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T h e r a pi d e m er g e n c e of d e e p l e ar ni n g l o n g- s h ort-t er m- m e m or y ( L S T M) t e c h ni q u e pr e s e nt s a pr o mi si n g s ol uti o n 

t o al g al bl o o m f o r e c a sti n g. H o w e v er, t h e di s c o nti n u o u s a n d n o n- st ati o n ar y pr o c e s s e s wit hi n al g al d y n a mi c s still 

l ar g el y li mit t h e f u n cti o n s of L S T M s. T o o v er c o m e t hi s c h all e n g e, a n a d v a n c e d ti m e-fr e q u e n c y w a v el et a n al y si s 

( W A) t e c h ni q u e w a s i ntr o d u c e d t o e n h a n c e t h e pr e di cti o n a c c ur a c y of L S T M s. H er ei n, t h e n o v el h y bri d a p pr o a c h 

( n a m e d W L S T M) s u c c e s sf ull y d e cr e a s e d t h e al g al f or e c a sti n g i n a c c ur a c y of cl a s si c L S T M s b y 4 1 % ± 8 % i n L a k e 

M e n d ot a ( Wi s c o n si n, U S A), wit h p o w erf ul o n e- st e p- a h e a d pr e di cti o n s at h o url y, d ail y, a n d m o nt hl y ti m e r e s o -

l uti o n s (R 2 = 0. 9 7 6, 0. 8 7 8, a n d 0. 8 1 4, r e s p e cti v el y). I n a d diti o n, t h e W L S T M o ut p erf or m e d t h e ot h er t w o wi d el y 

u s e d al g al f or e c a sti n g a p pr o a c h e s - d e e p n e ur al n et w or k ( D N N), a n d a ut or e gr e s si v e-i nt e gr at e d- m o vi n g- a v er a g e 

( A RI M A)  m o d el,  r e pr e s e nt e d  b y  a v er a g e  7 2 %  a n d  8 5 %  d e cr e a s e  i n  r o ot- m e a n- s q u ar e- err or,  r e s p e cti v el y. 

F urt h er m or e, t h e W L S T M w a s i m pl e m e nt e d i n a n e x p eri m e nt all y f ertili z e d l a k e ( L a k e T u e s d a y, Mi c hi g a n) f or a 

m ulti- st e p f or e c a sti n g e x a mi n ati o n. It s ati sf a ct oril y f or e c a st e d t h e al g al fl u ct u ati o n s i n v ol vi n g s u b st a nti al p e a k 

a n d e xtr e m e v al u e s ( a v er a g e R 2 > 0. 9 0 0) a n d pr e s e nt e d a c c ur at e j u d g m e nt o ut c o m e s t o t h eir bl o o m l e v el s wit h 

hi g h a c c ur a c y > 9 5 % o n a v er a g e. T hi s w or k hi g hli g ht e d t h e utilit y of d e e p l e ar ni n g a p pr o a c h e s i n eff e cti v e e arl y- 

w ar ni n g f or al g al bl o o m s, a n d d e m o n str at e d a n i m p ort a nt dir e cti o n f or i m pr o vi n g t h e a d a pt a bilit y of c o n v e n -

ti o n al d e e p l e ar ni n g a p pr o a c h e s t o t h e a q u ati c pr o bl e m s.   

1. I nt r o d u cti o n 

H ar mf ul al g al bl o o m s ( H A B s) h a v e i n cr e a s e d w orl d wi d e, e s p e ci all y 

i n t h e r e gi o n s t h at ar e u n d er t h e i nt e n s e i n fl u e n c e of cli m at e c h a n g e a n d 

h u m a n  a cti viti e s  ( P a erl  a n d  S c ott,  2 0 1 0 ; R ei c h w al dt  a n d  G h a d o u a ni, 

2 0 1 2 ; Xi a o et al., 2 0 1 9 a ). S u c h a H A B e v e nt o c c urri n g i n a q u ati c h a bit at 

m a y c a u s e criti c al e n vir o n m e nt al i s s u e s t hr o u g h t o xi c pr o d u cti o n a n d 

hi g h- bi o m a s s a c c u m ul ati o n, p o si n g gr e at ri s k s t o t h e e c o s y st e m h e alt h 

a n d  w at er  s e c urit y  ( H ei sl er  et  al.,  2 0 0 8 ; Zi n g o n e  a n d  O k sf el dt  E n e -

v ol d s e n, 2 0 0 0 ). T h e pr o bl e m s ari si n g fr o m H A B s h a v e b e c o m e a gl o b all y 

m aj or c o n c er n ( A n d er s o n et al., 2 0 0 2 ; H all e gr a eff, 1 9 9 3 ). 

M o d eli n g t e c h ni q u e s t o pr o a cti v el y pr e di ct i n-sit u al g al d y n a mi c s ar e 

i m p ort a nt f or l o c al H A B m a n a g e m e nt. A p o w erf ul m o d el c a n b e b ot h 

b e n e fi ci al i n f or m ul ati n g str at e gi e s f or t h e H A B s i n hi biti o n a n d i n e arl y 

pl a n ni n g  t o  miti g at e  n e g ati v e  i m p a ct s  fr o m  a  bl o o m  e v e nt  t h at  i s 

i m p e n di n g or alr e a d y u n d er w a y (C o a d et al., 2 0 1 4 ; Gli b ert et al., 2 0 1 0 ). 

N e v ert h el e s s,  c o n si d eri n g  t h e  c o m pl e x  di st ur b a n c e s  of  e xt er n al  e n vi -

r o n m e nt s  a n d  t h e  n o n-li n e ar  a n d  n o n- st ati o n ar y  n at ur e  of  al g al  d y -

n a mi c s  ( Li et  al., 2 0 1 5 ; Zi n g o n e  a n d  O k sf el dt  E n e v ol d s e n,  2 0 0 0 ), t h e 

f or e c a sti n g of al g al bl o o m s r e m ai n s a c h all e n gi n g w or k, p arti c ul arl y f or 

t h e  tr a diti o n al  st ati sti c al  m o d el s  b a s e d  o n  a  pri ori  f or m  l a c ki n g 

s elf- a d a pt a bilit y ( e. g., li n e ar r e gr e s si o n, a ut or e gr e s si v e m o vi n g a v er a g e 

m o d el s) ( Ö m e r F a r u k, 2 0 1 0 ; Z h a n g, 2 0 0 3 ). 

