opportunities depend both upon the tasks teachers provide and 

whether students have the necessary resources and understandings to engage in intended ways. 

Access is infrequently uniform across students and those students who more quickly draw on 

definitions, theorems, relevant understandings, and accurate interpretation of formal 

mathematical language may have increased access to AMPA (e.g., Moore, 1994; Weber, 2001; 

Weber & Melhuish, 2022). Thus, a driving feature of our design is maximizing access to 

opportunity for AMPA. The engagement heuristic helps us attend to whether students realize 

these opportunities in equitable ways. That is, are all students taking on the disciplinary activity 

in meaningful ways? Brown (2018) and Reinholz et al. (2022) have documented ways that 

students (particularly those of minoritized backgrounds) may not have equal opportunity to 

participate in small groups and whole class discussion, respectively. As argued by Brown (2018) 

and Johnson et al. (2021), inquiry is not a panacea for equitable instruction, and equitable 

instruction involves intentionality in instructional practice beyond providing rich tasks. We see 

both heuristics as essential to our instructional engineering of high-leverage teaching practices.  

We provide clarifications regarding these foci. First, they are not independent. Without 

access to opportunities and resources, equity in participation cannot occur. Second, we are not 

attending to a number of aspects of supporting equitable learning environments that go beyond 

our central focus on participation in AMPA. We take caution not to overstate claims of creating 

equitable classrooms. Finally, we note that initial design focused on the first heuristic; however, 

observations about disparities in participation and in what ways during phase early cycles led to 

the explication and attention to the second heuristic with intentional modifications in later cycles. 

4 Methods 

The data from this paper comes from several cycles in a design-based research project 

(Cobb et al., 2003). The project focused on the development and refinement of HLTPs in the 

context of three introductory abstract algebra lessons. We are using a design-based research 

approach due to the project aims of theorizing and developing curricular materials. As Cobb et 



 

 

al. elaborated, design-based research contains five features. First, the research involves 

developing “theories about both the process of learning and the means that are designed to 

support that learning” (p. 10). For our project, we take a participatory lens on learning placing 

HLTPs and their relation to student engagement in AMPA as the focus of theorizing. The second 

feature is that our project is highly interventionist. We are studying instruction and learning as it 

plays out. We note, that means, “the study of phenomena as complex as learning ecologies 

precludes complete specification of everything that happens” (ibid., p. 10). Unlike experimental 

research, we are not attempting to account for all variables, but rather are studying a system with 

forefronted planned elements (HLTPs, tasks) while other elements are backgrounded. The third 

feature reflects the prospective and reflective nature of these experiments. We came into our 

work with a theory of how HLTPs and specific proof tasks may support student engagement in 

participation. As the cycles of the experiment played out, we developed more local conjectures 

and detailed understanding of mechanisms involved using many levels of analysis. This leads to 

the fourth feature, the iterative design of this type of research where conjectures and evidence 

lead to revision. The final feature reflects the nature of the theories produced. They are not global 

learning theories, but rather local to the problem targeted by the design experiment. At the same 

time, the insights developed should not be so constrained to a particular setting that others cannot 

make use of the insights. In order to meet the final features, we engaged in many cycles of 

theorizing and design, implementation, analysis, and refinement in different settings to increase 

transferability. Presenting our findings as lessons learned and shifts made in iterative design 

represents our attempt to report in a manner that is true to design research and likely to render 

our specific insights adaptable to other researchers and instructors.  

4.1 The Focal Lessons 

Each of the lessons was designed with the primary goal of engaging students in 

validating, constructing, and comprehending proof, respectively. The lessons were designed to 

take one class period of 1 hour and 20 minutes; however, depending on implementation some 

lead-up or wrap-up work occurred in the class session before or after. Lesson 1 (which we refer 

to as the Structural Property Task) focuses on the theorem: Let G and H be isomorphic groups. If 

G is abelian, then H is abelian. This theorem was selected because it is a common type of 

theorem in abstract algebra and students often approach it in two different ways (Melhuish et al., 

2019): 1) beginning with elements in G and showing their images commute or 2) beginning with 



 

 

elements in H and showing they commute. This allows for students to investigate the differences 

between approaches, validate the approaches, and refine the proof or alter the statement to only 

use the necessary assumptions. Lesson 2 focuses on Lagrange’s Theorem. This theorem was 

selected because the key idea can be apprehend via example exploration (e.g., Leron & 

Zaslavsky, 2013). Students investigate example groups and their cosets, attend to the 

multiplicative structure (key idea), and develop a set of lemmas about cosets to construct the 

proof. Lesson 3 focuses on the First Isomorphism Theorem which was selected due to the 

complexity involved in the proof (Nardi, 2000) and has students engage in comprehending the 

statement (via example exploration) and the proof (via identifying structure and line-by-line 

explorations). See Appendix A for a complete outline of the final version of the lessons. 

4.2 Design Cycles and Setting  

Participants were undergraduate mathematics majors (some dually earning high school 

teaching certification) from a large, research university in the United States. The participants had 

all completed a transition to proof class. Students from the lab setting had completed abstract 

algebra and students in the classroom were several weeks in and had been exposed to basic 

definitions and proof techniques. Information from each cycle can be found in Table 1. 

Table 1. Overview of Six Cycles and Student Demographics 

 Term1 Lessons Modality Instructor n Demographics 

Cycle 1  Spring 
2019 

All 3 Lab 
Setting 

Researcher 3 3 Women 

Cycle 2  Summer 
2019 

All 3 Lab 
Setting 

Researcher 4 3 Men, 1 Woman 

Cycle 3  Spring 
2020 

Lesson 1 Classroom Researcher 15 6 White Women, 1 Multi-Racial Woman,  
4 White Men, 4 Hispanic Men 

Cycle 4 Fall 
2020 

All 3 Online 
Classroom 

Researcher 29 7 White Women, 3 Hispanic Women,  
4 African-American Women, 7 White Men,  
5 Hispanic Men, 3 Asian Men 

Cycle 5 Fall 
2021 

All 3 Classroom Researcher 17 2 White Women, 1 Multi-Racial Woman,  
3 Hispanic Women, 6 White Men,  
4 Hispanic Men, 1 Man (unknown ethnicity) 

Cycle 6 Spring 
2022 

All 3 Classroom External 
Instructor 

13 2 White Women, 1 Hispanic Woman,  
3 White Men, 6 Hispanic Men, 1 Asian Man 

1. Tasks occurred in the first two thirds of a term allowing for several months for analysis and modification 
between cycles. 



