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Lessons learned about incorporating high-leverage teaching practices in the undergraduate proof
classroom to promote authentic and equitable participation

Abstract

In recent years, professional organizations in the United States have suggested undergraduate
mathematics shift away from pure lecture format. Transitioning to a student-centered class is a
complex instructional undertaking especially in the proof-based context. In this paper, we share
lessons learned from a design-based research project centering instructional elements as objects
of design. We focus on how three high leverage teaching practices (HLTP; established in the K-
12 literature) can be adapted to the proof context to promote student engagement in authentic
proof activity with attention to issues of access and equity of participation. In general, we found
that HLTPs translated well to the proof setting, but required increased attention to navigating
between formal and informal mathematics, developing precision around mathematical objects,
supporting competencies beyond formal proof construction, and structuring group work. We
position this paper as complementary to existing research on instructional innovation by focusing
not on task trajectories, but on concrete teaching practices that can support successful adaption of

student-centered approaches.

1 Introduction
In the United States, there has been a substantial push for undergraduate mathematics to
move away from a traditional lecture model (Abell et al., 2018; Saxe & Braddy, 2015). To
support these efforts, there are a number of research-based curricula designed to center student
thinking (e.g., Larsen et al., 2013); however, there remain a number of open questions related to
instructional implementation strategies and the nuances of the proof setting. Moreover, recent
results suggest that inquiry-oriented curricula can inadvertently produce inequitable outcomes

(Johnson et al., 2022). Researchers have conjectured that these inequities may result from a



number of sources including inequitable participation where certain students may take on more
substantial roles in mathematical activity. Such conjectures align with well-documented status
issues that emerge in group work in K-12 mathematical settings (e.g., Esmonde, 2009) and
preliminary work in the proof-based setting (e.g., Brown, 2018).

Much of the design-based research work at the advanced undergraduate level relies on
content-driven rather than participation-driven design heuristics. By this we mean the
overarching objective is for students to reinvent concepts, theorems, and algorithms (e.g., Larsen,
2013; Rasmussen & Kwon, 2007; Wawro et al., 2012). However, disciplinary practices often
undergird the reinvention processes (such as in the analysis of Rasmussen et al., 2015; Larsen &
Zandieh, 2008). In our design project, we fore fronted participation in disciplinary practices as
the primary student activity goal. In particular, we aimed to engage students in disciplinary
practices that support constructing, validating, and comprehending proofs (and theorems) which
we refer to as authentic mathematical proof activity (AMPA). To accomplish this work, we
adhered to two participation related heuristics:

® (Access) Providing access to opportunities to participate in authentic mathematical proof
activity.
e (Engagement) Promoting participatory equity in authentic mathematical proof activity
engagement.
By access to opportunities, we mean both that students are provided tasks and prompts that may
engender AMPA and attention to whether they have the appropriate tools and resources to
engage in robust ways. By participatory equity, we mean whether students, regardless of
background and status, are engaging in disciplinary activity in meaningful ways.

In order to support students in this activity, we identified and adapted a set of high
leverage teaching practices (HLTP) studied in K-12 classrooms to the advanced proof-based
setting (undergraduate classes where formal proofs are one of the primary objects of study).
These practices are “routine aspects of teaching, which guide teachers to integrate students’
thinking, content knowledge, and equity” (Woods & Wilhelm, 2020, p. 106). Many such
practices are identified in the elementary and secondary mathematics teaching literature (Hlas &
Hlas, 2012) with studies that illustrate how such practices can unfold in a classroom (e.g.,
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such practices to more equitable learning environments (e.g., Boaler & Staples, 2008)!. We
selected three teaching practices to center this contribution. These practices correspond to three
components of lessons that are common to more student-centered instruction: launching tasks,
managing group work, and students publicly sharing ideas in whole class discussion. We note
that these are not the only HLTPs that could be designed, but we found these three to be
particularly useful for planning and structuring lessons, especially in relation to our participation
heuristics.

In this paper, we share insights from a design-based research project focused on adopting
and adapting three K-12 HLTPs to an undergraduate proof-based setting where participation was
explicitly foregrounded. The project included six implementation cycles: two in a lab setting,
three with a research team instructor (Author 1), and one with an external instructor. We focus
on ways we engineered the HLTPs in the proof setting to better support student access and
engagement in AMPA. Our contribution to literature is two-fold. First, by centering HLTPs as
objects of design, we are attending to collegiate instruction in explicit ways that are often
backgrounded. This is especially essential when considering how these elements of instruction
may shape more or less equitable classrooms. Second, instructional design in relation to formal
proof and participation is infrequently the focus of design research. The overarching design
question guiding our project was: How might HLTPs be adapted and incorporated into the
advanced mathematics classroom to support students in authentic proof activity? For the scope of
this paper, we focus on lessons we learned during implementation of HLTPs that helped us
achieve our participatory learning goals. For each HLTP, we share two instances that reflect
design shifts. These shifts reflect either proof-specific adaptations that occurred when
implementing the HLTP (i.e., not salient in the K-12 literature) or a substantial task refinement
that occurred between implementation cycles (in service of our access and engagement
heuristics).

2 Background on the High Leverage Teaching Practices

We operationalize high-leverage practice through an integration of Woods and Wilhelm’s
(2020) and Ball et al.’s (2009) definitions. Woods and Wilhem explain a high-leverage practice
as, “routine aspects of teaching, which guide teachers to integrate students’ thinking, content

knowledge, and equity” (p. 106). Ball et al. (2009) focus on “activities of teaching that are
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essential to the work and that are used frequently, ones that have significant power for teachers’
effectiveness.” (p.461). We accordingly maintained four criteria. A high-leverage teaching
practice is an aspect of teaching that (1) can be implemented routinely, (2) uses, shapes, or
otherwise integrates students’ mathematical thinking, (3) has potential to increase equity, access,
and/or engagement, and (4) is supported by research connecting the practice to students’
learning. In the section that follows, we provide evidence from the K-12 literature base that
HLTPs can support students in accessing and engaging in robust mathematical activity. We note
that we selected three HLTPs that meet our criteria and that also had the characteristics of being
plannable and serving to help structure classroom lessons. Our focal HLTP are reflective of
larger grain practices (informed by works such as Smith et al.’s (1996), practices for
orchestrating discussion or Thanheiser & Melhuish’s (2022) teaching routines.) HLTPs such as
questioning (which is in-the-moment and not a larger structure) or lesson planning (which occurs
outside of classroom instruction) were accordingly not the focus of design and refinement,
though we engaged in these practices. For each HLTP, we provide a description, set of evidence,
and reflection on how the HLTP has been documented to tie to equity and access. We note that
the operationalizations below are a synthesis of our understanding of the practices from the K-12
literature.
2.1 Launching Complex Tasks

One essential practice is launching (and maintaining) tasks in a way that students can
make sense of the task and engage productively (Woods & Wilhelm, 2020). This includes
supporting students in understanding the relevant contextual features and mathematical ideas and
relationships prior to engaging in problem-solving along with supporting students in developing
a common language (Jackson et al., 2012; Jackson et al., 2013). Jackson et al. (2013)
documented that complex task launch was a positive predictor of students’ opportunity to learn
in whole class discussion. Such results are consistent with other studies of task launch and
maintenance by specific instructors (Khisty & Chval, 2002; McClain & Cobb, 1998). Tools for
K-12 teachers, such as Smith et al.’s (2008) task launch protocol, have served as a means to
operationalize some of this work. The protocol involves reflecting on definitions, concepts, and
ideas as well as what prior knowledge/relevant life experiences students need to engage with a
particular task. Further, the work to make mathematical contexts, language, and ideas accessible

does not have to come at the launch of the task, but also occurs in conjunction with students



engaging with problems (Khisty & Chval, 2002; Livers & Bay-Williams, 2014; Moschkovich,
2013) where issues related to vocabulary or questions of context can be addressed as they
emerge.

Complex task launch has been associated with increased opportunity for students of
various backgrounds to learn (Khisty & Chval, 2002; Spooner et al., 2017). Mathematical tasks
are embedded with contexts and content that may not be meaningful to students and can serve as
barriers rather than opportunities (Sullivan et al., 2003). Attending to task launch and
maintenance can serve to mitigate these issues by establishing common understanding of the
mathematics and task at hand (Staples, 2007). We operationalize this HLTP as:

The teacher engages students in making sense of tasks via attending to relevant

mathematical language, ideas, relationships, task contextual features, and

development of a common understanding of the task goals and context. This

practice occurs prior to or in parallel with problem-solving, but does not scaffold

or directly instruct on solutions to the task.