M a c hi n e  l e ar ni n g  i s  w ell- k n o w n  t o  b e  u s ef ul  i n  a p pr o xi m ati n g 

c o m pli c at e d r e al- w orl d  o b s er v ati o n s ( Z h o n g et al., 2 0 2 1 ). P o p ul ar al-

g orit h m s i n cl u di n g t h e n e ur al n et w or k s ( D e n g et al., 2 0 2 1 ; H a dji s ol o -

m o u  et  al.,  2 0 2 1 ),  s u p p ort  v e ct or  r e gr e s si o n s  ( G o n z ál e z  Vil a s  et  al., 

2 0 1 4 ; H e  et  al.,  2 0 2 0 ),  r a n d o m  f or e st s  (H arri s  a n d  Gr a h a m,  2 0 1 7 ; 

S e g ur a et al., 2 0 1 7 ), a n d gr a di e nt b o o st m a c hi n e s ( Xi a et al., 2 0 2 0 ), h a v e 

b e e n wi d el y a p pli e d i n H A B pr e di cti o n s. R e c e ntl y, gi v e n t h e al g orit h mi c 

a d v a n c e m e nt s  i n  m a c hi n e  l e ar ni n g,  t h e  e m er g e n c e  of  d e e p-l e ar ni n g 

t e c h ni q u e s s u c h a s t h e L o n g- S h ort- T er m- M e m or y ( L S T M) h a s r e c ei v e d 

*  C orr e s p o n di n g a ut h or. 
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i n cr e a si n g  att e nti o n  i n  t h e  m o d eli n g  d o m ai n  of  ti m e  s eri e s.  A s  a n 

a d v a n c e d  r e c urr e nt  n et w or k,  t h e  st at e- of-t h e- art  L S T M  i s  c a p a bl e  of 

a ut o m ati c all y  di s c o v eri n g  t h e  u n d erl yi n g  t e m p or al  d e p e n d e n ci e s  of 

s e q u e n c e d at a t hr o u g h m ulti pl e hi d d e n i nf or m ati o n- pr o c e s si n g l a y er s, 

w hil e  a v oi di n g  t h e “ gr a di e nt  v a ni s hi n g ” a n d “ gr a di e nt  e x pl o di n g ” 

pr o bl e m s  i n  t h e  r e c urr e nt  tr ai ni n g  pr o c e s s  ( D e n g,  2 0 1 4 ; N o ur a ni  a n d 

B e hf ar, 2 0 2 1 ). It w a s o b s er v e d t h at t hi s pr o gr e s s i n L S T M s i m pr o v e d t h e 

pr e di cti o n of n o n-li n e ar al g al bl o o m s ( H u a n g et al., 2 0 2 1 ; S hi n et al., 

2 0 1 9 ; Z h e n g et al., 2 0 2 1 ). H o w e v er, p ur e d at a- dri v e n a p pr o a c h e s ar e 

oft e n  i n a d e q u at e  t o  c o p e  wit h  t h e  hi g hl y  v ar yi n g  p eri o di cit y  of  al g al 

d y n a mi c s, i. e., n o n- st ati o n arit y ( W a n g et al., 2 0 1 3 ; Xi a o et al., 2 0 1 7 ). I n 

pr a cti c e,  a n  a p pr o pri at e  d at a  pr e- pr o c e s si n g  pr o c e d ur e  f or  t h e  i n p ut 

ti m e s eri e s i s oft e n n e e d e d, w hi c h pl a y s a n i m p ort a nt r ol e i n utili zi n g 

al g orit h mi c  a d v a nt a g e s  of  m o d eli n g a p pr o a c h e s  ( C a n n a s  et  al.,  2 0 0 6 ; 

N o ur a ni et al., 2 0 1 4 ). 

I n r e c e nt d e c a d e s, t h e hi g hl y d e v el o p e d w a v el et a n al y si s ( W A) h a s 

a p p e ar e d  t o  b e  pr a cti c al  i n  a d dr e s si n g  t h e  n o n- st ati o n ar y  dif fl c ult y 

(N o ur a ni et al., 2 0 1 4 ). T h e W A i s a n a d v a n c e d ti m e-fr e q u e n c y a n al y si s 

t e c h ni q u e  t h at  o v er c a m e  t h e  dr a w b a c k s  of  cl a s si c  F o uri er  a n al y si s, 

w hi c h  r e q uir e s  st ati o n ar y  a n d  li n e ar  ti m e  s eri e s  d at a  ( L a b at,  2 0 0 5 ). 

C o m p ar ati v el y, W A i s r o b u st t o t h e n oi s y c o m p o n e nt s a n d c a n pr o vi d e 

m ulti pl e  ti m e- s c al e  pr e s e nt ati o n s  f or  t h e  o b s er v e d  si g n al s,  w hi c h  i s 

u s ef ul  f or  t h e  i nt er pr et ati o n  of  n o n- st ati o n ar y  i nf or m ati o n  i n  a 

ti m e- s eri e s  a n al y si s  (D a u b e c hi e s,  1 9 9 0 ; L a b at,  2 0 0 5 ; Li  et  al.,  2 0 1 5 ; 

N o ur a ni  a n d  B e hf ar,  2 0 2 1 ).  It  w a s  s h o w n  t h at  t h e  i n p ut  si g n al  d at a 

d e c o m p o s e d b y W A c o ul d c o nt ai n m or e d et ail s a n d c o ul d l ar g el y b e n e flt 

t h e  l e ar ni n g of  ori gi n al  si g n al s  b y  e m piri c al  m o d el s  (Ki si  a n d  Ci m e n, 

2 0 1 1 ; N o ur a ni et al., 2 0 1 4 ; Xi a o et al., 2 0 1 7 ). T h er ef or e, i n t hi s st u d y, 

w e h y p ot h e si z e d t h at t h e h y bri d of t h e d e e p-l e ar ni n g L S T M al g orit h m 

a n d  t h e  ti m e-fr e q u e n c y  W A  t e c h ni q u e  ( n a m el y,  t h e  W a v el et- L S T M; 

W L S T M)  w o ul d  i n cr e a s e  t h e  m o d eli n g  c a p a cit y  t o  c a pt ur e  al g al 

d y n a mi c s  a n d  t h u s  e n h a n c e  t h e  f or e c a sti n g  p erf or m a n c e  of  cl a s si c 

L S T M s. 