 

 

 

 The design process entailed several phases that involved developing and modifying focal 

tasks, planning enactment of HLTPs, and hypothesizing corresponding student activity in terms 

of participation in AMPA. The tasks were implemented, first in a lab setting, then in the 

classroom. The lab settings (students engage with tasks and instructor-researchers outside the 

confines of a classroom and full-sized class) were led by the first author as instructor-researcher 

and third author who observed and interjected questions and prompts at relevant times. Author 1 

implemented the first three classroom implementations. The classroom implementations were 

interrupted by pandemic protocols ending cycle 3 prematurely (after lesson 1) and leading to 

cycle 4 occurring online. We conducted the first two cycles in a smaller setting to better allow 

for testing out the relationship between our tasks, HLTPs, and student activity. This afforded 

greater attention to student thinking and participation and removed some constraints of the 

normal classroom. Through the two lab setting implementations, we developed more precise 

conjectures about the relationship between tasks, HLTPs, and student activity and made 

modifications for the classroom. We initially planned only two classroom implementations. 

Since Cycle 3 and Cycle 4 were affected by pandemic protocols, we added Cycles 5 and 6, 

which were fully in-person. During the final implementation, we shifted from a research team 

instructor to an outside instructor to extend our movement toward less controlled and more 

naturalistic instructional settings. This allowed for the tasks and implementation guide to stand 

on their own and not be shaped by unaccounted knowledge that was linked to being part of the 

design team. Additionally, an expert review panel provided feedback at key points (before cycles 

1 and 3).  

For each cycle, the task implementations were video-recorded and transcribed. Research 

team members (including Author 2 and 3) observed and took field notes on implementations 

attending to ways that students did or did not engage in hypothesized activity including attention 

to equity in this participation within small groups. We engaged in both “design minicycles” and 

retrospective analysis in accordance with Cobb and Gravemeijer (2014). Design mini-cycles 

include debriefs after each lesson with the project team to come to consensus about the ways in 

which the lesson enactment (including HLTPs) aligned with hypotheses in terms of supporting 

students in AMPA related to the lesson goals. In between each cycle, the project team met to 

reflect more holistically on the prior implementations, revisit important points in the data, and, in 



 

 

some cases, conduct extended analysis of particularly salient moments. We used a number of 

analytic tools in these various stages of analysis, including:  

● the AMPA framework (Melhuish, Vroom et al., 2022) on data from cycles 1-3,  

● The Math Habits Framework (Melhuish et al., 2020) to analyze instructional moves in 

our initial plan and after cycle 3 implementation (the first in a classroom), and  

● The Activity, Authorship, and Animation (AAA) Authority Framework (Hicks et al., 

2021) on data from cycle 2.  

We selected this set of frameworks in order to gain more systematic insight into how our 

conjectured instructional approach and implementation linked to student activity, both in terms 

of the access heuristic (operationalized via AMPA) and the engagement heuristic 

(operationalized via analysis of who contributed to the AAA components). The results from 

these more systematic analyses complemented our broader design minicycle analyses. We 

revised our plan for implementation and/or refined our use of the HLTPs whenever we identified 

evidence of disconnects in access to or engagement in proof activity, such as noticing students 

did not appear to have needed tools to make progress on an activity (an access issue) or that 

certain students dominated conversation (an engagement issue). Additionally, we identified 

spontaneous elements of instruction (e.g., instructor prompts that helped students past an 

impasse) and student activity (e.g., features of students discussion that led to productive 

communication) that appeared supportive to our access and engagement aims, and often 

incorporated these into our task materials.  

We began with rather primitive hypotheses linking HLTPs to supporting students in rich 

discussion and participation in proof activity. Initially, we designed each lesson to have a focal 

HLTP and proof activity pairing: selecting and working with public records of student ideas and 

proof validation, using and connecting mathematical representations and proof construction, and 

launching complex tasks and proof comprehension. We paired the practices intentionally 

drawing on (1) the idea that students may be focused on important structural aspects of their 

proofs via comparing public records (and thus attend to validating them), (2) working with visual 

records can support apprehending key ideas needed to construct proofs, and (3) complex task 

launch to support accessing and comprehending ideas in proofs. However, we quickly discovered 

that trying to isolate practices in this way oversimplified a complex setting and relegated the role 

of non-focal HLTPs to the background. During later cycles, we attended to all focal HLTPs 



 

 

throughout each lesson and in relation to different proof activities, although the hypothesized 

pairings remained some of the most salient. Additionally, we more thoroughly incorporated the 

HLTP of Structuring Group Work midway through the project when our analyses pointed to 

unbalanced participation in group work. We note that while visual records remained a part of our 

design, we background this HLTP this manuscript as it has a more thorough treatment in 

undergraduate settings.  

At the completion of the data gathering, we engaged in a retrospective analysis focused 

on the characteristics of the HLTPs as mechanisms to support students in engaging in AMPA. 

The crux of our design focused on hypotheses related to ways that carefully planned and 

designed HLTPs (in conjunctions with tasks) can support students in access and engagement in 

AMPA as they comprehend, construct, and validate proofs. This analysis differs from the 

cognitive analyses most common in studies of proof-based learning contexts. We are not 

attempting to make claims about students’ knowledge or evolution of knowledge. Rather, we 

focus our claims specifically on the links between HLTPs and participation. Thus, we leverage 

our data corpus, including the various analyses described above, to provide images of how the 

HLTPs supported access and engagement in AMPA. The theory arising from our design 

experiment also entails aspects of student understanding of particular topics and their learning 

about abstract algebra, but our goal in this paper is to portray aspects of the emerging theory 

relating instructional moves and participation in proof activity. The stories and challenges 

described in the results section convey the lessons we learned that constitute a core of that part of 

our theory. We share examples from different points in our design because they were the 

occasions that led to modification and elaboration of our understanding of how HLTPs can 

support AMPA. The examples span the duration of the project, and in each case, we share 

evidence of what played out uniquely in the proof context (thus, elaborating our understanding of 

HLTPs in the proof setting), and for instance that led to modification, we provide some detail of 

the impact of particular changes. 

 

5 Results: Lessons Learned from the Orchestrating Discussions Around Proof Project 

 In order to share insights from this design project, we present our results as a series of 

episodes and noticings that occurred through the design and instructional engineering process. 

We organize these results by situating these instances within each HLTP to which they were 



 

 

most related. However, this treatment is done for readability purposes rather than implying that 

each teaching practice operates disjointly. In fact, teaching practices can and often do overlap. 

For example, while structuring student group activity, the focus may be on a representation. 

Further, ramifications of decisions made in service of one HLTP can influence activity in many 

elements of a lesson.  

 

5.1 Launching complex tasks in the Proof-Based Setting 

 In the K-12 setting, launching complex tasks involves making sense of task contexts, 

questions, and anticipating key mathematical structures and relationships that might support 

students in productive problem-solving (adapted to proving activity for our work). We designed 

task launch to include (1) unpacking key definitions and relationships in theorems and (2) using 

examples and visual representations to make sense of key ideas in theorems. These two activities 

were designed to anticipate proof structure (Samkoff & Weber, 2015) such as providing a 

definition that anticipates a proof structure (e.g., definition of abelian when showing a group is 

abelian) or provide insight into key ideas (Raman, 2003) and structural features (e.g., seeing the 

structure of cosets to structure the proof for Lagrange’s Theorem). Further, we keep a public 

record of definitions and other key ideas students may need to provide a resource for students’ 

mathematical activity to build from.  