2.2 Structuring Group and Partner Work

Group and partner work often serve as an essential role in student-centered classes.
Structuring these interactions shapes the opportunity for students to productively work with one
another and with the mathematics (TeachingWorks, 2018). In order to do this, teachers can
socially and mathematically structure group work so students have clear aims, goals, and
expectations on what to do and how to interact. Webb’s (2009) literature review points to
variations in this HLTP including: positioning students as having diverse contributions (and
describing these), providing instruction on how students can participate actively, providing
explanation prompts (explicit, targeted things to talk about), focusing on questioning or debate,
or role specialization. Structured group work has the potential to increase learning outcomes
(Gillies, 2003) and promote high level reasoning and discussion (Cohen, 1994).

Setting up group and partner work productively is important to promote respectful
interactions between students and mediate for issues of status that can lead to group work being
dominated by students perceived as “high status” (TeachingWorks, 2018; Cohen, 1994). In
Esmonde’s (2009) review on supporting equity in group work, they similarly point to structures
such as roles or scripts that have been linked to supporting more equitable interactions where

students are positioned as competent contributors of mathematics. Although, they caution that



the teacher’s role includes continuing to manage groups to ensure roles or scripts are taken up.
We operationalize this HLTP as:

The teacher structures and manages partner and group work in order to engage

all students meaningfully in mathematical activity. This can include scripts, clear

mathematical activity expectations, and/or roles that provide guidance for how

students are to interact with each other and the mathematics.

2.3 Selecting and Working with Public Records of Student Ideas

The third HLTP we consider takes place in whole class where student strategies are
publicized and become the focus of discussion (TeachingWorks, 2018; Wilburne et al., 2018).
Stein et al. (2008) illustrated how this HLTP unfolds as teachers anticipate, select, sequence, and
then work with public records of student ideas to focus students on key mathematics. By having
students present ideas and working with them publicly, common ground can develop as students
have the opportunity to make sense of each other’s thinking (Staples, 2007). This teaching
practice emphasizes not just students sharing strategies and ideas, but that these contributions
become the focus of continued discussion. Students may be prompted to make sense of each
other’s ideas, critique and debate claims and approaches (Lampert, 1990; Staples, 2007), and
compare across strategies (Durkin et al., 2017). Engaging students with multiple student
strategies, and in particular, focusing students on comparison, can lead to students developing
more flexible mathematical knowledge.

In Jackson and Cobb’s (2010) reflection, they noted that discussion of student thinking
plays an important role in equitable teaching. By sharing ideas publicly and engaging in
discussion, students do not just have a chance to hear each other’s thinking, but “provides all
students including students who are currently struggling with the particular mathematical ideas at
hand, with adequate supports so that they might understand others’ explanations” (p. 5,
referencing McClain, 2002). Furthermore, by having the students present and analyze ideas, they
may increase their mathematical agency (Brown, 2009), and classrooms that include public
discussion of students’ multiple representations and strategies have been linked to more equitable
assessment outcomes (Silver & Stein, 1996).

We operationalize this HLTP as:



The teacher orchestrates mathematical discussion where (1) students publicly

present ideas and (2) students are prompted to meaningfully engage with the

ideas through analyzing, critiquing, and/or comparing across student ideas.

2.4 Motivating the Study of the HLTPs in Undergraduate Proof Classes

There is a growing body of literature regarding inquiry-based mathematics education
(Bouhjar et al., 2021; Larsen et al., 2013; Laursen & Rasmussen, 2019) in advanced
mathematics courses, including proof-based classes. We argue there is a need to adapt and
study HLTPs in proof-based classes for two reasons: (1) inquiry instruction is not equivalent
to equitable instruction and thus there is a need explore ways to intentionally promote access
and equity in student-centered instruction and (2) while there are substantial histories of
inquiry curriculum development in proof-based courses (e.g., Starbird, 2015; Larsen et al.,
2013), there is far less attention to instructional practices. Melhuish, Fukawa-Connelly et al.
(2022) found that the majority of the literature on instruction in student-centered proof-classes
focused on either student outcomes (such as student performance or affect markers) or
instructor beliefs, knowledge, and instructional challenges. The instructors’ role is often
backgrounded in service of other research goals. For example, group work is often a
substantial component of inquiry-oriented instruction (e.g., Andrews-Larson et al., 2017,
Rasmussen et al., 2015); however, studies rarely address how that group work is enacted
beyond description of the task. We our study as complementary to this literature on student
activity and curriculum, but unique in that we expand the object of design to incorporate
specific elements of teaching, namely our three focal HLTPs.

Finally, we recognize the need to study the HLTP in these courses rather than just
directly adopt them from the K-12 setting. While we hypothesized the fundamental roles of
the HLTPs may stay consistent, their enactment in proof-based courses is likely to be shaped
by the unique context of working in the formal representation system of proof (Weber &
Alcock, 2004). There is a substantially increased level of abstraction (Hazzan, 1999) and new
ways of argumentation that are beholden to idiosyncratic mathematical conventions (Lew &
Mejia-Ramos, 2019) and specific norms and values of the mathematician community
(Dawkins & Weber, 2017). Much of the literature in this area points to the challenge of this

transition for students (Stylianides et al., 2017), and thus we anticipate that engaging students



in authentic mathematical proving activity will be a non-trivial task and involve substantial
intentionality and engineering.
3 Authentic Mathematical Proof Activity and Participation Heuristics

In undergraduate proof-based courses, typically taken by mathematics majors and future
secondary mathematics teachers, the primary object of study becomes the formal mathematical
proof. We take a participatory stance on student learning borrowing the notion of productive
disciplinary engagement from science education (Engle & Conant, 2002). That is, our goal was
to engage students in activity that resembles the work of research mathematicians. We
hypothesized that HLTPs can support our student activity goals by providing structures and
mechanisms to engage students meaningfully with tasks and each other.
3.1 Proof Foci of Tasks and Activities: Proof Construction, Validation, and Comprehension

Most of the extant research in undergraduate proof settings focuses on students’ abilities
in the realms of proof construction, proof validation, or proof comprehension (Stylianides et al.,
2017; Selden & Selden, 2017). Proof construction can be broadly conceived of as the
development of an argument which often contain conclusions (the statement to be proved), data
(which provides the foundation of the argument), and warrants (which provide the justification to
connect the data to the conclusion) in alignment with Toulmin’s (1958) argumentation scheme
(Simpson, 2015). A mathematical argument is then a formal proof when it “dr[aws] on symbolic
notation and logical reasoning” (Fukawa-Connelly, 2012, p. 333). The proof construction
process can stem from informal ideas such as those that come from exploring examples or
diagrams that can then be formalized through activities such as elaborating, syntactifying, and
rewarranting (Zazkis et al., 2016).

While proof construction is most prevalent in the literature (Mejia-Ramos & Inglis,
2009), proof validation is also an important aspect of mathematician activity (Weber, 2008;
Weber & Mejia-Ramos, 2011). Weber and Alcock (2005) have suggested validating a proof is
exploring whether “If (a subset of the previous assertions in the proof), then (new assertion)” (p.
37) is warranted at each line of proof. Studies have suggested that mathematicians validate in
two phases: determining the structure of the argument and then checking each line of the
argument. As such, validating activity may be identified through the lens of organizing
information into what is known and what needs justification, evaluation of warrants of claims,

and appropriateness of proof structure.



Finally, proof comprehension is an essential aspect of mathematicians’ activity (e.g.,
Melhuish, Vroom et al., 2022; Weber & Mejia-Ramos, 2011). Mejia-Ramos et al. (2012) have
developed a framework for assessing proof comprehension highlighting two main dimensions:
local understanding (which can be gleaned from a small number of statements within a proof)
and holistic understanding (which cannot). In particular, their model identifies three aspects of
local understanding — meaning of terms and statements, logical status of statements and proof
framework, and justification of claims — and four aspects of holistic understanding —
summarizing via high-level ideas, identifying the modular structure, transferring the general
ideas or methods to another context, and illustrating with examples. Thus, we operationalize
proof comprehension as attending to local and global aspects of an existing proof to understand
both the argument and its constituent parts.

3.2 Authentic Mathematical Proving Activities (AMPA) and Participation Heuristics

In order to account for student activity in classroom settings, we developed the Authentic
Mathematical Proving Activities (AMPA) framework (Melhuish, Vroom et al., 2022) via a
synthesis of the literature on mathematician activity to further operationalize their objectives
(objects, motives) and tools in their activity systems. The objects of activity include proofs,
concepts, and propositions. With regards to each of these objects, we identified three main
motives related to these objects reflective of comprehending, constructing, and validating.
Activity then consists of objectives, combining these objects and motives (e.g., constructing a
proof, comprehending a proposition). 7ools are then used to achieve these motives. For the
purpose of this paper, we do not expand on all of the framework’s tools, but provide some
examples to situate our goals and results which focus on instructional elements more so than
student activity. We note that these tools include processes such as analyzing and refining (the
activity of exploring and modifying an extant object (proof, statement, or concept) via examining
assumptions and implications) or warranting (identifying implicit/explicit warrants in a
particular claim). They also include other resources such as using diagrams, examples, or logic.
We consider a student engaged in AMPA when they are taken on authority and agency in using
disciplinary tools towards disciplinary objectives.