T h er ef or e, t h e m ai n o bj e cti v e of t hi s w or k w a s t o e x pl or e t h e al g al 

bl o o m f or e c a sti n g b y t h e h y bri d W L S T M a p pr o a c h. T o a c hi e v e t h e g o al: 

( 1)  t h e  pr o p o s e d  W L S T M  w a s  d e v el o p e d  a n d  v ali d at e d  f or  o n e- st e p 

f or e c a sti n g  of  d ail y  al g al  d y n a mi c s  i n  L a k e  M e n d ot a,  Wi s c o n si n;  ( 2) 

c o n si d eri n g t h e wi d e t e m p or al v ari a biliti e s of al g al d y n a mi c s, t h e v ali -

d ati o n w a s si m ult a n e o u sl y c o n d u ct e d at h o url y a n d m o nt hl y ti m e r e s -

ol uti o n s; ( 3) i n a d diti o n t o t h e c o n v e nti o n al L S T M, t h e W L S T M w a s al s o 

cr o s s- c o m p ar e d  wit h  t w o  ot h er  st at e- of-t h e- art  H A B  f or e c a sti n g  a p -

pr o a c h e s at h o url y, d ail y a n d m o nt hl y r e s ol uti o n l e v el s, i. e., d e e p n e ur al 

n et w or k ( D N N) a n d a ut or e gr e s si v e i nt e gr at e d m o vi n g a v er a g e ( A RI M A) 

m o d el; ( 4) t o f urt h er t e st it s r o b u st n e s s a n d s er vi c e a bilit y u n d er e xtr e m e 

a n d  fr e q u e nt  bl o o m  c o n diti o n s,  t h e  W L S T M  w a s  i m pl e m e nt e d  i n  a n 

e x p eri m e nt all y f ertili z e d l a k e ( L a k e T u e s d a y, Mi c hi g a n) f or a m ulti- st e p 

f or e c a sti n g e x a mi n ati o n. T h e h y bri d W L S T M a p pr o a c h c o ul d s er v e a s a 

r eli a bl e a n d c o st- eff e cti v e H A B f or e c a sti n g t o ol f or w at er m a n a g e m e nt 

i n t h e f ut ur e. 

2.  M at e ri al a n d m et h o d s 

2. 1.  M o nit ori n g d at a of al g al d y n a mi cs i n t h e L a k e M e n d ot a a n d t h e L a k e 

T u es d a y 

T h e l o c ati o n of L a k e M e n d ot a i s n e ar M a di s o n cit y, s o ut h er n Wi s -

c o n si n, U S A ( Fi g. 1 ). It i s a m ai n dr ai n a g e l a k e of t h e Y a h ar a w at er s h e d, 

wit h a hi g hl y d e v el o p e d s h or eli n e of 3 3. 8 k m a n d a s urf a c e ar e a of 3 9. 6 1 

k m 2 . A s a e ut r o p hi c l a k e, it h a s fr e q u e ntl y e x p eri e n c e d i nt e n s e p h yt o-

pl a n kt o n  bl o o m s  o v er  t h e  p a st  d e c a d e s  ( N e al,  1 9 8 7 ).  I n  1 9 9 5,  L a k e 

M e n d ot a w a s a d d e d t o t h e N ort h T e m p er at e L a k e s- L o n g T er m E c ol o gi c al 

R e s e ar c h ( N T L- L T E R, htt p s: / /lt er.li m n ol o g y. wi s c. e d u / ) pr oj e ct, a n d h a s 

Fi g. 1. L o c ati o n s of m o nit ori n g sit e i n t h e L a k e M e n d ot a a n d t h e L a k e T u e s d a y.  

M. Li u et al.                                                                                                                                                                                                                                      
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been continuously monitored at a regular frequency (every 2 weeks 
during the ice-free season, March to September; every 6 weeks during 
the ice-covered season) since then. In addition, an instrumented buoy 
with multiple limnological sensors was deployed on Lake Mendota, 
which started to provide high-resolution (1 min) monitoring informa
tion from 2006, such as the chlorophyll concentration, turbidity, con
ductivity, pH, and dissolved oxygen. As shown in Table 1, mean monthly 
cyanobacterial dynamics for a 23-year period (January 1995 to 
November 2018) were derived from the LTER monitored data (Mag
nuson et al., 2020a), and were quantified as a natural unit using cell 
biomass (mg/L). Hourly and daily average values of chlorophyll con
centration from 01 Apr. 2020 were calculated from the original 
high-resolution data (Magnuson et al., 2020b) measured with a 
multi-parameter analyzer (YSI EXO2, Yellow Springs Instrument Inc., 
USA), and were reported as relative fluorescence units (RFU) for further 
development of forecast models. 

Lake Tuesday is located in the upper peninsula, Michigan, USA 
(Fig. 1). It is a relatively small and shallow lake in oligotrophic to 
mesotrophic conditions before the whole lake manipulation. From 2013 
to 2015, a fertilization experiment was conducted there (Pace et al., 
2021a). In this experiment, the inorganic nitrogen and phosphorus were 
gradually added to the lake each year (from mid-May to early 
September) to cause algal blooms. Meanwhile, the high-frequency 
chlorophyll fluorometer (Hydrolab DS5X, HYDROLAB Inc., U.S.A) was 
deployed in this lake to continuously collect chlorophyll-a (chl-a) con
centrations (ug/L) at 5-minute intervals. Similar to the Lake Mendota, 
daily averaged chl-a dynamics were calculated based on the source 
monitored data (Pace et al., 2021b) and formed the modeling dataset for 
the Lake Tuesday (Table 1). 

Additionally, to determine the outbreak conditions of algal blooms in 
Lake Tuesday, two chl-a thresholds related to the health-based drinking- 
water supplies were adopted (1 g/L and 12 g/L), as defined by the 
Alert Level Framework of the World Health Organization (World 

Health Organization, 2021). The first threshold corresponds to the 
Alert Level I , representing an early stage of blooms; and the second 

threshold corresponds to the Alert Level II , representing the heavy 
stage of bloom situation. 

2.2. WLSTM model development 

2.2.1. The deep learning algorithm - LSTM network 
The LSTM network is a special form of recurrent neural network 

(RNN), which is a variant of a deep neural network that can learn 
temporal dependency from sequential data using loop structure. In the 
LSTM, memory blocks are introduced to replace the hidden neurons for 
connecting hidden layers (Fig. 2). Each memory block consists of a 
memory cell (C), an input gate (i), a forget gate (f), and an output gate 
(o). By either updating or removing previously accumulated information 
to the memory cell through three control gates, the LSTM can well learn 
the remote dependencies and overcome the gradient exploding and 
vanishing issues in the backpropagation of conventional RNN 
(Hochreiter and Schmidhuber, 1997). The learning process and internal 
structure of the LSTM memory block was presented in Fig. 2a (more 
algorithmic details and demonstrations were in the supporting infor
mation, Text S1), and Fig. 2b showed a basic architecture of LSTM 

network modeled on the sequential inputs. 
To improve the overall performance in deep learning, a standard 

technique of model ensemble was applied in the LSTM network, where 
multiple independent models with the same structure were trained and 
their predictions were combined (Dietterich, 2000). Fig. 2c showed an 
illustration of the ensemble of LSTM networks. 