We argue that these are essential elements needed for productive proof engagement based 

on the multitude of literature that suggests novice provers understanding of concepts and 

definitions (e.g., Moore, 1994) greatly shapes their proving activity and that identifying and 

working from key ideas is more consistently found in expert provers’ practice (e.g., Raman, 

2003).  In this section, we share two learnings from implementing complex tasks launches. First, 

we discuss teaching prompts related to object references and quantification, a type teacher 

prompt that was important in proof setting, but not emphasized in the existing K-12 literature 

that informed our design. Second, we share a major modification we made as a result of finding 

that students were not anticipating proof structures in the ways we initially hypothesized for the 

proof construction task (Lagrange’s Theorem.) 

5.1.1. Increasing Support of Students’ Access to Formal Mathematics Through 

Identifying of Mathematical Object Referents and Quantification. While many of the 

instructional prompts we documented directly paralleled those found in the K-12 literature, 



 

 

mathematical object referents and quantification seemed unique to the undergraduate setting. 

Furthermore, the need to support students in recognizing mathematical object referents and the 

role of quantification occurred across implementations and types of lessons, and ultimately 

became a planned part of instruction in later rounds.  Because these tools (such as definitions, 

statements, and their referents) were needed to engage students in the different types of activities 

to come, we chose to give class time to unpacking these during complex task launches to better 

support students in developing shared understandings that would carry through the lesson. We 

use the structural property task as an illustration. As students suggested the assumptions and 

conclusions, common responses include “one-to-one” and “onto” without referring to the 

mathematical object that has these properties. In one implementation, a student offered “G and H 

are a group isomorphism.” This led the instructor to ask “who do we call isomorphism?” to 

which another student responded, “G goes to H” which again the instructor asked “What do we 

call that?” with the student responding, “ϕ”.  Figure 1 represents the public record of student 

suggested ideas and definitions. Similar conversations have occurred about asking what type of 

“object ϕ is?” to draw attention to ϕ as a function and asking whether a “homomorphism” was a 

function or a property. This relates to the subtle issue of properties being defined by the 

existence of a function. Further, during these exchanges students tended to provide unquantified 

statements. When asked to unpack abelian, a student suggested “xy = yx” in one class and 

“There's an a and b in the group that also, a operated with b also equals b operated with a” in 

another class. In both cases, the quantification remained unclear and the instructor followed up to 

ask questions such as “is it for some a, for all a, are these arbitrary?” with many students in the 

class clarifying, “for all a.”  

 



 

 

 
Figure 1. Public record of student assumptions, definitions, and conclusions for the structural 

property task.  

 If we reflect on our guiding heuristics, these two types of prompts were recognized and 

intentionally integrated into future iterations for several reasons. First, quantification plays a key 

role in productively engaging in the proving and validating activity, both generally and in our 

tasks. In some sense, the difference between the “valid” and “invalid” proof approach to the 

structural property task is attention to the role of “for all” in the abelian definition (and how it 

gets proved using arbitrary elements from H). Not attending to the role of “for all” in their proof 

comprehending activity limited their opportunity to recognize the proofs’ validity. Second, 

discussions about mathematical objects and their referents became vital when considering access 

and promoting opportunities for all students to engage. While some students were immediately 

able to engage in activity constructing, comprehending, and validating proofs with complex 

levels of objects and symbols, other students would hit an impasse at different stages. For 

example, when making initial proof approaches in the structural property task, some students 

were unable to get started as they lacked the necessary tool of introducing a ϕ to build an 

argument. The importance of referent objects became a significant compounding factor in later 

activity such as dealing with the FIT where the presence of multiple functions can lead to the 

proof becoming impenetrable (see Nardi, 2000). In our early lab settings and online 

implementation, we found that without explicit attention to symbols and referent objects, 

students made little headway into mechanics of the proof. This is an idea we will revisit in the 

group work section. 



 

 

5.1.2 Supporting Students’ Engagement in Proof Production and Proof 

Understanding Via Unpacking Structural Elements and Meaning Beyond Formal 

Definitions. In our initial implementation, we focused primarily on objects and formal 

definitions as part of complex task launch. This was often accompanied with exploring a few 

examples to notice structural features and tie features of the examples to their role in the focal 

theorems.  However, we found that such exploration may remain disjointed from future activity 

without active anticipation and focus on how a structural noticing may carry over to a proof 

context. This was particularly apparent in the Lagrange Theorem task that hinged on students 

noticing the key idea that cosets induce a multiplicative structure on the elements in a group. We 

initially hypothesized that students could produce a multiplication argument by unpacking the 

statement and arriving at a multiplication goal (WTS: |G|=k|H| for some k) and then connecting 

|G|, k, and |H| in their diagrams. This link was tenuous for students. We made the most 

substantial modification after the first implementation of the Lagrange Theorem task. We will 

briefly share how the first implementation played out and then data from the second 

implementation that was more productive. 

 In the first implementation, the students had explored multiple examples of groups and 

subgroups and identified where they could see the parts of the theorem, but hit an impasse as 

they attempted to use their examples to build their argument focusing on showing there is “no 

remainder.” Anna suggested, “What if we did a couple of cases, like where the order of the group 

was even, or it was odd? If it’s even, you have ... Then it’s just 2k and if it’s odd, 2k+1.” Elena 

continued this line of thinking addressing various cases reflecting different “factor[s]” and the 

students elaborated that they needed to show there would be no remainders. However, after some 

work, that last of the trio, Elsa commented, “It would be a really big proof.”  First, we want to 

note that the students’ approach was quite reasonable. We conjecture that they were relying on 

prior proof experience where number theory arguments about division often rely on particular 

cases. They focused on not having a remainder. That is, they were drawing on prior strategic 

proof knowledge rather than drawing on coset explorations to formalize. Ultimately, the 

instructor heavily scaffolded the connection and, we would suggest, was the only one engaging 

in AMPA by the end of the lesson. This did not fulfill our overarching goal to engage students in 

AMPA where informal activity (example based) and formal activity (proof) served a mutually 

supporting role (what some researchers may suggest to be cognitive unity, Garuti et al., 1998). 



 

 

As a result of this experience, we hypothesized that additional instructional support may 

be needed to help students draw upon their informal exploration in formal contexts. In this 

particular case, we expanded the task launch to include not just formal definitions, but also 

having students recall more informal ideas about multiplication that can serve to bridge between 

the activities. As students considered their multiplicative statement “WTS: |G|=k|H| for some k”, 

the instructor-researcher prompted them to “[c]aptur[e] this with a visual. How is this illustrating 

what we mean by multiplication?” They also provided specific numbers 12=3x4 prompting “let's 

think back to elementary school when we write these things, and we're gonna make a similar 

type of visual to go with this that's kind of connected to what we mean by multiplication. See if 

you can also sketch something out that goes with this idea of 12=3x4.” After some partner 

discussion, the instructor-researcher then guided a full group discussion about a definition for 

multiplication that built from the idea from student suggestions of “repeated addition” and 

“totaling up.” 