With this goal in mind, we elaborate the two participation heuristics we shared in the

introduction:



® (Access) Providing access to opportunities to participate in authentic mathematical proof
activity.
e (Engagement) Promoting participatory equity in authentic mathematical proof activity

engagement.
The access-related heuristic focuses on whether students have the opportunity to engage in tasks
that can lead to AMPA. Such opportunities depend both upon the tasks teachers provide and
whether students have the necessary resources and understandings to engage in intended ways.
Access is infrequently uniform across students and those students who more quickly draw on
definitions, theorems, relevant understandings, and accurate interpretation of formal
mathematical language may have increased access to AMPA (e.g., Moore, 1994; Weber, 2001;
Weber & Melhuish, 2022). Thus, a driving feature of our design is maximizing access to
opportunity for AMPA. The engagement heuristic helps us attend to whether students realize
these opportunities in equitable ways. That is, are all students taking on the disciplinary activity
in meaningful ways? Brown (2018) and Reinholz et al. (2022) have documented ways that
students (particularly those of minoritized backgrounds) may not have equal opportunity to
participate in small groups and whole class discussion, respectively. As argued by Brown (2018)
and Johnson et al. (2021), inquiry is not a panacea for equitable instruction, and equitable
instruction involves intentionality in instructional practice beyond providing rich tasks. We see
both heuristics as essential to our instructional engineering of high-leverage teaching practices.

We provide clarifications regarding these foci. First, they are not independent. Without
access to opportunities and resources, equity in participation cannot occur. Second, we are not
attending to a number of aspects of supporting equitable learning environments that go beyond
our central focus on participation in AMPA. We take caution not to overstate claims of creating
equitable classrooms. Finally, we note that initial design focused on the first heuristic; however,
observations about disparities in participation and in what ways during phase early cycles led to
the explication and attention to the second heuristic with intentional modifications in later cycles.

4 Methods

The data from this paper comes from several cycles in a design-based research project
(Cobb et al., 2003). The project focused on the development and refinement of HLTPs in the
context of three introductory abstract algebra lessons. We are using a design-based research

approach due to the project aims of theorizing and developing curricular materials. As Cobb et



al. elaborated, design-based research contains five features. First, the research involves
developing “theories about both the process of learning and the means that are designed to
support that learning” (p. 10). For our project, we take a participatory lens on learning placing
HLTPs and their relation to student engagement in AMPA as the focus of theorizing. The second
feature is that our project is highly interventionist. We are studying instruction and learning as it
plays out. We note, that means, “the study of phenomena as complex as learning ecologies
precludes complete specification of everything that happens” (ibid., p. 10). Unlike experimental
research, we are not attempting to account for all variables, but rather are studying a system with
forefronted planned elements (HLTPs, tasks) while other elements are backgrounded. The third
feature reflects the prospective and reflective nature of these experiments. We came into our
work with a theory of how HLTPs and specific proof tasks may support student engagement in
participation. As the cycles of the experiment played out, we developed more local conjectures
and detailed understanding of mechanisms involved using many levels of analysis. This leads to
the fourth feature, the iterative design of this type of research where conjectures and evidence
lead to revision. The final feature reflects the nature of the theories produced. They are not global
learning theories, but rather local to the problem targeted by the design experiment. At the same
time, the insights developed should not be so constrained to a particular setting that others cannot
make use of the insights. In order to meet the final features, we engaged in many cycles of
theorizing and design, implementation, analysis, and refinement in different settings to increase
transferability. Presenting our findings as lessons learned and shifts made in iterative design
represents our attempt to report in a manner that is true to design research and likely to render
our specific insights adaptable to other researchers and instructors.
4.1 The Focal Lessons

Each of the lessons was designed with the primary goal of engaging students in
validating, constructing, and comprehending proof, respectively. The lessons were designed to
take one class period of 1 hour and 20 minutes; however, depending on implementation some
lead-up or wrap-up work occurred in the class session before or after. Lesson 1 (which we refer
to as the Structural Property Task) focuses on the theorem: Let G and H be isomorphic groups. If
G is abelian, then H is abelian. This theorem was selected because it is a common type of
theorem in abstract algebra and students often approach it in two different ways (Melhuish et al.,

2019): 1) beginning with elements in G and showing their images commute or 2) beginning with



elements in A and showing they commute. This allows for students to investigate the differences
between approaches, validate the approaches, and refine the proof or alter the statement to only
use the necessary assumptions. Lesson 2 focuses on Lagrange’s Theorem. This theorem was
selected because the key idea can be apprehend via example exploration (e.g., Leron &
Zaslavsky, 2013). Students investigate example groups and their cosets, attend to the
multiplicative structure (key idea), and develop a set of lemmas about cosets to construct the
proof. Lesson 3 focuses on the First Isomorphism Theorem which was selected due to the
complexity involved in the proof (Nardi, 2000) and has students engage in comprehending the
statement (via example exploration) and the proof (via identifying structure and line-by-line
explorations). See Appendix A for a complete outline of the final version of the lessons.
4.2 Design Cycles and Setting

Participants were undergraduate mathematics majors (some dually earning high school
teaching certification) from a large, research university in the United States. The participants had
all completed a transition to proof class. Students from the lab setting had completed abstract
algebra and students in the classroom were several weeks in and had been exposed to basic
definitions and proof techniques. Information from each cycle can be found in Table 1.

Table 1. Overview of Six Cycles and Student Demographics

Term! Lessons  Modality  Instructor n  Demographics
Cycle 1 Spring All 3 Lab Researcher 3 3 Women
2019 Setting
Cycle 2 Summer All3 Lab Researcher 4 3 Men, 1 Woman
2019 Setting
Cycle 3 Spring Lesson 1 Classroom Researcher 15 6 White Women, 1 Multi-Racial Woman,
2020 4 White Men, 4 Hispanic Men
Cycle 4 Fall All 3 Online Researcher 29 7 White Women, 3 Hispanic Women,
2020 Classroom 4 African-American Women, 7 White Men,
5 Hispanic Men, 3 Asian Men
Cycle 5 Fall All 3 Classroom Researcher 17 2 White Women, 1 Multi-Racial Woman,
2021 3 Hispanic Women, 6 White Men,
4 Hispanic Men, 1 Man (unknown ethnicity)
Cycle 6 Spring  All3 Classroom External 13 2 White Women, 1 Hispanic Woman,
2022 Instructor 3 White Men, 6 Hispanic Men, 1 Asian Man

1. Tasks occurred in the first two thirds of a term allowing for several months for analysis and modification
between cycles.




The design process entailed several phases that involved developing and modifying focal
tasks, planning enactment of HLTPs, and hypothesizing corresponding student activity in terms
of participation in AMPA. The tasks were implemented, first in a lab setting, then in the
classroom. The lab settings (students engage with tasks and instructor-researchers outside the
confines of a classroom and full-sized class) were led by the first author as instructor-researcher
and third author who observed and interjected questions and prompts at relevant times. Author 1
implemented the first three classroom implementations. The classroom implementations were
interrupted by pandemic protocols ending cycle 3 prematurely (after lesson 1) and leading to
cycle 4 occurring online. We conducted the first two cycles in a smaller setting to better allow
for testing out the relationship between our tasks, HLTPs, and student activity. This afforded
greater attention to student thinking and participation and removed some constraints of the
normal classroom. Through the two lab setting implementations, we developed more precise
conjectures about the relationship between tasks, HLTPs, and student activity and made
modifications for the classroom. We initially planned only two classroom implementations.
Since Cycle 3 and Cycle 4 were affected by pandemic protocols, we added Cycles 5 and 6,
which were fully in-person. During the final implementation, we shifted from a research team
instructor to an outside instructor to extend our movement toward less controlled and more
naturalistic instructional settings. This allowed for the tasks and implementation guide to stand
on their own and not be shaped by unaccounted knowledge that was linked to being part of the
design team. Additionally, an expert review panel provided feedback at key points (before cycles
1 and 3).

For each cycle, the task implementations were video-recorded and transcribed. Research
team members (including Author 2 and 3) observed and took field notes on implementations
attending to ways that students did or did not engage in hypothesized activity including attention
to equity in this participation within small groups. We engaged in both “design minicycles” and
retrospective analysis in accordance with Cobb and Gravemeijer (2014). Design mini-cycles
include debriefs after each lesson with the project team to come to consensus about the ways in
which the lesson enactment (including HLTPs) aligned with hypotheses in terms of supporting
students in AMPA related to the lesson goals. In between each cycle, the project team met to

reflect more holistically on the prior implementations, revisit important points in the data, and, in



some cases, conduct extended analysis of particularly salient moments. We used a number of
analytic tools in these various stages of analysis, including:
e the AMPA framework (Melhuish, Vroom et al., 2022) on data from cycles 1-3,
e The Math Habits Framework (Melhuish et al., 2020) to analyze instructional moves in
our initial plan and after cycle 3 implementation (the first in a classroom), and
e The Activity, Authorship, and Animation (AAA) Authority Framework (Hicks et al.,

2021) on data from cycle 2.