2.2.2. The time-frequency analysis technique - discrete wavelet 
transformation 

Wavelet transformation (WT) is a useful mathematical tool in signal 
theory after Fourier transformation, which overcomes the limitations of 
Fourier transformation in analyzing non-stationary time series (Labat, 
2005). By decomposing the main time series into time-frequency space 
to obtain several sub-series, the WT can effectively extract specific time 
and frequency features from the original series simultaneously. To 
achieve this task, the sub-series are generally derived from a template 
known as the mother wavelet , in which these decomposed wavelets 
are scaled and translated according to the mother wavelet. Yet, the 
calculation of scale and translation parameters at every possible position 
requires substantial computation work for a WT (e.g., continuous 
wavelet transformation; CWT). Herein, the discrete wavelet trans
formation (DWT) considerably reduces the computational complexities 
to apply WT, as its scale and position are usually based on powers of two, 
called dyadic scales and positions (Cannas et al., 2006). The DWT of 
series f t is often conducted as follows: 

(1)  

(2)  

Where j and k are the integers controlling the decomposition level and 
translation, respectively; a0 is the constant scale factor of decomposition 
(usually is 2), b0 is the constant position factor of translation (usually is 
1); j k t is the wavelet function; t is the mother wavelet; and 
Wf j k are the DWT coefficients. Then a low-frequency approximation 
sub-series (An) and some high-frequency detail sub-series (D1, D2, , 
Dn) can be obtained by repetitively passing the approximation co
efficients through the low-pass filter and the high-pass filter at each 
decomposition level till the preset level is reached. 

2.2.3. Hybrid architecture of WLSTM model 
The hybrid WLSTM model was developed by combining the wavelet 

transformation and LSTM network (Fig. 3). The WLSTM modeling 
mainly has three stages: 1) the DWT of the original series of algal dy
namics; 2) the input and forecasting of each sub-series using the 
ensembled LSTM method individually; 3) and the re-composition of 
individual output series for the final forecasted results. 

2.2.4. Model training and prediction 
To appropriately train the deep-learning LSTM modules within the 

WLSTM structure, our modeling procedure included two phases: (a) 
calibration and (b) prediction. In the calibration phase, the first 80% of 
series data were used to construct the networks. To avoid over-fitting 
problems, the constructing data were randomly divided into 70% 

Table 1 
Overview of the monitoring datasets for algal dynamics.  

Location Data resolution Monitoring period Sample size Input parameter Statistical information 
Mean S.E. Range 

Lake Mendota Hourly 2020/04/01 - 2020/7/31 2696 Chlorophyll concentration (RFU) 1.24 0.02 5.72 - 0.01 
Daily 2020/04/01 2020/11/06 211 1.01 0.26 3.83 - 0.03 
Monthly 1995/01 2018/11 219 Cyanobacterial cell biomass (mg/L) 1.56 0.17 14.36 - 0.01 

Lake Tuesday Daily 2013/05/16 2013/09/05 108 Chlorophyll-a concentration (ug/L) 14.45 0.58 30.37 7.44 
2014/05/15 2014/09/05 109 16.42 0.45 30.16 9.45 
2015/05/08 2015/08/29 109 15.98 0.52 34.38 8.66  
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tr ai ni n g  s et  a n d  3 0 %  t e sti n g  s et  f or  c o n d u cti n g  cr o s s- v ali d ati o n,  i n 

w hi c h  t h e  n et w or k s  w er e  tr ai n e d  a n d  t e st e d,  r e s p e cti v el y.  Aft er  t h e 

cr o s s- v ali d ati o n  w a s  c o m pl et e,  t h e  m o d el  a n d  p ar a m et er s  t h at  p er -

f or m e d  b e st  o n t h e t e sti n g  s et  w o ul d  b e r et ai n e d. F or  c o n d u cti n g t h e 

e n s e m bli n g, w e r e p e at e d t hi s pr o c e d ur e m ulti pl e ti m e s wit h e a c h ti m e 

p erf or m e d o n a diff er e nt r a n d o m tr ai n-t e st s plit of t h e c o n str u cti n g d at a 

a n d  t h e n  a v er a g e d  t h e  o ut p ut s  ( Di ett eri c h,  2 0 0 0 ).  I n  t h e  pr e di cti o n 

p h a s e, pr e di cti o n s w er e m a d e o n n e w d at a s et s b a s e d o n t h e c ali br at e d 

m o d el s. W e i m pl e m e nt e d b ot h t h e flr st 8 0 % of s eri e s d at a (i. e., t h e e ntir e 

c o n str u cti n g  d at a)  a n d  t h e  r e m ai ni n g  2 0 %  of  s eri e s  d at a  (t h e  u n u s e d 

d at a),  t o  fl n all y  e v al u at e  t h e  m o d el  p erf or m a n c e s  o n  i n- s a m pl e  a n d 

o ut- of- s a m pl e d at a s et s, r e s p e cti v el y. W hil e i n t h e c a s e of L a k e T u e s d a y, 

2 0 1 3  a n d  2 0 1 4  d at a  w er e  u s e d  f or  c o n str u cti n g  a n d  2 0 1 5  d at a  f or 

o ut- of- s a m pl e pr e di cti o n. 

W e  i m pl e m e nt e d  o ur  L S T M  n et w or k  u si n g  t h e  d e e p-l e ar ni n g 

fr a m e w or k  of  P y T or c h  (P a s z k e  et  al.,  2 0 1 7 ).  F or  c o m p ut ati o n al  ef fi -

ci e n c y,  a  gri d- s e ar c h  s c h e m e  b a s e d  o n  mi ni- b at c h  st o c h a sti c  gr a di e nt 

o pti mi z ati o n  w a s  u s e d  f or  t u ni n g  t h e  n et w or k  h y p er p ar a m et er s  ( s e e 

T a bl e s S 1 & S 2). W e tr ai n e d a n e n s e m bl e of 1 5 L S T M m o d el s a c c or di n g 

t o  o ur  pri or  e x p eri m e nt  o n  t h e  eff e ct  of  e n s e m bl e  n u m b er  o n  L S T M 

p erf or m a n c e  ( s e e  Fi g  S 1).  I n  t hi s  st u d y,  t h e  D a u b e c hi e s- 4  ( d b 4)  w a s 

a p pli e d a s a m ot h er w a v el et t o d e c o m p o s e t h e ori gi n al m ai n s eri e s i nt o 3 

l e v el s  d u e  t o  it s  wi d e  a c c e pt a n c e  a n d  hi g h  ef fi ci e n c y  (N o ur a ni  et  al., 

2 0 1 4 ). T h e D W T pr o c e d ur e s w er e a c c o m pli s h e d i n t h e M A T L A B  s oft -

w ar e u si n g t h e W a v el et T o ol b o x . 