 After some additional exploration and lemma generation about cosets, the instructor-

researcher prompted the students in this group in much the same manner, “So if these three 

lemmas are true, how might they help us establish the multiplication structure that we were 

trying to get up here?”  In this case, the students were able to translate between informal and 

formal with one student, Jasmine, explaining, “Oh, so like the union of the cosets is G is 

basically k x H.” Asked to repeat, she elaborated, “The first lemma, that the union of the cosets is 

G. The repeated addition kH. I mean, when you merge them together, you get a G.” The 

conversation continued with the students connecting each of the lemmas to their role in the 

multiplicative structure. Notice that the students are drawing on the shared language of “repeated 

addition.” We saw this as evidence that work done at the task launch supported the students in 

engaging in more authentic proof activity.  

This example is emblematic of a larger activity trend. We observed that the switch to 

formal proving often primed students to draw on formal proof knowledge to the exclusion of 

informal explorations. The proof construction task hinged on leveraging the “key idea” of 

multiplicative structure, and thus needed intentional engineering to engage students in using their 

informal understanding of multiplication in relation to the formal proof.  We suggest this result 

generalizes as key ideas are by definition a means of connecting informal and formal. Such a 

connection may be obvious to a more experienced prover; however, it needs explicit parallelism 



 

 

for a more novice prover to use their informal ideas to support proof construction. Throughout 

different tasks and HLTPs, there was a need for instructors to orient student ideas such that there 

was consistency and connection across informal and formal representations. We return to this 

theme in other sections. 

 5.1.3 Reflection on Launching Complex Tasks in the Proof Based Setting. In many 

ways, we were able to import the primary essence of complex task launch from K-12  

mathematical settings. Our implementations suggested several nuances that are likely proof-

context specific (or at least more salient in this setting.) These considerations were primarily 

access-driven. First, attention to mathematical objects and their referents is crucial to developing 

a shared language and providing the basic tools for students to engage in activity. Second, 

quantification is a huge aspect of definitions and particularly how definitions relate to proof 

structures. Students’ descriptions of mathematical ideas may lack that level of precision -- and 

for good reason. That level of precision did not serve much purpose in non-proof based classes. 

However, in these contexts it is essential and can support later activity. Third, one of the most 

challenging aspects of complex task launch was anticipating ways to support students in not just 

seeing important structural elements (which is an element of this work in other mathematical 

settings), but the tools needed to link structural elements in an informal discussion to later formal 

proof activity. We suggest explicit attention to ideas that may bridge and anticipate proof 

structure (beyond just formal definitions) that can serve to alert students in making connections. 

5.2 Structuring and Managing Group work 

 A key component of group work is designing and developing tasks that are groupworthy 

(Lotan, 2003). In the context of design-work in proof-based classes, the focus is often on the 

nature of the task, a necessary component for group work where students may work on 

challenging proof construction or a task trajectory that supports reinvention of formal 

mathematical concepts (e.g., Larsen, 2013 ). However, in our engineering we also attended to 

instructional choices about the structuring and management of this work--how would students 

actually do this work in a group setting? Initially, we relied on two mechanisms for structuring 

group work, “think-pair-share” (Kaddoura, 2013) and partner exchanges (similar to peer review, 

Reinholz & Pilgrim, 2021). Such approaches have been documented in proof-based instruction; 

however, in accordance with our guiding heuristics, we found a need for more complex and 

intentional structures to promote more equitable participation in AMPA. In terms of group work, 



 

 

we identified this need from several perspectives. In the initial in-class implementation, we 

witnessed imbalance in how students participated with their partners. A later analysis of the lab 

setting experiments also pointed to inequities in participation (see Hicks et al., 2021). Finally, 

during the online implementations, we noted that unstructured group time often resulted in both 

low participation by some members of groups and, in some cases, no student activity met our 

definition for AMPA.  In this section, we share two types of modifications we introduced to 

group work between cycle 4 (the online cycle) and cycle 5 (the first full in-person classroom 

implementation.) Both draw on ideas from complex instruction to promote more equitable group 

work (Cohen & Lotan, 1997) including expanding expertise (a more thorough treatment of this 

idea can be found in Author, year) and distributing responsibility. We begin by sharing data from 

the structural property task that contained a partner exchange to show how just this type of 

structure may be insufficient to promote equitable participation across partners. We then share 

data from the FIT task where a think-pair-share structure was also initially insufficient and ways 

that we incorporated more intentional sharing of responsibility amongst group members.  

 5.2.1 Adjusting Partner-Exchange Structures to Increase Participation and 

Decrease Status Disparity During Proof Comprehension Phases. Differences in students’ 

comfort in beginning the production of a formal proof is one source of inequitable participation 

in this context. Apprenticeship into the game of formal proving requires a fundamental shift in 

argumentation and language. Knowing “where to start” is a substantial hurdle for novice provers 

who are only beginning to develop strategic knowledge (Weber, 2001) for operation in this 

system. As such, a status imbalance can occur between students who are comfortable with formal 

proofs and those less so. To illustrate this issue, we turn to the Structural Property Task. Our 

initial design involved students working with partners and exchanging their proof approaches. 

This was structured such that students were instructed:   

I want you to come up with one thing that makes sense about what [your partner] did and 

one thing that maybe you have a question about in regards to what was playing out or, 

how things are labeled, anything you can have a question about in here. Pull out your 

approach, exchange it with your partner, spend about two minutes reading through it, 

seeing if you can come up with one question and one thing that makes sense. 



 

 

The instructor guided students in exchanging and taking on these roles. However, closer 

inspection of this activity revealed that these structures did not always play out and that certain 

students took on an “expert” role while their partners did not. Consider the following exchange: 

Aiden: so I ask about your [pause] 

Brianna: I guess. Even though I don’t know anything.  

Aiden: I think there’s a problem with -- so you say, “since G and H are isomorphic, G 

and H are 1-1, onto, and homeomorphic” 

Brianna: Oh, I was referring to um the property that she gave us, and then 

Aiden: but-- yeah I think the problem is that it’s just missing-- the thing that’s 1-1 and 

onto is the function between them so it-- I don’t know if it’s right to say that G and H are 

1-1 and onto but I would probably say there exists a function from G to H that is 1-1 and 

onto 

Aiden then guided Brianna in the construction of a new proof.  

 We conjecture this disparity occurred because Aiden had a mostly complete proof from 

the night before whereas Brianna had a set of initial ideas. We had moved the proof production 

portion to an at-home activity to not impose time constraints on the initial proof construction (an 

access decision); however, this did not mitigate the issue as only a handful of high status students 

(students who frequently participated at high rates) brought mostly complete proofs.  

In the next iterations of this lesson, we transitioned from students discussing their own 

proofs to ones provided to them. These proofs were student-generated from a prior study (see 

Melhuish et al., 2019). Each student in the class was given either Proof A or Proof B (see 

Appendix B) and were provided private reasoning time to make sense of the proof in front of 

them with the instructor explaining [Cycle 5], “You're kind of now the expert on, on the one in 

front of you. So I'm going to give you a couple minutes to try to digest it and think about, ‘can 

you explain what's going on in this argument to somebody who doesn't see it?’”   