We selected this set of frameworks in order to gain more systematic insight into how our
conjectured instructional approach and implementation linked to student activity, both in terms
of the access heuristic (operationalized via AMPA) and the engagement heuristic
(operationalized via analysis of who contributed to the AAA components). The results from
these more systematic analyses complemented our broader design minicycle analyses. We
revised our plan for implementation and/or refined our use of the HLTPs whenever we identified
evidence of disconnects in access to or engagement in proof activity, such as noticing students
did not appear to have needed tools to make progress on an activity (an access issue) or that
certain students dominated conversation (an engagement issue). Additionally, we identified
spontaneous elements of instruction (e.g., instructor prompts that helped students past an
impasse) and student activity (e.g., features of students discussion that led to productive
communication) that appeared supportive to our access and engagement aims, and often
incorporated these into our task materials.

We began with rather primitive hypotheses linking HLTPs to supporting students in rich
discussion and participation in proof activity. Initially, we designed each lesson to have a focal
HLTP and proof activity pairing: selecting and working with public records of student ideas and
proof validation, using and connecting mathematical representations and proof construction, and
launching complex tasks and proof comprehension. We paired the practices intentionally
drawing on (1) the idea that students may be focused on important structural aspects of their
proofs via comparing public records (and thus attend to validating them), (2) working with visual
records can support apprehending key ideas needed to construct proofs, and (3) complex task
launch to support accessing and comprehending ideas in proofs. However, we quickly discovered
that trying to isolate practices in this way oversimplified a complex setting and relegated the role

of non-focal HLTPs to the background. During later cycles, we attended to all focal HLTPs



throughout each lesson and in relation to different proof activities, although the hypothesized
pairings remained some of the most salient. Additionally, we more thoroughly incorporated the
HLTP of Structuring Group Work midway through the project when our analyses pointed to
unbalanced participation in group work. We note that while visual records remained a part of our
design, we background this HLTP this manuscript as it has a more thorough treatment in
undergraduate settings.

At the completion of the data gathering, we engaged in a retrospective analysis focused
on the characteristics of the HLTPs as mechanisms to support students in engaging in AMPA.
The crux of our design focused on hypotheses related to ways that carefully planned and
designed HLTPs (in conjunctions with tasks) can support students in access and engagement in
AMPA as they comprehend, construct, and validate proofs. This analysis differs from the
cognitive analyses most common in studies of proof-based learning contexts. We are not
attempting to make claims about students’ knowledge or evolution of knowledge. Rather, we
focus our claims specifically on the links between HLTPs and participation. Thus, we leverage
our data corpus, including the various analyses described above, to provide images of how the
HLTPs supported access and engagement in AMPA. The theory arising from our design
experiment also entails aspects of student understanding of particular topics and their learning
about abstract algebra, but our goal in this paper is to portray aspects of the emerging theory
relating instructional moves and participation in proof activity. The stories and challenges
described in the results section convey the lessons we learned that constitute a core of that part of
our theory. We share examples from different points in our design because they were the
occasions that led to modification and elaboration of our understanding of how HLTPs can
support AMPA. The examples span the duration of the project, and in each case, we share
evidence of what played out uniquely in the proof context (thus, elaborating our understanding of
HLTPs in the proof setting), and for instance that led to modification, we provide some detail of

the impact of particular changes.

5 Results: Lessons Learned from the Orchestrating Discussions Around Proof Project
In order to share insights from this design project, we present our results as a series of
episodes and noticings that occurred through the design and instructional engineering process.

We organize these results by situating these instances within each HLTP to which they were



most related. However, this treatment is done for readability purposes rather than implying that
each teaching practice operates disjointly. In fact, teaching practices can and often do overlap.
For example, while structuring student group activity, the focus may be on a representation.
Further, ramifications of decisions made in service of one HLTP can influence activity in many

elements of a lesson.

5.1 Launching complex tasks in the Proof-Based Setting

In the K-12 setting, launching complex tasks involves making sense of task contexts,
questions, and anticipating key mathematical structures and relationships that might support
students in productive problem-solving (adapted to proving activity for our work). We designed
task launch to include (1) unpacking key definitions and relationships in theorems and (2) using
examples and visual representations to make sense of key ideas in theorems. These two activities
were designed to anticipate proof structure (Samkoff & Weber, 2015) such as providing a
definition that anticipates a proof structure (e.g., definition of abelian when showing a group is
abelian) or provide insight into key ideas (Raman, 2003) and structural features (e.g., seeing the
structure of cosets to structure the proof for Lagrange’s Theorem). Further, we keep a public
record of definitions and other key ideas students may need to provide a resource for students’
mathematical activity to build from.

We argue that these are essential elements needed for productive proof engagement based
on the multitude of literature that suggests novice provers understanding of concepts and
definitions (e.g., Moore, 1994) greatly shapes their proving activity and that identifying and
working from key ideas is more consistently found in expert provers’ practice (e.g., Raman,
2003). In this section, we share two learnings from implementing complex tasks launches. First,
we discuss teaching prompts related to object references and quantification, a type teacher
prompt that was important in proof setting, but not emphasized in the existing K-12 literature
that informed our design. Second, we share a major modification we made as a result of finding
that students were not anticipating proof structures in the ways we initially hypothesized for the
proof construction task (Lagrange’s Theorem.)

5.1.1. Increasing Support of Students’ Access to Formal Mathematics Through
Identifying of Mathematical Object Referents and Quantification. While many of the

instructional prompts we documented directly paralleled those found in the K-12 literature,



mathematical object referents and quantification seemed unique to the undergraduate setting.
Furthermore, the need to support students in recognizing mathematical object referents and the
role of quantification occurred across implementations and types of lessons, and ultimately
became a planned part of instruction in later rounds. Because these tools (such as definitions,
statements, and their referents) were needed to engage students in the different types of activities
to come, we chose to give class time to unpacking these during complex task launches to better
support students in developing shared understandings that would carry through the lesson. We
use the structural property task as an illustration. As students suggested the assumptions and
conclusions, common responses include “one-to-one” and “onto” without referring to the
mathematical object that has these properties. In one implementation, a student offered “G and H
are a group isomorphism.” This led the instructor to ask “who do we call isomorphism?” to
which another student responded, “G goes to A’ which again the instructor asked “What do we
call that?” with the student responding, “¢”. Figure 1 represents the public record of student
suggested ideas and definitions. Similar conversations have occurred about asking what type of
“object ¢ is?”’ to draw attention to ¢ as a function and asking whether a “homomorphism” was a
function or a property. This relates to the subtle issue of properties being defined by the
existence of a function. Further, during these exchanges students tended to provide unquantified
statements. When asked to unpack abelian, a student suggested “xy = yx” in one class and
“There's an a and b in the group that also, a operated with b also equals b operated with a” in
another class. In both cases, the quantification remained unclear and the instructor followed up to
ask questions such as “is it for some a, for all a, are these arbitrary?” with many students in the

class clarifying, “for all a.”



Figure 1. Public record of student assumptions, definitions, and conclusions for the structural
property task.

If we reflect on our guiding heuristics, these two types of prompts were recognized and
intentionally integrated into future iterations for several reasons. First, quantification plays a key
role in productively engaging in the proving and validating activity, both generally and in our
tasks. In some sense, the difference between the “valid” and “invalid” proof approach to the
structural property task is attention to the role of “for all” in the abelian definition (and how it
gets proved using arbitrary elements from H). Not attending to the role of “for all” in their proof
comprehending activity limited their opportunity to recognize the proofs’ validity. Second,
discussions about mathematical objects and their referents became vital when considering access
and promoting opportunities for all students to engage. While some students were immediately
able to engage in activity constructing, comprehending, and validating proofs with complex
levels of objects and symbols, other students would hit an impasse at different stages. For
example, when making initial proof approaches in the structural property task, some students
were unable to get started as they lacked the necessary tool of introducing a ¢ to build an
argument. The importance of referent objects became a significant compounding factor in later
activity such as dealing with the FIT where the presence of multiple functions can lead to the
proof becoming impenetrable (see Nardi, 2000). In our early lab settings and online
implementation, we found that without explicit attention to symbols and referent objects,
students made little headway into mechanics of the proof. This is an idea we will revisit in the

group work section.