2. 3.  T h e ot h er ti m e-s eri es f or e c asti n g a p pr o a c h es f or c o m p aris o n - D N N 

a n d A RI M A 

F or c o m p ari s o n p ur p o s e s, t h e cl a s si c al d e e p l e ar ni n g a p pr o a c h – t h e 

d e e p n e ur al n et w or k ( D N N, i. e., m ulti-l a y er f e e d-f or w ar d n et w or k wit h 

b a c k- pr o p a g ati o n al g orit h m), a n d t h e tr a diti o n al u ni v ari at e ti m e- s eri e s 

pr e di cti o n  a p pr o a c h – t h e  a ut or e gr e s si v e-i nt e gr at e d- m o vi n g- a v er a g e 

( A RI M A)  m o d el s,  w er e  al s o  d e v el o p e d  a n d  t e st e d  ( d et ail e d  i nf or m a -

ti o n a b o ut t h e t w o a p pr o a c h e s w er e i n S u p p orti n g I nf or m ati o n, T e xt S 2). 

T o  c o n d u ct  t hi s,  t h e  D N N  n et w or k  w a s  tr ai n e d  b a s e d  o n  mi ni- b at c h 

st o c h a sti c  gr a di e nt  o pti mi z ati o n  u si n g  a  gri d- s e ar c h  pr o c e d ur e  wit h 

t h e s kl e ar n li br ar y i n P yt h o n 3. 8 s oft w ar e (P e dr e g o s a et al., 2 0 1 9 ), a n d 

t h e c o m bi n ati o n s of m o d el h y p er p ar a m et er s s c or e d t h e l o w e st t e sti n g 

l o s s w er e l a stl y s el e ct e d ( s e e al s o T a bl e s S 1 & S 2). W e al s o tr ai n e d a n 

e n s e m bl e of 1 5 D N N m o d el s u si n g t h e s a m e t e c h ni q u e a s t h e L S T M. F or 

t h e  A RI M A  a p pr o a c h,  m o d el s  w er e  c o n str u ct e d  u si n g  t h e a ut o. ari m a 

f u n cti o n of p a c k a g e f or e c ast i n R e n vir o n m e nt (H y n d m a n a n d K h a n d a -

k ar, 2 0 0 8 ), vi a t hr e e it er ati v e st e p s of m o d el i d e nti fi c ati o n, p ar a m et er 

e sti m ati o n, a n d m o d el c h e c ki n g. 

Fi g. 2. S k et c h e s of t h e L S T M m o d el s. ( a) T h e l e ar ni n g pr o c e s s a n d i nt er n al str u ct ur e of L S T M m e m or y bl o c k at ti m e t. ( b) T h e s c h e m ati c ar c hit e ct ur e of t h e L S T M 

n et w or k wit h hi d d e n st at e of 4, L S T M l a y er of 2, a n d i n p ut di m e n si o n of 3. ( c) A n ill u str ati o n of t h e e n s e m bl e of L S T M n et w or k s. I n Fi g. 2 ( b), S N r e p r e s e nt s t h e v al u e 

of i n p ut ti m e s eri e s S at p oi nt N, d r e pr e s e nt s t h e ti m e l a g of o ut p ut ti m e s eri e s. 
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2. 4.  D at a pr o c essi n g 

I n t hi s st u d y, t h e i n p ut s of d e e p-l e ar ni n g m o d el s w er e r e c o m p o s e d 

fr o m t h e r a w  ti m e s eri e s (S ). W e u s e d t h e flr st t hr e e d at a p oi nt s ( S N , 

S N + 1 , SN + 2 ) of S t o f o r e c a st t h e d at a p oi nt s wit h t h e ti m e l a g s of d (S N + 2 +

d ) ( s e e T e xt S 3 i n t h e s u p p orti n g i nf or m ati o n f or m or e d et ail s). T h e ti m e 

l a g d w a s s et t o 1, 2, a n d 3, r e s p e cti v el y, d e p e n di n g o n t h e c a s e st u di e d. 

F or  W L S T M  m o d eli n g,  t h e  r a w  ti m e  s eri e s  ( S )  w a s  r e pl a c e d  b y  t h e 

d e c o m p o s e d s u b- s eri e s a c c or di n gl y (i. e., A n , D1 , D2 , … , Dn ) (Fi g. 3 ). 

T o f a cilit at e t h e tr ai ni n g of L S T M a n d D N N m o d el s, t h e i n p ut d at a 

w er e pr e- n or m ali z e d. T h e n or m ali z ati o n w a s d e n ot e d b y: 

x
′

i =
x i − x

x s d

( 3)  

W h e r e t h e x
′

i i s t h e n o r m ali z e d v al u e of o b s er v e d x i; x a n d x s d a r e t h e 

m e a n a n d st a n d ar d d e vi ati o n of t h e o b s er v e d d at a, r e s p e cti v el y. 

2. 5.  M o d el ass ess m e nts 

T o  m e a s ur e  t h e  d e vi ati o n  of  pr e di ct e d  v al u e s  fr o m  t h e  o b s er v e d 

v al u e s,  t h e c orr el ati o n  c o ef fl ci e nt (R 2 ), r o ot- m e a n-s q u ar e- err or ( R M S E), 

a n d n or m ali z e d-r o ot- m e a n-s q u ar e- err or ( N R M S E)  w er e  u s e d  a n d  c al c u -

l at e d a s: 

R 2 = 1 −

∑ n
i= 1 ( ŷ i − y i)

2

∑ n
i= 1 ( y − y i)

2
( 4)  

R M S E =

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅
∑ n

i= 1 ( ŷ i − y i)
2

n

√

( 5)  

N R M S E =
R M S E

y m a x − y mi n

( 6)  

W h e r e n i s t h e t ot al n u m b er of d at a p oi nt s; ŷ i a n d y i a r e t h e it h p r e di ct e d 

a n d o b s er v e d v al u e s; y i s t h e m e a n of y i; y m a x a n d y mi n a r e t h e m a xi m a 

a n d mi ni m a of y i. 

T h e p r e di ct e d v al u e s w er e al s o u s e d t o j u d g e t h e al g al bl o o m al ert 

l e v el s  i n  L a k e  T u e s d a y.  T h er ef or e,  t o  e v al u at e  t h e  p erf or m a n c e  o n 

cl a s si fi c ati o n,  t h e A c c ur a c y ( o v er all  a c c ur at e r at e),  T P R  (tr u e  p o siti v e 

r at e), a n d T N R (tr u e n e g ati v e r at e) w er e a p pli e d b a s e d o n t h e C o nf u si o n 

M atri x, d e fi n e d a s: 

A c c ur a c y =
Tr u e  P ositi v es + Tr u e  N e g ati v es

n
( 7)  

T P R =
Tr u e  P ositi v es

Tr u e  P ositi v es + F als e  N e g ati v es
( 8)  

T N R =
Tr u e  N e g ati v es

Tr u e  N e g ati v es + F als e  P ositi v es
( 9) 

H er e, n i s al s o t h e t ot al n u m b er of d at a p oi nt s. 