This approach led to robust conversations where we did not observe the same sort of 

status disparities or divergence from the intended activity. For example, consider the following 

partner discussion with Isabella (Proof A) and Jake (Proof B). Isabella explained her proof, “I’m 

going to say that this is ϕ. So it’s letting a,b be elements of G, so there exists a ϕ that a operation 

b is equal to ϕ(a) times ϕ(b) [...] which also if you have ϕ(ba) is equal to ϕ(b)ϕ(a) since G is 

abelian.”  Her partner then comments on what makes sense and asks a question about the 



 

 

connection to the codomain group H. Further, the partners work together to summarize the main 

idea: 

Jake: They’re just trying to show that...  

Isabella: But they are showing that either way you write it... 

Jake: That the [inaudible] no matter which way you would put it, would be okay.  

Isabella: That’s why it is written three different ways, to show that, no matter which way, 

they’re all equal.    

The partners then exchanged roles with Jake leading a discussion of the other proof approach and 

Isabella commenting on features of the proof. If we compare this conversation to the previous, 

we can see that both students are engaged in what we would call AMPA reflected in using tools, 

like summarizing, to engage in proof comprehension.  

 By switching the focal comprehension object to existing proofs, both students were 

positioned to have expertise (on their respective proofs) and there were more entry points into 

the activity. A natural critique of this modification is that the proofs are no longer stemming 

from students in the class. However, we highlight that this move opened an avenue for additional 

competencies and provided a means to support comprehension activity in more equitable ways. 

We share this example for a couple of reasons. First, this type of “construct a proof task” is very 

common to proof courses with active student engagement. Yet, there are substantial differences 

in students’ comfort, access, and knowledge of the formal proof construction process. This may 

sometimes lead to quite different classroom experiences for different students (for example see 

Dawkins et al., 2019). If other designers share access and engagement goals, it is worth being 

strategic about when and how proof construction tasks are used. Unguided open prompts to 

prove may inadvertently amplify status differentials. 

5.2.2 Increasing Student Authentic Activity and Student Participation by Delegating 

Responsibilities to Engage with Formal and Informal Mathematics.  In the lab setting (cycle 

1 and 2), the instructor-researcher often asked students a series of targeted questions when they 

encountered challenges moving between formal and informal systems. In the full classroom 

context, an instructor no longer has the ability to engage in conversation with all students in 

small groups. After the online implementation (cycle 4), we found that when students 

encountered such challenges, they often did not have the tools to move beyond an impasse.  Prior 

to cycle 5, we developed more sophisticated group structures (rather than just think-pair-share) in 



 

 

order to engage students in more authentic activity and to assure more voices were heard. Many 

of these modifications were in service of the FIT task as the formal proof involved making sense 

of abstract and layered arguments working to move the responsibility from instructor-researcher 

to students to orchestrate group discussion. 

One strategy that proved useful was converting instructor prompts that were fruitful into 

questions for students to lead discussion about. Many of these prompts shared common features 

with discussion elements from complex task launch. To illustrate, in the FIT task during cycles 5 

and 6, the classes were subdivided into four groups and each group was given one section of the 

FIT proof to be responsible for explaining to the class. In order to promote more equitable 

participation, each member of the group was given one question and tasked with leading the 

discussion on that question. This provided support to engage in deeper AMPA and a mechanism 

to engage all students in having a meaningful role. The instructor launched the activity stating, 

“So, if you're person one, your job is to bring this question to everybody and make sure you talk 

about it and resolve it as a group. But you definitely don't have to do them individually.” They 

continued to clarify that the “questions build on each other” so students could not just work on 

their questions independently. Notice the focus is on both the responsibility of the individual but 

the need for collaboration amongst the group.  

The questions were derived from using Mejia-Ramos et al.’s (2012) proof comprehension 

framework in combination with key referent object prompts from earlier implementations. For 

example, each group had one student lead a discussion on, “What is the difference between β and 

ϕ?” in terms of the domain and codomain elements (the isomorphism and homomorphism maps, 

respectively). Across both implementations using this mechanism, all members of the small 

groups engaged in the conversations and a member of each group was able to come up to the 

board and provide rather sophisticated explanations of their proof sections addressing the 

referent objects accurately and warranting lines in the proof. We used roles and responsibilities 

for both constructing new objects (see 5.3.2), and in proof comprehension activities (including 

the FIT and partner exchanges from the structural tasks.) As this was a later adaptation to our 

sequence, we have less evidence of how structuring group work in such manners could occur 

throughout the tasks. However, we conjecture that this is a transferable mechanism. That is, 

using roles and responsibilities that are mathematically meaningful (such as leading a discussion 

around important aspects of a proof or example), tied to proof activity aims (such as 



 

 

comprehending), can serve to support more equitable participation in terms of all students 

contributing to the group work. Specific to the proof setting, we aimed to incorporate roles and 

responsibilities that can serve to navigate between formal and informal. 

5.2.3 Reflection on Structuring and Managing Group Work in the Proof Based 

Setting: Two Shifts We Made. One of the more challenging aspects of working in the proof 

based setting is that the abstract nature of the mathematical content and the formal ways of 

arguing and communicating often privilege a particular set of competencies that may exacerbate 

status issues. In the literature, this is sometimes approached via differentiation of instruction such 

as having easier and harder proofs for students to engage with (Dawkins et al., 2019). While such 

a mechanism may work in a more traditional IBL setting with a high degree of independent 

work, it does not easily import to a more collaborative setting. First, we found that we needed to 

evoke a range of  competencies (such as comprehending, validating, explaining a proof, 

generating and analyzing examples, rather than just constructing proof). Second, we carefully 

delegated responsibilities such that there were multiple ways to remain involved. This was often 

partnered with assigning students  tools to open opportunities for authentic activity such as 

guiding questions or particular structures for example creation. While in some ways, this 

scaffolds the activity further than our initial design, we were able to document more AMPA 

amongst more students than in our less structured group work attempts. 

5.3 Selecting and Working with Public Records of Student Ideas 

 Two types of public records drove this practice across our lessons: records of examples 

and records of proofs and proof elaborations. By proof elaborations, we mean students may or 

may not have developed the initial proof version, but publicly share their understanding of the 

proofs through recreation or elaboration (e.g., identifying objects and creating small deductive 

subproofs when needed). As in the K-12 setting, comparison was intended to highlight structural 

attributes. In the proof setting, this may highlight structural differences as between proof 

frameworks (Selden & Selden, 1995) or structural commonalities that may anticipate a proof, 

such as the examples explored in service of the FIT and Lagrange’s Theorem discussed in the 

prior sections. 