5.1.2 Supporting Students’ Engagement in Proof Production and Proof
Understanding Via Unpacking Structural Elements and Meaning Beyond Formal
Definitions. In our initial implementation, we focused primarily on objects and formal
definitions as part of complex task launch. This was often accompanied with exploring a few
examples to notice structural features and tie features of the examples to their role in the focal
theorems. However, we found that such exploration may remain disjointed from future activity
without active anticipation and focus on how a structural noticing may carry over to a proof
context. This was particularly apparent in the Lagrange Theorem task that hinged on students
noticing the key idea that cosets induce a multiplicative structure on the elements in a group. We
initially hypothesized that students could produce a multiplication argument by unpacking the
statement and arriving at a multiplication goal (WTS: |G|=k|H| for some k) and then connecting
|G|, k, and |H| in their diagrams. This link was tenuous for students. We made the most
substantial modification after the first implementation of the Lagrange Theorem task. We will
briefly share how the first implementation played out and then data from the second
implementation that was more productive.

In the first implementation, the students had explored multiple examples of groups and
subgroups and identified where they could see the parts of the theorem, but hit an impasse as
they attempted to use their examples to build their argument focusing on showing there is “no
remainder.” Anna suggested, “What if we did a couple of cases, like where the order of the group
was even, or it was odd? If it’s even, you have ... Then it’s just 2k and if it’s odd, 24+1.” Elena
continued this line of thinking addressing various cases reflecting different “factor[s]” and the
students elaborated that they needed to show there would be no remainders. However, after some
work, that last of the trio, Elsa commented, “It would be a really big proof.” First, we want to
note that the students’ approach was quite reasonable. We conjecture that they were relying on
prior proof experience where number theory arguments about division often rely on particular
cases. They focused on not having a remainder. That is, they were drawing on prior strategic
proof knowledge rather than drawing on coset explorations to formalize. Ultimately, the
instructor heavily scaffolded the connection and, we would suggest, was the only one engaging
in AMPA by the end of the lesson. This did not fulfill our overarching goal to engage students in
AMPA where informal activity (example based) and formal activity (proof) served a mutually

supporting role (what some researchers may suggest to be cognitive unity, Garuti et al., 1998).



As aresult of this experience, we hypothesized that additional instructional support may
be needed to help students draw upon their informal exploration in formal contexts. In this
particular case, we expanded the task launch to include not just formal definitions, but also
having students recall more informal ideas about multiplication that can serve to bridge between
the activities. As students considered their multiplicative statement “WTS: |G|=k|H| for some k",
the instructor-researcher prompted them to “[c]aptur[e] this with a visual. How is this illustrating
what we mean by multiplication?” They also provided specific numbers 12=3x4 prompting “let's
think back to elementary school when we write these things, and we're gonna make a similar
type of visual to go with this that's kind of connected to what we mean by multiplication. See if
you can also sketch something out that goes with this idea of 12=3x4.” After some partner
discussion, the instructor-researcher then guided a full group discussion about a definition for
multiplication that built from the idea from student suggestions of “repeated addition” and
“totaling up.”

After some additional exploration and lemma generation about cosets, the instructor-
researcher prompted the students in this group in much the same manner, “So if these three
lemmas are true, how might they help us establish the multiplication structure that we were
trying to get up here?” In this case, the students were able to translate between informal and
formal with one student, Jasmine, explaining, “Oh, so like the union of the cosets is G is
basically k£ x H.” Asked to repeat, she elaborated, “The first lemma, that the union of the cosets is
G. The repeated addition kH. I mean, when you merge them together, you get a G.” The
conversation continued with the students connecting each of the lemmas to their role in the
multiplicative structure. Notice that the students are drawing on the shared language of “repeated
addition.” We saw this as evidence that work done at the task launch supported the students in
engaging in more authentic proof activity.

This example is emblematic of a larger activity trend. We observed that the switch to
formal proving often primed students to draw on formal proof knowledge to the exclusion of
informal explorations. The proof construction task hinged on leveraging the “key idea” of
multiplicative structure, and thus needed intentional engineering to engage students in using their
informal understanding of multiplication in relation to the formal proof. We suggest this result
generalizes as key ideas are by definition a means of connecting informal and formal. Such a

connection may be obvious to a more experienced prover; however, it needs explicit parallelism



for a more novice prover to use their informal ideas to support proof construction. Throughout
different tasks and HLTPs, there was a need for instructors to orient student ideas such that there
was consistency and connection across informal and formal representations. We return to this
theme in other sections.

5.1.3 Reflection on Launching Complex Tasks in the Proof Based Setting. In many
ways, we were able to import the primary essence of complex task launch from K-12
mathematical settings. Our implementations suggested several nuances that are likely proof-
context specific (or at least more salient in this setting.) These considerations were primarily
access-driven. First, attention to mathematical objects and their referents is crucial to developing
a shared language and providing the basic tools for students to engage in activity. Second,
quantification is a huge aspect of definitions and particularly how definitions relate to proof
structures. Students’ descriptions of mathematical ideas may lack that level of precision -- and
for good reason. That level of precision did not serve much purpose in non-proof based classes.
However, in these contexts it is essential and can support later activity. Third, one of the most
challenging aspects of complex task launch was anticipating ways to support students in not just
seeing important structural elements (which is an element of this work in other mathematical
settings), but the tools needed to link structural elements in an informal discussion to later formal
proof activity. We suggest explicit attention to ideas that may bridge and anticipate proof
structure (beyond just formal definitions) that can serve to alert students in making connections.
5.2 Structuring and Managing Group work

A key component of group work is designing and developing tasks that are groupworthy
(Lotan, 2003). In the context of design-work in proof-based classes, the focus is often on the
nature of the task, a necessary component for group work where students may work on
challenging proof construction or a task trajectory that supports reinvention of formal
mathematical concepts (e.g., Larsen, 2013 ). However, in our engineering we also attended to
instructional choices about the structuring and management of this work--how would students
actually do this work in a group setting? Initially, we relied on two mechanisms for structuring
group work, “think-pair-share” (Kaddoura, 2013) and partner exchanges (similar to peer review,
Reinholz & Pilgrim, 2021). Such approaches have been documented in proof-based instruction;
however, in accordance with our guiding heuristics, we found a need for more complex and

intentional structures to promote more equitable participation in AMPA. In terms of group work,



we identified this need from several perspectives. In the initial in-class implementation, we
witnessed imbalance in how students participated with their partners. A later analysis of the lab
setting experiments also pointed to inequities in participation (see Hicks et al., 2021). Finally,
during the online implementations, we noted that unstructured group time often resulted in both
low participation by some members of groups and, in some cases, no student activity met our
definition for AMPA. In this section, we share two types of modifications we introduced to
group work between cycle 4 (the online cycle) and cycle 5 (the first full in-person classroom
implementation.) Both draw on ideas from complex instruction to promote more equitable group
work (Cohen & Lotan, 1997) including expanding expertise (a more thorough treatment of this
idea can be found in Author, year) and distributing responsibility. We begin by sharing data from
the structural property task that contained a partner exchange to show how just this type of
structure may be insufficient to promote equitable participation across partners. We then share
data from the FIT task where a think-pair-share structure was also initially insufficient and ways
that we incorporated more intentional sharing of responsibility amongst group members.

5.2.1 Adjusting Partner-Exchange Structures to Increase Participation and
Decrease Status Disparity During Proof Comprehension Phases. Differences in students’
comfort in beginning the production of a formal proof is one source of inequitable participation
in this context. Apprenticeship into the game of formal proving requires a fundamental shift in
argumentation and language. Knowing “where to start” is a substantial hurdle for novice provers
who are only beginning to develop strategic knowledge (Weber, 2001) for operation in this
system. As such, a status imbalance can occur between students who are comfortable with formal
proofs and those less so. To illustrate this issue, we turn to the Structural Property Task. Our
initial design involved students working with partners and exchanging their proof approaches.
This was structured such that students were instructed:

I want you to come up with one thing that makes sense about what [your partner] did and

one thing that maybe you have a question about in regards to what was playing out or,

how things are labeled, anything you can have a question about in here. Pull out your
approach, exchange it with your partner, spend about two minutes reading through it,

seeing if you can come up with one question and one thing that makes sense.



The instructor guided students in exchanging and taking on these roles. However, closer
inspection of this activity revealed that these structures did not always play out and that certain
students took on an “expert” role while their partners did not. Consider the following exchange:

Aiden: so I ask about your [pause]

Brianna: I guess. Even though I don’t know anything.

Aiden: I think there’s a problem with -- so you say, “since G and H are isomorphic, G

and H are 1-1, onto, and homeomorphic”

Brianna: Oh, I was referring to um the property that she gave us, and then

Aiden: but-- yeah I think the problem is that it’s just missing-- the thing that’s 1-1 and

onto is the function between them so it-- [ don’t know if it’s right to say that G and H are

1-1 and onto but I would probably say there exists a function from G to H that is 1-1 and

onto
Aiden then guided Brianna in the construction of a new proof.

We conjecture this disparity occurred because Aiden had a mostly complete proof from
the night before whereas Brianna had a set of initial ideas. We had moved the proof production
portion to an at-home activity to not impose time constraints on the initial proof construction (an
access decision); however, this did not mitigate the issue as only a handful of high status students
(students who frequently participated at high rates) brought mostly complete proofs.