3.  R e s ult s 

3. 1. F or e c asti n g e n h a n c e m e nt b y t h e h y bri d W L S T M c o m p ar e d t o t h e 

L S T M 

Fir stl y,  t h e  W L S T M  a p pr o a c h  w a s  d e v el o p e d  a n d  v eri fi e d  o n  t h e 

d ail y al g al d y n a mi c s i n L a k e M e n d ot a, Wi s c o n si n. T h e m o nit or e d d ail y 

a v er a g e al g al d y n a mi c s of L a k e M e n d ot a w a s s h o w n i n Fi g. 4 a ( A pr. 1 t o 

N o v. 6, 2 0 2 0). I n d et ail, t h e a n n u al al g al gr o wt h pr e s e nt e d a c o m m o n 

d o w n w ar d tr e n d, wit h m ai n p e a k s c o n c e ntr at e d i n t h e fir st t hr e e m o nt h s 

(i. e., mi d- s pri n g t o e arl y s u m m er). I n t hi s n o n- st ati o n ar y si g n al m o d e, 

alt h o u g h t h e u s e of t h e L S T M m o d el s u c c e s sf ull y l e ar n e d al g al v ari ati o n s 

i n  t h e  c ali br ati o n  p h a s e,  t h e  l att er  pr e di cti o n  s h o w e d  u n s ati sf a ct or y 

f or e c a sti n g r e s ult s (Fi g. 5 b), a s i n di c at e d b y t h e c al c ul at e d R 2 , R M S E, 

a n d N R M S E i n T a bl e 2 . F urt h er m or e, it c a n al s o b e s e e n fr o m Fi g. 5 b t h at 

s e v er al s h ar p c h a n g e s o c c urr e d ar o u n d t h e 4 0t h a n d 8 0t h d a y c a u si n g 

Fi g. 3. T h e f or e c a sti n g pr o c e s s of t h e h y bri d W L S T M m o d el.  
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l ar g e  si m ul ati o n  err or s  t o  t h e  L S T M  m o d el,  d e s pit e  it  a c hi e vi n g  hi g h 

o v er all c ali br ati o n p erf or m a n c e. 

W h e n c o u pl e d wit h t h e ti m e-fr e q u e n c y w a v el et al g orit h m, t h e p er -

f or m a n c e of t h e W L S T M m o d el si g ni fl c a ntl y i m pr o v e d wit h a n i n cr e a s e 

of 1 0 % t o 5 7 % c o m p ar e d t o t h e ori gi n al L S T M m o d el ( T a bl e 2 & Fi g. 5 b, 

T a bl e S 3). T h e w a v el et d e c o m p o siti o n of d ail y ori gi n al al g al s eri e s ( S) 

u s ef ull y pr o d u c e d a n a p pr o xi m ati o n c o ef fl ci e nt ( A 3 ) a n d t h r e e l e v el s of 

d et ail e d c o ef fi ci e nt s ( D 1 - D3 ) s h o w n i n Fi g. 4 b – 4 e. C o m p ar e d wit h t h e 

m ai n s eri e s, t h e g e n er al tr e n d a n d m aj or p e a k s of S w er e i d e nti fi e d b y 

t h e  l o w-fr e q u e n c y  s u b- s eri e s  A3 ,  w hil e  it s  m or e  s u btl e  c h ar a ct eri sti c s 

w er e si m ult a n e o u sl y c a pt ur e d a n d pr e s e nt e d i n t h e hi g h-fr e q u e n c y s u b- 

s eri e s l e v el b y l e v el fr o m D 1 t o D3 . M o r e o v e r, t h e a p p ar e nt si m ul ati o n 

err or s al o n g wit h t h e s u d d e n b o o st or c ut of t h e al g al p o p ul ati o n i n t h e 

L S T M m o d el w er e w ell di mi ni s h e d a n d s m o ot h e d b y t h e h y bri d W L S T M 

m et h o d ( Fi g. 5 b). 

N oti c e a bl y,  f urt h er  v ali d ati o n  b ot h  pr o v e d  b ett er  f or e c a sti n g  p er -

f or m a n c e  of  t h e  W L S T M  a p pr o a c h  at  b ot h  h o url y  a n d  m o nt hl y  ti m e 

r e s ol uti o n s,  a s  c o m p ar e d  t o  t h e  L S T M  a p pr o a c h  ( T a bl e  2 & Fi g.  5 ). 

E s p e ci all y i n t h e l o n g-t er m m o nt hl y v ali d ati o n c a s e ( Fi g. 5 c), t h e p er -

f or m a n c e of W L S T M s a c hi e v e d a p pr o xi m at el y 3 t o 6 ti m e s hi g h er a c-

c ur a c y t h a n t h e c o n v e nti o n al L S T M i n t er m s of R 2 st ati sti c ( 0. 8 5 8 v s. 

0. 2 7 8 i n c ali br ati o n, a n d 0. 8 1 4 v s. 0. 0 3 6 i n pr e di cti o n, r e s p e cti v el y). 

M or e o v er,  t h e  W L S T M  pr e s e nt e d  m or e  a c c ur at e  pr e di cti o n s  of  t h e 

e xtr e m e sit u ati o n s t h at fr e q u e ntl y o c c urr e d i n m o nt hl y al g al ti m e s eri e s 

(Fi g. 5 c), wit h ar o u n d 6 0 % r e d u cti o n i n t h e f or e c a sti n g err or ( T a bl e S 3). 

I n a d diti o n, t h e hi g h e st f or e c a sti n g a c c ur a c y of W L S T M w a s r e a c h e d at 

t h e fi n e st h o url y r e s ol uti o n, s h o w n b y it s bi g g e st R 2 ( 0. 9 9 1 a n d 0. 9 7 6), 

s m all e st R M S E ( 0. 1 1 6 a n d 0. 0 5 2 R F U), a n d l o w e st N R M S E ( 0. 0 2 0 a n d 

0. 0 2 7).  All  of  t h e s e  e vi d e n c e s  i n di c at e d  t h at  t h e  d e v el o p e d  h y bri d 

W L S T M  m et h o d  c a n  r eli a bl y  f or e c a st  t h e  al g al  d y n a mi c s  o n  m ulti pl e 

ti m e s c al e s r a n gi n g fr o m h o ur s t o m o nt h s. 