5.3.1 Attending to Whose Proofs and Products are the Focus of Engagement and 

Moves to Incorporate More Opportunity for Less Vocal Students’ Ideas to be Publicly 

Discussed. A key component of this work is anticipating the ideas that may be selected, 



 

 

sequenced, and compared (Stein et al., 2008) For example, the two proof approaches structural 

property task stemmed from the most common approaches by students in survey study (Author, 

year). However, we found that pre-planning which proof strategies to select for comparison 

limited whose ideas would make it into the public space. In our first classroom implementation 

(cycle 3) relying on this approach led to the selection of two, vocal, white mens’ proof 

approaches becoming the focus of the conversation for the duration of the class. Two students, in 

sequence, shared their proof approaches. These two approaches were anticipated and selected 

because they began the proofs in different locations (starting with elements from G and from H) 

and contrasting the proofs can draw attention to important structural features. After both students 

presented their proofs (see Figure 2a.), the instructor prompted the class to ask questions of the 

proof and then to address, “What do you see that is the same? What do you see that makes them 

different?” through a think-pair-share mechanism, which was structured such that Partner A had 

to share a similarity and Partner B had to share a difference. A whole class discussion then 

ensued with a public record of these noticings (see Figure 2b.) 

Regarding student opportunities to engage in AMPA, comparing and contrasting public 

records of proofs was quite successful in all cycles. Students noticed all of the distinctions we 

anticipated including beginning the proof with elements in the domain or co-domain group, 

naming of the elements, and warrants. These structural differences anticipated later discussions 

of what assumptions were needed, validating and modifying the proof approaches, and attending 

to differences in proof frameworks. However, we note that as in the small group discussion 

described in section 5.2.1, the proof approaches that became the focus of the class may have 

reinforced status differences. The type and focus of participation was catered towards two 

students who wrote and explained more complete deductive arguments. In later implementations, 

we changed the focus to the pre-existing student proofs to avoid this inadvertent difference in 

opportunity.  



 

 

 
Figure 2a. The two student approaches to proving the structural property theorem.  

 

 
Figure 2b. Public record of students identified similarities and differences across the approaches. 

 

 The attention to whose public record was also a factor in the other lessons. These records 

included not just proofs, but also examples to compare and generalize from. Although these 



 

 

examples were intended to be group products, we found they often reflected a particular 

individual’s contributions. In order to address this issue, we engineered the group work 

structures to provide particular roles for each group member (Cycle 5 and 6). For example, when 

illustrating the FIT, students were given a set of chalk and each of the following roles was 

assigned to a different group member: identifying the domain and codomain elements, putting in 

the homomorphism map lines, identifying the kernel, and introducing lines representing the 

homomorphism. In this way, the public records (see Figure 3) to be compared represented joint, 

rather than individual efforts. 

 Attention to the origins of public records was not attended to in the lab setting as the 

small number of students minimized the need for selecting only certain records to be shared. 

When transitioning to full class (cycle 3 and cycle 4), this issue became part of design minicycle 

discussions leading to the development of these two ways of countering the issue: introducing 

student work from outside of the class and introducing roles so all group members contribute to a 

public record.  

 

 
Figure 3. Cycle 5 small group student boardwork illustrating the FIT 

 

5.3.2 Incorporating Public Records of Partial Information to Promote Access to 

Formal Ideas in Relation to Students’ Informal Ideas. A major theme across our 

implementations was navigating between formal and informal representations. One main use of 

public records of student thinking was to have a series of examples publicly available to make 

comparisons and support students in seeing important structural attributes to support rich 

discussions, develop understanding of theorems, and anticipate elements of proofs. In Cycle 5, 



 

 

the first in-person implementation of FIT, we found that the conversation that ensued in the 

whole class did not achieve the primary goal of generalizing across examples. The instructor 

guided a discussion focused on one example (shown in Figure 3) that largely reflected a 

traditional Initiate-Response-Evaluate (IRE) pattern of discussion. That is, the instructor would 

ask a targeted question such as, “Where is the homomorphism?” and a student would respond 

“the red lines.” The instructor then would endorse and elaborate. While the examples seemed to 

serve a productive role in small group time, we were not able to evidence engagement in AMPA 

during the larger discussion. 

 By contrast, in Cycle 6, the instructor made the decision to orchestrate this discussion to 

target a formal idea needed to make sense of the FIT proof. After students anticipated what needs 

to be proved for the theorem, the instructor tasked students with trying to write a definition for β 

by filling in: β (____) = ____.  With a little discussion, students contributed that cosets go in the 

parentheses and they can be called “aK.” However, identifying the corresponding output 

involved more work. One student suggested the “image of ϕ” (the relevant set) without 

specifying where a particular element goes. The instructor prompted students to compare across 

three examples on the board to try and use commonalities to identify a way to label the output of 

this isomorphism. After some initial student suggestions and discussion they arrived at ϕ(a). The 

instructor then asked “Would that be consistent with what the three groups did?” walking around 

the room to consider each example. We highlight this implementation decision because it both 

supported students in AMPA (both in the moment and ultimately providing an access point in the 

proof comprehension activity) and helped the comparison of public records realize their full 

potential. We suggest an important transferable element, a partial formalization to connect 

between the informal examples and formal statement and proof. As discussed in earlier sections, 

students were usually able to work quite productively within an informal or formal system, but 

going between the two required some instructional intervention. We suggest recording a partial 

piece of information in formal symbolic form provides a means of scaffolding discussion such 

that a generalization could be anticipated in a way that would connect to the formal proof. 

Similar scaffolding occurred in other lessons such as the instructor providing partial diagrams for 

students to complete to make sense of the structural property proofs or engaging students in 

matching informal conjectures to formal statements of lemmas for Lagrange’s Theorem. That is, 



 

 

providing partial information can support students in working between formal and informal 

versions while still providing opportunity for students to engage in AMPA. 

5.3.3 Reflection on Selecting and Working with Public Records of Student Ideas in a 

Proof Based Setting. Overall, we found the use and comparison of public records to be a useful 

mechanism for focusing students on important structural elements that may have otherwise been 

hidden. In bringing this HLTP to the proof-based settings, we had to be especially cognizant of 

amplifying status issues. In a traditional lecture class, the instructor is the primary proof 

constructor and the proofs students engage with come from them. When creating a student-

centered environment, there is a danger where a select few students generate the proofs which 

can reinforce status hierarchies. Further, the products of group work are not always reflective of 

all group members. First, we intentionally modified our group work instructions to better 

equalize the types of participation students engaged in and to increase the likelihood that public 

products contain elements from each group member. We note the continued theme of navigating 

between informal and formal mathematics and therein lies our second modification related to 

public records: the use of partially supplied formal information. With the set of examples 

illustrating the FIT, the initial implementation left these informal representations largely in 

isolation from the formal activity. In the second implementation, the instructor dedicated time to 

making one important informal to formal transition: defining the isomorphism. We also found 

this type of move important in the Lagrange Theorem task where students were positioned to 

notice generalities across their examples and arrive at key coset lemmas, described informally. 

The formalization process became a major transition between the examples and construction of 

the proof. Thus, we suggest that comparison can serve two key roles: highlighting structural 

differences in proofs and promoting attention to structural generalities that can be formalized to 

anticipate continued AMPA in the more formal representation system.  