In the next iterations of this lesson, we transitioned from students discussing their own
proofs to ones provided to them. These proofs were student-generated from a prior study (see
Melhuish et al., 2019). Each student in the class was given either Proof A or Proof B (see
Appendix B) and were provided private reasoning time to make sense of the proof in front of
them with the instructor explaining [Cycle 5], “You're kind of now the expert on, on the one in
front of you. So I'm going to give you a couple minutes to try to digest it and think about, ‘can
you explain what's going on in this argument to somebody who doesn't see it?’”

This approach led to robust conversations where we did not observe the same sort of
status disparities or divergence from the intended activity. For example, consider the following
partner discussion with Isabella (Proof A) and Jake (Proof B). Isabella explained her proof, “I’'m
going to say that this is ¢. So it’s letting a,b be elements of G, so there exists a ¢ that @ operation
b is equal to ¢(a) times ¢(b) [...] which also if you have ¢(ba) is equal to ¢(b)d(a) since G is

abelian.” Her partner then comments on what makes sense and asks a question about the



connection to the codomain group H. Further, the partners work together to summarize the main
idea:

Jake: They’re just trying to show that...

Isabella: But they are showing that either way you write it...

Jake: That the [inaudible] no matter which way you would put it, would be okay.

Isabella: That’s why it is written three different ways, to show that, no matter which way,

they’re all equal.

The partners then exchanged roles with Jake leading a discussion of the other proof approach and
Isabella commenting on features of the proof. If we compare this conversation to the previous,
we can see that both students are engaged in what we would call AMPA reflected in using tools,
like summarizing, to engage in proof comprehension.

By switching the focal comprehension object to existing proofs, both students were
positioned to have expertise (on their respective proofs) and there were more entry points into
the activity. A natural critique of this modification is that the proofs are no longer stemming
from students in the class. However, we highlight that this move opened an avenue for additional
competencies and provided a means to support comprehension activity in more equitable ways.
We share this example for a couple of reasons. First, this type of “construct a proof task” is very
common to proof courses with active student engagement. Yet, there are substantial differences
in students’ comfort, access, and knowledge of the formal proof construction process. This may
sometimes lead to quite different classroom experiences for different students (for example see
Dawkins et al., 2019). If other designers share access and engagement goals, it is worth being
strategic about when and how proof construction tasks are used. Unguided open prompts to
prove may inadvertently amplify status differentials.

5.2.2 Increasing Student Authentic Activity and Student Participation by Delegating
Responsibilities to Engage with Formal and Informal Mathematics. In the lab setting (cycle
1 and 2), the instructor-researcher often asked students a series of targeted questions when they
encountered challenges moving between formal and informal systems. In the full classroom
context, an instructor no longer has the ability to engage in conversation with all students in
small groups. After the online implementation (cycle 4), we found that when students
encountered such challenges, they often did not have the tools to move beyond an impasse. Prior

to cycle 5, we developed more sophisticated group structures (rather than just think-pair-share) in



order to engage students in more authentic activity and to assure more voices were heard. Many

of these modifications were in service of the FIT task as the formal proof involved making sense
of abstract and layered arguments working to move the responsibility from instructor-researcher
to students to orchestrate group discussion.

One strategy that proved useful was converting instructor prompts that were fruitful into
questions for students to lead discussion about. Many of these prompts shared common features
with discussion elements from complex task launch. To illustrate, in the FIT task during cycles 5
and 6, the classes were subdivided into four groups and each group was given one section of the
FIT proof to be responsible for explaining to the class. In order to promote more equitable
participation, each member of the group was given one question and tasked with leading the
discussion on that question. This provided support to engage in deeper AMPA and a mechanism
to engage all students in having a meaningful role. The instructor launched the activity stating,
“So, if you're person one, your job is to bring this question to everybody and make sure you talk
about it and resolve it as a group. But you definitely don't have to do them individually.” They
continued to clarify that the “questions build on each other” so students could not just work on
their questions independently. Notice the focus is on both the responsibility of the individual but
the need for collaboration amongst the group.

The questions were derived from using Mejia-Ramos et al.’s (2012) proof comprehension
framework in combination with key referent object prompts from earlier implementations. For
example, each group had one student lead a discussion on, “What is the difference between § and
$?” in terms of the domain and codomain elements (the isomorphism and homomorphism maps,
respectively). Across both implementations using this mechanism, all members of the small
groups engaged in the conversations and a member of each group was able to come up to the
board and provide rather sophisticated explanations of their proof sections addressing the
referent objects accurately and warranting lines in the proof. We used roles and responsibilities
for both constructing new objects (see 5.3.2), and in proof comprehension activities (including
the FIT and partner exchanges from the structural tasks.) As this was a later adaptation to our
sequence, we have less evidence of how structuring group work in such manners could occur
throughout the tasks. However, we conjecture that this is a transferable mechanism. That is,
using roles and responsibilities that are mathematically meaningful (such as leading a discussion

around important aspects of a proof or example), tied to proof activity aims (such as



comprehending), can serve to support more equitable participation in terms of all students
contributing to the group work. Specific to the proof setting, we aimed to incorporate roles and
responsibilities that can serve to navigate between formal and informal.

5.2.3 Reflection on Structuring and Managing Group Work in the Proof Based
Setting: Two Shifts We Made. One of the more challenging aspects of working in the proof
based setting is that the abstract nature of the mathematical content and the formal ways of
arguing and communicating often privilege a particular set of competencies that may exacerbate
status issues. In the literature, this is sometimes approached via differentiation of instruction such
as having easier and harder proofs for students to engage with (Dawkins et al., 2019). While such
a mechanism may work in a more traditional IBL setting with a high degree of independent
work, it does not easily import to a more collaborative setting. First, we found that we needed to
evoke a range of competencies (such as comprehending, validating, explaining a proof,
generating and analyzing examples, rather than just constructing proof). Second, we carefully
delegated responsibilities such that there were multiple ways to remain involved. This was often
partnered with assigning students tools to open opportunities for authentic activity such as
guiding questions or particular structures for example creation. While in some ways, this
scaffolds the activity further than our initial design, we were able to document more AMPA
amongst more students than in our less structured group work attempts.

5.3 Selecting and Working with Public Records of Student Ideas

Two types of public records drove this practice across our lessons: records of examples
and records of proofs and proof elaborations. By proof elaborations, we mean students may or
may not have developed the initial proof version, but publicly share their understanding of the
proofs through recreation or elaboration (e.g., identifying objects and creating small deductive
subproofs when needed). As in the K-12 setting, comparison was intended to highlight structural
attributes. In the proof setting, this may highlight structural differences as between proof
frameworks (Selden & Selden, 1995) or structural commonalities that may anticipate a proof,
such as the examples explored in service of the FIT and Lagrange’s Theorem discussed in the
prior sections.

5.3.1 Attending to Whose Proofs and Products are the Focus of Engagement and
Moves to Incorporate More Opportunity for Less Vocal Students’ Ideas to be Publicly

Discussed. A key component of this work is anticipating the ideas that may be selected,



sequenced, and compared (Stein et al., 2008) For example, the two proof approaches structural
property task stemmed from the most common approaches by students in survey study (Author,
year). However, we found that pre-planning which proof strategies to select for comparison
limited whose ideas would make it into the public space. In our first classroom implementation
(cycle 3) relying on this approach led to the selection of two, vocal, white mens’ proof
approaches becoming the focus of the conversation for the duration of the class. Two students, in
sequence, shared their proof approaches. These two approaches were anticipated and selected
because they began the proofs in different locations (starting with elements from G and from H)
and contrasting the proofs can draw attention to important structural features. After both students
presented their proofs (see Figure 2a.), the instructor prompted the class to ask questions of the
proof and then to address, “What do you see that is the same? What do you see that makes them
different?” through a think-pair-share mechanism, which was structured such that Partner A had
to share a similarity and Partner B had to share a difference. A whole class discussion then
ensued with a public record of these noticings (see Figure 2b.)

Regarding student opportunities to engage in AMPA, comparing and contrasting public
records of proofs was quite successful in all cycles. Students noticed all of the distinctions we
anticipated including beginning the proof with elements in the domain or co-domain group,
naming of the elements, and warrants. These structural differences anticipated later discussions
of what assumptions were needed, validating and modifying the proof approaches, and attending
to differences in proof frameworks. However, we note that as in the small group discussion
described in section 5.2.1, the proof approaches that became the focus of the class may have
reinforced status differences. The type and focus of participation was catered towards two
students who wrote and explained more complete deductive arguments. In later implementations,
we changed the focus to the pre-existing student proofs to avoid this inadvertent difference in

opportunity.
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Figure 2b. Public record of students identified similarities and differences across the approaches.