3. 2.  C o m p aris o ns of t h e h y bri d W L S T M a n d ot h er ti m e-s eri es f or e c asti n g 

a p pr o a c h es 

T h e h y bri d W L S T M a n d t h e ot h er t w o wi d el y u s e d ti m e- s eri e s f or e -

c a sti n g a p pr o a c h e s ( D N N a n d A RI M A) w er e al s o cr o s s- c o m p ar e d b a s e d 

o n t h e al g al d y n a mi c s i n t h e L a k e M e n d ot a ( T a bl e 2 & T a bl e S 3). T h e 

d et ail e d  p erf or m a n c e  of  t h e  c ali br ati o n  a n d  pr e di cti o n  vi a  D N N  a n d 

A RI M A w a s s h o w n i n Fi g. S 2. F or t h e D N N a p pr o a c h, t h e b e st f or e c a sti n g 

w a s a c hi e v e d at t h e h o url y r e s ol uti o n wit h hi g hl y s ati sf a ct or y R M S E a n d 

N R M S E  v al u e s,  w hi c h  i s  c o n si st e nt  wit h  t h e  W L S T M  a n d  L S T M  a p -

pr o a c h e s. B ut still, t h e h o url y f or e c a sti n g p erf or m a n c e of D N N dr o p p e d 

b y 3 0 % t o 9 0 % a s c o m p ar e d t o W L S T M i n t er m s of R M S E a n d N R M S E. 

I nt er e sti n gl y, alt h o u g h t h e D N N m o d el s p erf or m e d b ett er t h a n L S T M at 

t h e m o nt hl y r e s ol uti o n (R 2 v al u e s of 0. 1 6 1), it w a s still l ar g el y w or s e 

t h a n t h e W L S T M a p pr o a c h wit h R 2 v al u e of 0. 8 5 8, a n d p erf or m e d p o orl y 

i n pr e di cti n g t h e e xtr e m e v al u e s ( Fi g. S 2 c). A s f or t h e A RI M A a p pr o a c h, 

all  m o d el s  pr e s e nt e d  t h e  l o w e st  p erf or m a n c e  a m o n g  t h e  t hr e e  c a s e s 

st u di e d ( T a bl e 2 ), s h o wi n g it s li mit ati o n i n c o pi n g wit h n o n- st ati o n ar y 

a n d c o m pli c at e d f or e c a sti n g pr o bl e m s of al g al d y n a mi c s. F urt h er m or e, 

t h e r e c o m m e n d e d A RI M A str u ct ur e of A R or d er (p ), diff er e n ci n g d e gr e e 

(d ),  a n d  M A  or d er  (q )  w er e  t h e  A RI M A  ( 3, 1, 2),  A RI M A  ( 0, 1, 0),  a n d 

A RI M A ( 4, 0, 2), c orr e s p o n di n g t o t h e h o url y, d ail y, a n d m o nt hl y m o d el s, 

r e s p e cti v el y  ( pl e a s e  s e e  T e xt  S 4).  T hi s  i n di c at e d  t h at  t h e  A RI M A 

r e q uir e d a l o n g er ti m e s eri e s t h a n t h e ot h er t hr e e d e e p l e ar ni n g n et w or k- 

b a s e d  a p pr o a c h e s  t o  c o n str u ct  a  f or e c a sti n g  m o d el.  G e n er all y,  t h e 

W L S T M  t e c h ni q u e  s h o w e d  h u g e  a d v a nt a g e s  o v er  t h e  c o n v e nti o n al 

n e ur al n et w or k a n d t h e st ati sti c al A RI M A m et h o d. 

3. 3. F urt h er a p pli c ati o n of t h e h y bri d W L S T M i n a n e x p eri m e nt al 

f ertili z e d l a k e 

T o  t e st  it s  r o b u st n e s s  a n d  s er vi c e a bilit y,  w e  f urt h er  a p pli e d  t h e 

h y bri d W L S T M a p pr o a c h i n a l a k e wit h e x p eri m e nt al f ertili z ati o n ( L a k e 

T u e s d a y) ( Fi g. 6 ). I n t hi s l a k e, t h e e x c e s si v e n utri e nt l o a d s a p p ar e ntl y 

tri g g er e d  t h e  al g al  o v er- pr olif er ati o n s,  i n  w hi c h  t h e  d ail y  c hl- a c o n -

c e ntr ati o n s e x c e e d e d t h e e arl y bl o o m st a g e t hr e s h ol d all y e ar r o u n d (i. e., 

Al ert l e v el I, 1 μ g / L). I n a d diti o n, t h e l ar g e a n d v ari ati o n al fi u ct u ati o n s 

of al g al d y n a mi c s c a n b e o b s er v e d t h er e (r a n gi n g fr o m 7. 4 t o 3 4. 4 u g / L 

of c hl- a ), m u c h hi g h er t h a n t h at of a n u n m a ni p ul at e d l a k e, s u c h a s t h e 

L a k e  M e n d ot a  wit h  c hl- a  m a xi m u ml y  r a n g e d  fr o m  0. 1  t o  1 4. 3  m g / L 

(Fi g.  5 c & T a bl e  1 ),  l e a di n g  t o  a n  i n cr e a s e  of  m ut ati o n  a n d  e xtr e m e 

p oi nt s wit hi n t h e ti m e s eri e s ( Fi g. 6 ). 

S ati sf a ct or y si m ul ati o n s of t h e al g al d y n a mi c s w er e o b s er v e d i n t h e 

t hr e e  W L S T M  m o d el s  wit h  a n  o ut p ut  ti m e  l a g  of  1,  2,  a n d  3  d a y s, 

Fi g.  4. W a v el et  d e c o m p o siti o n  of  t h e  d ail y  a v er a g e  c hl or o p h yll  d y n a mi c s  i n  t h e  L a k e  M e n d ot a  ( S:  ori gi n al  m ai n  s eri e s),  u si n g  t h e  d b 4  m ot h er  w a v el et  wit h 

a p pr o xi m ati o n c o ef fi ci e nt ( A 3 ) a n d t h r e e l e v el s of d et ail e d c o ef fi ci e nt s ( D 1 - D3 ). 
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Fi g. 5. O b s er v e d a n d f or e c a st e d ti m e s eri e s of al g al bi o m a s s b y t h e h y bri d W L S T M a n d c o n v e nti o n al L S T M a p pr o a c h e s i n t h e L a k e M e n d ot a o n ( a) h o url y, ( b) d ail y 

a n d ( c) m o nt hl y r e s ol uti o n f or o n e st e p a h e a d. I n n er pl ot s r e pr e s e nt s y m m etri c r el ati v e err or (fr o m − 2 0 0 % t o 2 0 0 %). 