 

 

6 Discussion 

 In this section, we revisit the set of HLTPs, provide an overview of how they differed 

from their K-12 counterparts, and then connect this work to the larger research base on inquiry 

and student-centered teaching in proof-based classrooms.  

6.1 Expanding HLTPs from the K-12 Setting to the Proof Setting 



 

 

 Launching complex tasks served to provide common ground on mathematical 

terminology, promote access to opportunity to richly engage, and anticipate and emphasize 

important mathematical ideas and relationships. These fundamental components did not alter in 

the proof setting. However, in proof-based settings, the focus is on the theorem to be proven 

from a lens of meaning, logic, and anticipating proof structure. Further, the language and 

symbols involved have a high level of lexical complexity. Thus, there was a greater need to 

promote student attention to precision such as the role of quantifiers and making sense of the 

mathematical objects involved. Additionally, when the goal is to engage with the proof, it can be 

particularly challenging to identify key ideas (Raman, 2003) or use concepts and definitions 

(Moore, 1994). Complex task launch can support attention to important structures and provide 

the needed tools in terms of concepts and definitions to support proof construction, 

comprehension, and validation. Instructors and designers in proof-base classes may want to plan 

for when and how they will ask for greater precision around quantifiers and referents. This could 

involve planning tasks or questions where students are asked about quantities or are asked to 

explain what type of object is being referenced by certain symbols. Additionally, task launch 

serves not just to support access to mathematically dense symbols and language, but also 

anticipate structures ahead. While the most obvious way to engage students this way is by having 

them address formal definitions, we also found that supporting students in using key ideas 

towards proof required intentional discussion and linking between formal ideas and the informal 

structures needed. A parallel example might be found in analysis where intuition around limits 

often evokes attention to the independent variable first, whereas the formal definition needed for 

proving involves addressing the dependent variable first (see Swinyard & Larsen, 2012). We 

suggest instructors and designers explicitly consider how closely informal explorations reflect 

proof structures and find appropriate ways to bridge between student intuition and the needed 

structures to produce a proof.  

Setting up and managing group work provided opportunity for students to engage with 

the mathematical task, promoted and maintained respectful interactions, encouraged equity of 

participation, and positioned students as contributors to mathematics. The commonalities across 

these instantiations were: a clear proof activity purpose (constructing, comprehending, 

validating) and the expectation, via instructor-provided structures, that all students participate 

and communicate about the mathematics. Ultimately, the iterations of this HLTPs increased in 



 

 

structure to better combat status issues that are often amplified in a setting where constructing a 

formal proof is valorized. If we compare to the K-12 setting, our structuring contained many 

similarities with complex instruction (e.g., Cohen, 1994). However, the structure and roles were 

often tied to the formal representation system. Of particular importance was supporting students 

traversing between the formal and informal to deconstruct existing proofs or to create examples 

that can be formalized. We suggest that instructors and designers consider not just the quality of 

a task created, but the ways they will engage students such that individual accountability and 

interdependence are required. The context of proofs can serve to exclude students who do not 

feel as confident with the abstract setting (Weber & Melhuish, 2022). Planning might include 

considering ways students can engage productively in ways that are not just producing formal 

proofs, and how roles and responsibilities can be subdivided and assigned in relation to 

meaningful activity such as leading sense-making of parts of existing proofs or developing 

examples of ideas. 

Selecting and working with public records of student ideas positions students as 

contributors to the mathematical agenda, introduces resources into the common set of ideas, 

arguments, and representations for students to access, and engages students in analyzing, 

critiquing and noticing important aspects of each other’s mathematics. In the proof setting, we 

have focused this HLTP on comparing student proof approaches (which can lead to noticing 

differences in proof structures and arguments) and supporting students in generalizing and 

connecting to proofs. Specific to the proof setting was creating a task where students may viably 

create different proof frameworks (Selden & Selden, 1995). As in the K-12 setting, we found that 

comparison provided an opportunity for students to notice structural features that may be 

otherwise missed -- the structure of a proof framework is one of the most important new 

elements in this setting. We also assigned groups different examples and intentionally focused on 

examples where their commonalities could be noticed and formalized to develop theorems and 

proofs. This involved unpacking what were either key ideas (Raman, 2003) or particular notation 

that would be found in later proofs (as in the Lagrange and FIT lessons). Students connected the 

records to support later formalization. Instructors and designers may consider what types of 

theorems have multiple approaches that may align themselves with meaningful structural 

comparisons. Additionally, they may plan for students to create examples whose comparison can 

support generalizations and connection to formal ideas. We also suggest consideration to whose 



 

 

ideas make it to a public space and to transition to other meaningful ways of student involvement 

beyond formal proof production.   

6.2 Connecting to the Larger Literature Base in Proof-Based Courses 

We have argued that the primary contribution of this paper is to draw explicit attention 

to HLTPs in a proof-based setting as well as to share lessons we learned about how to 

implement them effectively towards participation goals. We oriented this examination using 

our access and engagement heuristics. While we did not identify other design-based research 

articles (or empirical articles more generally) with such focus, we can make connections to 

other literature on curriculum and instruction in the advanced mathematics setting.  

If we turn to the complex task launch, we can find practitioner reflections such as 

Reinholz (2020) who shared ways that their graduate analysis course launched tasks to 

include demonstrating the mechanics of the task, offering sets of questions, and providing 

instructions on possible next steps. We can also make connections to inquiry-oriented 

curricula that are driven by Realistic Mathematics Education. These tasks find their 

groundings in “experientially real” contexts where access is maximized (for example, see 

Larsen’s (2013) trajectory for the guided reinvention of groups). There are also components of 

launching complex tasks in proof-contexts such as in Samkoff and Weber’s (2015) proof 

comprehension strategies where students explore theorems and identify important definitions 

that may anticipate a proof. Further, pedagogical objects such as transformational records 

(Rasmussen & Marrongelle, 2006). can serve an essential role in supporting students in 

further mathematical activity. Our analysis adds some key insights about how to manage and 

adjust these kinds of tools to maintain the ambitious goals of engaging students in AMPA as 

well as ensuring all students have adequate resources to participate in the classroom activity.    

We have found little literature about structuring and managing group work beyond the 

think-pair-share mechanism (see the MAA Instructional Guide, Abell et al., 2018) despite 

“managing group work” being one of the key roles of the instructor in inquiry classes (Ernst et 

al., 2017). More focus is placed on instructor discussion and intervention with small groups 

(e.g., Remillard, 2014) rather than embedded participation structures. Small group work 

serves an essential role in a number of the curriculum-based studies (e.g., Larsen et al., 2013) 

and intervention studies (e.g., Cilli-Turner, 2017). One mechanism that has been discussed is 

peer review (Reinholz & Pilgrim, 2021) or collaborative review (Cilli-Turner, 2017). These 



 

 

structures involve students constructing proofs and then sharing them with a partner or small 

group for critique and revision. In the case of Cilli-Turner, she expressed the challenge of 

having students direct comments and questions to each other rather than to the instructor. 