The attention to whose public record was also a factor in the other lessons. These records

included not just proofs, but also examples to compare and generalize from. Although these



examples were intended to be group products, we found they often reflected a particular
individual’s contributions. In order to address this issue, we engineered the group work
structures to provide particular roles for each group member (Cycle 5 and 6). For example, when
illustrating the FIT, students were given a set of chalk and each of the following roles was
assigned to a different group member: identifying the domain and codomain elements, putting in
the homomorphism map lines, identifying the kernel, and introducing lines representing the
homomorphism. In this way, the public records (see Figure 3) to be compared represented joint,
rather than individual efforts.

Attention to the origins of public records was not attended to in the lab setting as the
small number of students minimized the need for selecting only certain records to be shared.
When transitioning to full class (cycle 3 and cycle 4), this issue became part of design minicycle
discussions leading to the development of these two ways of countering the issue: introducing

student work from outside of the class and introducing roles so all group members contribute to a

public record.

Figure 3. Cycle 5 small group student boardwork illustrating the FIT

5.3.2 Incorporating Public Records of Partial Information to Promote Access to
Formal Ideas in Relation to Students’ Informal Ideas. A major theme across our
implementations was navigating between formal and informal representations. One main use of
public records of student thinking was to have a series of examples publicly available to make
comparisons and support students in seeing important structural attributes to support rich

discussions, develop understanding of theorems, and anticipate elements of proofs. In Cycle 5,



the first in-person implementation of FIT, we found that the conversation that ensued in the
whole class did not achieve the primary goal of generalizing across examples. The instructor
guided a discussion focused on one example (shown in Figure 3) that largely reflected a
traditional Initiate-Response-Evaluate (IRE) pattern of discussion. That is, the instructor would
ask a targeted question such as, “Where is the homomorphism?” and a student would respond
“the red lines.” The instructor then would endorse and elaborate. While the examples seemed to
serve a productive role in small group time, we were not able to evidence engagement in AMPA
during the larger discussion.

By contrast, in Cycle 6, the instructor made the decision to orchestrate this discussion to
target a formal idea needed to make sense of the FIT proof. After students anticipated what needs
to be proved for the theorem, the instructor tasked students with trying to write a definition for f3
by fillingin: ()= . With a little discussion, students contributed that cosets go in the
parentheses and they can be called “aK.” However, identifying the corresponding output
involved more work. One student suggested the “image of ¢” (the relevant set) without
specifying where a particular element goes. The instructor prompted students to compare across
three examples on the board to try and use commonalities to identify a way to label the output of
this isomorphism. After some initial student suggestions and discussion they arrived at ¢p(a). The
instructor then asked “Would that be consistent with what the three groups did?”” walking around
the room to consider each example. We highlight this implementation decision because it both
supported students in AMPA (both in the moment and ultimately providing an access point in the
proof comprehension activity) and helped the comparison of public records realize their full
potential. We suggest an important transferable element, a partial formalization to connect
between the informal examples and formal statement and proof. As discussed in earlier sections,
students were usually able to work quite productively within an informal or formal system, but
going between the two required some instructional intervention. We suggest recording a partial
piece of information in formal symbolic form provides a means of scaffolding discussion such
that a generalization could be anticipated in a way that would connect to the formal proof.
Similar scaffolding occurred in other lessons such as the instructor providing partial diagrams for
students to complete to make sense of the structural property proofs or engaging students in

matching informal conjectures to formal statements of lemmas for Lagrange’s Theorem. That is,



providing partial information can support students in working between formal and informal
versions while still providing opportunity for students to engage in AMPA.

5.3.3 Reflection on Selecting and Working with Public Records of Student Ideas in a
Proof Based Setting. Overall, we found the use and comparison of public records to be a useful
mechanism for focusing students on important structural elements that may have otherwise been
hidden. In bringing this HLTP to the proof-based settings, we had to be especially cognizant of
amplifying status issues. In a traditional lecture class, the instructor is the primary proof
constructor and the proofs students engage with come from them. When creating a student-
centered environment, there is a danger where a select few students generate the proofs which
can reinforce status hierarchies. Further, the products of group work are not always reflective of
all group members. First, we intentionally modified our group work instructions to better
equalize the types of participation students engaged in and to increase the likelihood that public
products contain elements from each group member. We note the continued theme of navigating
between informal and formal mathematics and therein lies our second modification related to
public records: the use of partially supplied formal information. With the set of examples
illustrating the FIT, the initial implementation left these informal representations largely in
isolation from the formal activity. In the second implementation, the instructor dedicated time to
making one important informal to formal transition: defining the isomorphism. We also found
this type of move important in the Lagrange Theorem task where students were positioned to
notice generalities across their examples and arrive at key coset lemmas, described informally.
The formalization process became a major transition between the examples and construction of
the proof. Thus, we suggest that comparison can serve two key roles: highlighting structural
differences in proofs and promoting attention to structural generalities that can be formalized to

anticipate continued AMPA in the more formal representation system.

6 Discussion
In this section, we revisit the set of HLTPs, provide an overview of how they differed
from their K-12 counterparts, and then connect this work to the larger research base on inquiry
and student-centered teaching in proof-based classrooms.

6.1 Expanding HLTPs from the K-12 Setting to the Proof Setting



Launching complex tasks served to provide common ground on mathematical
terminology, promote access to opportunity to richly engage, and anticipate and emphasize
important mathematical ideas and relationships. These fundamental components did not alter in
the proof setting. However, in proof-based settings, the focus is on the theorem to be proven
from a lens of meaning, logic, and anticipating proof structure. Further, the language and
symbols involved have a high level of lexical complexity. Thus, there was a greater need to
promote student attention to precision such as the role of quantifiers and making sense of the
mathematical objects involved. Additionally, when the goal is to engage with the proof, it can be
particularly challenging to identify key ideas (Raman, 2003) or use concepts and definitions
(Moore, 1994). Complex task launch can support attention to important structures and provide
the needed tools in terms of concepts and definitions to support proof construction,
comprehension, and validation. Instructors and designers in proof-base classes may want to plan
for when and how they will ask for greater precision around quantifiers and referents. This could
involve planning tasks or questions where students are asked about quantities or are asked to
explain what type of object is being referenced by certain symbols. Additionally, task launch
serves not just to support access to mathematically dense symbols and language, but also
anticipate structures ahead. While the most obvious way to engage students this way is by having
them address formal definitions, we also found that supporting students in using key ideas
towards proof required intentional discussion and linking between formal ideas and the informal
structures needed. A parallel example might be found in analysis where intuition around limits
often evokes attention to the independent variable first, whereas the formal definition needed for
proving involves addressing the dependent variable first (see Swinyard & Larsen, 2012). We
suggest instructors and designers explicitly consider how closely informal explorations reflect
proof structures and find appropriate ways to bridge between student intuition and the needed
structures to produce a proof.

Setting up and managing group work provided opportunity for students to engage with
the mathematical task, promoted and maintained respectful interactions, encouraged equity of
participation, and positioned students as contributors to mathematics. The commonalities across
these instantiations were: a clear proof activity purpose (constructing, comprehending,
validating) and the expectation, via instructor-provided structures, that all students participate

and communicate about the mathematics. Ultimately, the iterations of this HLTPs increased in



structure to better combat status issues that are often amplified in a setting where constructing a
formal proof is valorized. If we compare to the K-12 setting, our structuring contained many
similarities with complex instruction (e.g., Cohen, 1994). However, the structure and roles were
often tied to the formal representation system. Of particular importance was supporting students
traversing between the formal and informal to deconstruct existing proofs or to create examples
that can be formalized. We suggest that instructors and designers consider not just the quality of
a task created, but the ways they will engage students such that individual accountability and
interdependence are required. The context of proofs can serve to exclude students who do not
feel as confident with the abstract setting (Weber & Melhuish, 2022). Planning might include
considering ways students can engage productively in ways that are not just producing formal
proofs, and how roles and responsibilities can be subdivided and assigned in relation to
meaningful activity such as leading sense-making of parts of existing proofs or developing
examples of ideas.

Selecting and working with public records of student ideas positions students as
contributors to the mathematical agenda, introduces resources into the common set of ideas,
arguments, and representations for students to access, and engages students in analyzing,
critiquing and noticing important aspects of each other’s mathematics. In the proof setting, we
have focused this HLTP on comparing student proof approaches (which can lead to noticing
differences in proof structures and arguments) and supporting students in generalizing and
connecting to proofs. Specific to the proof setting was creating a task where students may viably
create different proof frameworks (Selden & Selden, 1995). As in the K-12 setting, we found that
comparison provided an opportunity for students to notice structural features that may be
otherwise missed -- the structure of a proof framework is one of the most important new
elements in this setting. We also assigned groups different examples and intentionally focused on
examples where their commonalities could be noticed and formalized to develop theorems and
proofs. This involved unpacking what were either key ideas (Raman, 2003) or particular notation
that would be found in later proofs (as in the Lagrange and FIT lessons). Students connected the
records to support later formalization. Instructors and designers may consider what types of
theorems have multiple approaches that may align themselves with meaningful structural
comparisons. Additionally, they may plan for students to create examples whose comparison can

support generalizations and connection to formal ideas. We also suggest consideration to whose



ideas make it to a public space and to transition to other meaningful ways of student involvement
beyond formal proof production.
6.2 Connecting to the Larger Literature Base in Proof-Based Courses

We have argued that the primary contribution of this paper is to draw explicit attention
to HLTPs in a proof-based setting as well as to share lessons we learned about how to
implement them effectively towards participation goals. We oriented this examination using
our access and engagement heuristics. While we did not identify other design-based research
articles (or empirical articles more generally) with such focus, we can make connections to
other literature on curriculum and instruction in the advanced mathematics setting.