Others have endorsed norms such as Furinghetti et al. (2001) stating, “Doing collaborative 

group work means that students must be aware of the fact that everyone can and should 

contribute to the solution of the problem, and that sharing and comparing strategies and ideas 

is much more productive than working alone” (p. 232). However, they found that wanting this 

norm did not ensure all small groups worked collaboratively. Thus, we suggest that some of 

our structures for group work (developing expertise on a particular approach, leading 

discussion on specific proof comprehension questions) may be of use to researchers aiming 

for collaborative proof classrooms that meet this norm.  

 Working with public records of student proofs and thinking is another well-

documented component of inquiry instruction. For example, IBL often relies on students 

presenting proofs and the class critiquing them (Starbird, 2015). Implementing inquiry-

oriented curricula often involves intentional selection of student ideas to move along a desired 

progression (see Andrews-Larson et al., 2019; Lockwood et al., 2013). Curricular supports 

may include specific student ideas to look for and ideas to focus on during this discussion 

(Lockwood et al., 2013). Recent studies on instructors taking up these curricula have 

pinpointed initial shifts in how instructors’ scaffold and select student ideas after teaching the 

class repeatedly (e.g., Andrews-Larson et al., 2019) noting a move away from primarily 

selecting correct responses for discussion. Further, Blanton and Stylianou (2014) have 

illustrated the instructor role in promoting students in reasoning about their own and others 

ideas once ideas are available for discussion. We further this work with considerations of 

whose ideas are made public and ways that student work might be leveraged in a formal proof 

setting such as to compare proof approaches or generalize and formalize key conjectures. 

6.3 Conclusions, Limitations, and Future Research 

The biggest lessons we learned from our design project are (1) challenges involved in 

moving between formal and informal representational systems impacted nearly every HLTP 

implementation and  (2) that equitable participation did not occur by attending only to access 

and opportunity. Overall, the adaptation of the HLTPs to the proof-based setting were not 

substantially different than their K-12 counterparts. However, the formal and abstract setting 



 

 

necessitated precision around objects, language, and quantification. There was a need for 

instructor guidance and task features to support traversal between the formal and non-formal 

representation systems throughout implementation of all the HLTPs. Otherwise, students 

often engage in the formal representation system without drawing upon their informal 

explorations with examples or diagrams. In terms of participation, we found structuring group 

work to distribute responsibility and providing opportunity beyond just formal proof 

production as essential. As design researchers make shifts from interview setting to 

classrooms, we suggest they consider (1) ways that their tasks can be partnered with initial 

structuring to allow for more equitable participation and (2) ways to mitigate a few students’ 

public records being centered via expansion in their creation or types. 

Finally, we note the HLTPs cannot be disentangled from the context and nature of the 

tasks in this project. Thus, while we contribute instructional elements that we see as 

generalizable, many may not be usable in courses that do not share the common proof 

construction, validation, and construction objectives. Future research may consider how other 

tasks and subject areas may elicit different elements of the HLTPs in proof-based settings. 

Additionally, while we attended broadly to access and engagement in activity, we did not take 

a critical lens to our analyses. Further research could consider how student identity may be 

reflected in whose activity is elicited and valorized.  
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Appendix A 

 

 Lesson 1: Structural Property Task Lesson 2: Lagrange’s Theorem Task Lesson 3: First Isomorphism 
Theorem Task 

Primary 
Proof 
Activity 

Proof Validating Proof Constructing Proof Comprehending 

Proof 
Learning 

Role of conclusion in proof framework Using a diagram exploration to 
identify a key idea 

Attending to global and local aspects 
when reading a proof 



 

 

Outline of 
Lesson 
Structure 

Opening Discussion 
● Public record of assumptions 

and conclusion 
● Discuss key definitions 

Discussion of Proof Approaches in 
Small Groups 

● Develop expertise around one 
of two student proofs 

● Explain proof to partner who is 
prompted to state one thing that 
makes sense and one question 

Public Discussion of Two Approaches 
● Presentation 
● Identifying similarities and 

differences (think-pair-share) 
● Public Record of similarities 

and differences 
Proof and Statement Analysis 

● Conjecture what assumptions 
are needed based on the existing 
proofs 

● Public Record of conjectured 
statements (with varying 
properties: 1-1 and onto) 

● Testing statements use proofs 
and examples to determine what 
properties are needed 

Counterexample to Identify the 
Necessity of Onto (Visual 
Representation) 

● Function diagram discussion 
showing the role of onto 

Summary and Conclusion 
● Finalizing of revised statement 

(onto, but not 1-1) 
● Discussion of patching the 

proof that did not use onto 

Opening Discussion and Exploration 
● Exploring examples groups 

and the order of their 
subgroups to generate a 
conjecture (in small groups) 

● Creating a public record of 
conjectures from different 
groups 

● Connecting conjecture to 
formal Lagrange Statement 

● Formally defining divisibility 
and exploring the meaning of 
“multiplication” on boards 
and coming to class 
consensus (to anticipate proof 
structure) 

Creating Cosets in Small Groups 
● Each group works with a 

different group (and 
subgroup) to create cosets in 
a form that can be reasoned 
with diagrammatically. 

Conjecture Discussion 
● Discussion of noticings and 

conjectures about the 
structure of the cosets to 
arrive at key lemmas for the 
proof of Lagrange’s Theorem 

Matching Class Lemmas to their 
Formalizations in Small Groups 

● A set of six formal statements 
to identify as the translation 
of an informal lemma or a 
tool to prove one of the 
lemmas 

Proving Lagrange’s Theorem 
● Small group and whole class 

discussion of structuring 

Opening Discussion  
● Discussion of key concepts 

and definitions in the 
theorem 

Small Group Exploration of 
Specific Examples 

● Each small group works at 
board space to connect the 
theorem to a specific 
example using a function 
diagram (and assigned 
roles) 

Class Discussion of Defining the 
Isomorphism Map 

● Identifying a map in 
symbolic form that will 
describe the input (cosets) 
and outputs (image of the 
coset representative) that is 
consistent across the 
examples 

Discussion (small group and whole 
class) of Proof Structure 

● Identifying what needs to 
be proven 

● Subdividing the proof to 
find the sections of what 
needs to be proven 

Making sense of a subsection of a 
proof 

● Each small group is 
responsible for one of four 
sections. Each member of a 
group has a question for 
leading discussion 

Class Presentations 
● A representative from each 

small group explains their 
section to the class 



 

 

● Discussion of the role of 
conclusion in structuring proofs 
(proof framework) 

Lagrange’s Proof using the 
lemmas.  

Summary and Conclusion 
● Discussing the role of the key 

idea from the coset diagram 
examples 

● Wrap-up on the implications 
of Lagrange’s Theorem 

Summary and Conclusion 
● Summarizing the proof at a 

high level 
● Discussing the practice of 

proof comprehension 



 

 

 