If we turn to the complex task launch, we can find practitioner reflections such as
Reinholz (2020) who shared ways that their graduate analysis course launched tasks to
include demonstrating the mechanics of the task, offering sets of questions, and providing
instructions on possible next steps. We can also make connections to inquiry-oriented
curricula that are driven by Realistic Mathematics Education. These tasks find their
groundings in “experientially real” contexts where access is maximized (for example, see
Larsen’s (2013) trajectory for the guided reinvention of groups). There are also components of
launching complex tasks in proof-contexts such as in Samkoff and Weber’s (2015) proof
comprehension strategies where students explore theorems and identify important definitions
that may anticipate a proof. Further, pedagogical objects such as transformational records
(Rasmussen & Marrongelle, 2006). can serve an essential role in supporting students in
further mathematical activity. Our analysis adds some key insights about how to manage and
adjust these kinds of tools to maintain the ambitious goals of engaging students in AMPA as
well as ensuring all students have adequate resources to participate in the classroom activity.

We have found little literature about structuring and managing group work beyond the
think-pair-share mechanism (see the MAA Instructional Guide, Abell et al., 2018) despite
“managing group work” being one of the key roles of the instructor in inquiry classes (Ernst et
al., 2017). More focus is placed on instructor discussion and intervention with small groups
(e.g., Remillard, 2014) rather than embedded participation structures. Small group work
serves an essential role in a number of the curriculum-based studies (e.g., Larsen et al., 2013)
and intervention studies (e.g., Cilli-Turner, 2017). One mechanism that has been discussed is

peer review (Reinholz & Pilgrim, 2021) or collaborative review (Cilli-Turner, 2017). These



structures involve students constructing proofs and then sharing them with a partner or small
group for critique and revision. In the case of Cilli-Turner, she expressed the challenge of
having students direct comments and questions to each other rather than to the instructor.
Others have endorsed norms such as Furinghetti et al. (2001) stating, “Doing collaborative
group work means that students must be aware of the fact that everyone can and should
contribute to the solution of the problem, and that sharing and comparing strategies and ideas
is much more productive than working alone” (p. 232). However, they found that wanting this
norm did not ensure all small groups worked collaboratively. Thus, we suggest that some of
our structures for group work (developing expertise on a particular approach, leading
discussion on specific proof comprehension questions) may be of use to researchers aiming
for collaborative proof classrooms that meet this norm.

Working with public records of student proofs and thinking is another well-
documented component of inquiry instruction. For example, IBL often relies on students
presenting proofs and the class critiquing them (Starbird, 2015). Implementing inquiry-
oriented curricula often involves intentional selection of student ideas to move along a desired
progression (see Andrews-Larson et al., 2019; Lockwood et al., 2013). Curricular supports
may include specific student ideas to look for and ideas to focus on during this discussion
(Lockwood et al., 2013). Recent studies on instructors taking up these curricula have
pinpointed initial shifts in how instructors’ scaffold and select student ideas after teaching the
class repeatedly (e.g., Andrews-Larson et al., 2019) noting a move away from primarily
selecting correct responses for discussion. Further, Blanton and Stylianou (2014) have
illustrated the instructor role in promoting students in reasoning about their own and others
ideas once ideas are available for discussion. We further this work with considerations of
whose ideas are made public and ways that student work might be leveraged in a formal proof
setting such as to compare proof approaches or generalize and formalize key conjectures.

6.3 Conclusions, Limitations, and Future Research

The biggest lessons we learned from our design project are (1) challenges involved in
moving between formal and informal representational systems impacted nearly every HLTP
implementation and (2) that equitable participation did not occur by attending only to access
and opportunity. Overall, the adaptation of the HLTPs to the proof-based setting were not

substantially different than their K-12 counterparts. However, the formal and abstract setting



necessitated precision around objects, language, and quantification. There was a need for
instructor guidance and task features to support traversal between the formal and non-formal
representation systems throughout implementation of all the HLTPs. Otherwise, students
often engage in the formal representation system without drawing upon their informal
explorations with examples or diagrams. In terms of participation, we found structuring group
work to distribute responsibility and providing opportunity beyond just formal proof
production as essential. As design researchers make shifts from interview setting to
classrooms, we suggest they consider (1) ways that their tasks can be partnered with initial
structuring to allow for more equitable participation and (2) ways to mitigate a few students’
public records being centered via expansion in their creation or types.

Finally, we note the HLTPs cannot be disentangled from the context and nature of the
tasks in this project. Thus, while we contribute instructional elements that we see as
generalizable, many may not be usable in courses that do not share the common proof
construction, validation, and construction objectives. Future research may consider how other
tasks and subject areas may elicit different elements of the HLTPs in proof-based settings.
Additionally, while we attended broadly to access and engagement in activity, we did not take
a critical lens to our analyses. Further research could consider how student identity may be

reflected in whose activity is elicited and valorized.
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Appendix A

Lesson 1: Structural Property Task

Lesson 2: Lagrange’s Theorem Task

Lesson 3: First Isomorphism
Theorem Task

Primary
Proof
Activity

Proof
Learning

Proof Validating

Role of conclusion in proof framework

Proof Constructing

Using a diagram exploration to
identify a key idea

Proof Comprehending

Attending to global and local aspects
when reading a proof



Outline of
Lesson
Structure

Opening Discussion

e Public record of assumptions
and conclusion

e Discuss key definitions

Discussion of Proof Approaches in
Small Groups

e Develop expertise around one
of two student proofs

e Explain proof to partner who is
prompted to state one thing that
makes sense and one question

Public Discussion of Two Approaches

e Presentation

e Identifying similarities and
differences (think-pair-share)

e Public Record of similarities
and differences

Proof and Statement Analysis

e Conjecture what assumptions
are needed based on the existing
proofs

e Public Record of conjectured
statements (with varying
properties: 1-1 and onto)

e Testing statements use proofs
and examples to determine what
properties are needed

Counterexample to Identify the
Necessity of Onto (Visual
Representation)

e Function diagram discussion

showing the role of onto
Summary and Conclusion

e Finalizing of revised statement
(onto, but not 1-1)

e Discussion of patching the
proof that did not use onto

Opening Discussion and Exploration
e Exploring examples groups
and the order of their
subgroups to generate a
conjecture (in small groups)
e C(Creating a public record of
conjectures from different
groups
e  Connecting conjecture to
formal Lagrange Statement
e Formally defining divisibility
and exploring the meaning of
“multiplication” on boards
and coming to class
consensus (to anticipate proof
structure)
Creating Cosets in Small Groups
e  Each group works with a
different group (and
subgroup) to create cosets in
a form that can be reasoned
with diagrammatically.
Conjecture Discussion
e Discussion of noticings and
conjectures about the
structure of the cosets to
arrive at key lemmas for the
proof of Lagrange’s Theorem
Matching Class Lemmas to their
Formalizations in Small Groups
e A set of six formal statements
to identify as the translation
of an informal lemma or a
tool to prove one of the
lemmas
Proving Lagrange’s Theorem
e  Small group and whole class
discussion of structuring

Opening Discussion

e Discussion of key concepts
and definitions in the
theorem

Small Group Exploration of
Specific Examples

e  Each small group works at
board space to connect the
theorem to a specific
example using a function
diagram (and assigned
roles)

Class Discussion of Defining the
Isomorphism Map

e Identifying a map in
symbolic form that will
describe the input (cosets)
and outputs (image of the
coset representative) that is
consistent across the
examples

Discussion (small group and whole
class) of Proof Structure

e Identifying what needs to
be proven

e  Subdividing the proof to
find the sections of what
needs to be proven

Making sense of a subsection of a
proof

e FEach small group is
responsible for one of four
sections. Each member of a
group has a question for
leading discussion

Class Presentations

e A representative from each
small group explains their
section to the class




Discussion of the role of Lagrange’s Proof using the
conclusion in structuring proofs lemmas.
(proof framework) Summary and Conclusion
e Discussing the role of the key
idea from the coset diagram
examples
e  Wrap-up on the implications
of Lagrange’s Theorem

Summary and Conclusion

Summarizing the proof at a
high level

Discussing the practice of
proof comprehension