T a bl e 2 

T h e h o url y, d ail y, a n d m o nt hl y f or e c a sti n g p erf or m a n c e of h y bri d W L S T M c o m p ari n g t o L S T M, D N N, a n d A RI M A i n t h e L a k e M e n d ot a.  

R e s ol uti o n  M o d el  C ali br ati o n p h a s e * Pr e di cti o n p h a s e * 

R 2 R M S E N R M S E R 2 R M S E N R M S E 

H o url y  W L S T M  0. 9 9 1  0. 1 1 6  0. 0 2 0  0. 9 7 6  0. 0 5 2  0. 0 2 7  

L S T M  0. 9 6 9  (- Δ 2. 2 %)  0. 2 1 6  (- Δ 8 5. 6 %)  0. 0 3 8  (- Δ 8 8. 7 %)  0. 9 5 8  (- Δ 1. 9 %)  0. 0 6 9  (- Δ 3 2. 8 %)  0. 0 3 5  (- Δ 7 4. 5 %) 

D N N  0. 9 7 0  (- Δ 2. 1 %)  0. 2 1 4  (- Δ 8 4. 4 %)  0. 0 3 7  (- Δ 8 7. 4 %)  0. 9 5 8  (- Δ 1. 9 %)  0. 0 6 9  (- Δ 3 2. 8 %)  0. 0 3 5  (- Δ 7 3. 0 %) 

A RI M A  0. 9 6 8  (- Δ 2. 3 %)  0. 2 2 1  (- Δ 9 0. 5 %)  0. 0 3 9  (- Δ 9 3. 5 %)  0. 9 5 9  (- Δ 1. 8 %)  0. 0 6 8  (- Δ 3 1. 2 %)  0. 0 3 5  (- Δ 7 2. 7 %) 

D ail y  W L S T M  0. 9 8 2  0. 1 1 5  0. 0 3 0  0. 8 7 8  0. 1 1 4  0. 0 8 6  

L S T M  0. 9 0 4  (- Δ 8. 0 %)  0. 2 6 9  (- Δ 1 3 3. 9 %)  0. 0 7 1  (- Δ 1 3 6. 4 %)  0. 6 1 5  (- Δ 2 9. 9 %)  0. 2 0 2  (- Δ 7 6. 8 %)  0. 1 5 3  (- Δ 7 7. 8 %) 

D N N  0. 9 0 1  (- Δ 8. 3 %)  0. 2 7 3  (- Δ 1 3 7. 1 %)  0. 0 7 2  (- Δ 1 3 9. 5 %)  0. 6 3 0  (- Δ 2 8. 2 %)  0. 1 9 8  (- Δ 7 3. 3 %)  0. 1 5 0  (- Δ 7 4. 1 %) 

A RI M A  0. 9 1 1  (- Δ 7. 3 %)  0. 2 6 9  (- Δ 1 3 3. 6 %)  0. 0 7 1  (- Δ 1 3 6. 4 %)  0. 5 5 0  (- Δ 3 7. 4 %)  0. 2 2 4  (- Δ 9 6. 8 %)  0. 1 6 6  (- Δ 9 3. 3 %) 

M o nt hl y  W L S T M  0. 8 5 8  0. 8 5 5  0. 0 6 0  0. 8 1 4  1. 3 8 2  0. 1 1 2  

L S T M  0. 2 7 8  (- Δ 6 7. 6 %)  1. 9 2 4  (- Δ 1 2 5. 0 %)  0. 1 3 4  (- Δ 1 2 3. 3 %)  0. 0 3 6  (- Δ 9 5. 6 %)  3. 0 5 7  (- Δ 1 2 1. 2 %)  0. 2 6 4  (- Δ 1 3 5. 7 %) 

D N N  0. 1 8 3  (- Δ 7 8. 5 %)  2. 0 4 6  (- Δ 1 3 9. 3 %)  0. 1 4 3  (- Δ 1 3 7. 6 %)  0. 1 6 1  (- Δ 8 0. 3 %)  2. 9 3 2  (- Δ 1 1 2. 2 %)  0. 2 3 8  (- Δ 1 1 2. 3 %) 

A RI M A  0. 2 6 4  (- Δ 6 9. 2 %)  1. 9 2 8  (- Δ 1 2 5. 5 %)  0. 1 3 4  (- Δ 1 2 3. 3 %)  0. 0 0 6  (- Δ 9 9. 3 %)  3. 1 3 0  (- Δ 1 2 6. 5 %)  0. 2 5 3  (- Δ 1 2 5. 9 %)  

* T h e v al u e s i n p ar e nt h e s e s r e pr e s e nt t h eir r el ati v e c h a n g e s t o t h e W L S T M o ut c o m e. 
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r e s p e cti v el y ( Fi g s. 6 & 7 , T a bl e 3 , T a bl e S 3). A m o n g t hr e e m o d el s, t h e 

o pti m al p erf or m a n c e w a s o bt ai n e d u si n g t h e f or e c a sti n g i nt er v al of 1 

d a y, a s r e v e al e d b y t h e hi g h e st v al u e s of R 2 i n c ali b r ati o n ( 0. 9 8 7) a n d 

pr e di cti o n ( 0. 9 7 1). N e v ert h el e s s, it s h o ul d al s o b e n oti c e d t h at m o d el s 

f or t h e l o n g er i nt er v al s of 2 a n d 3 d a y s b ot h a c hi e v e d s ati sf a ct or y r e s ult s, 

w hi c h  w a s  v al u a bl e  f or  t h e  fl e xi bl e  d e pl o y m e nt  of  f or e c a sti n g  w or k. 

F urt h er m or e,  n o  cl e ar  b e h a vi or  of  m o d el  o v er e sti m ati o n  or 

u n d er e sti m ati o n o n t h e p e a k or e xtr e m e v al u e s w a s o b s er v e d, a n d all 

W L S T M m o d el s s u c c e s sf ull y f or e c a st e d 2 1 7 ( 1 0 0 %) e x c e e d a n c e s of t h e 

l e v el I t hr e s h ol d i n t h e c ali br ati o n p h a s e a n d 1 0 9 ( 1 0 0 %) i n t h e pr e-

di cti o n p h a s e ( Fi g s. 6 & 7 ). F or t h e e x c e e d a n c e s of l e v el II, a n a v er a g e 

A c c ur a c y r at e of 9 2. 5 % w a s a c c o m pli s h e d, wit h T P R > 9 3. 1 % ( T P R =

9 5. 1 %) a n d T N R > 5 9. 3 % ( T N R = 8 2. 8 %). O v er all, t h e h y bri d W L S T M 

t e c h ni q u e s h o w e d a hi g h p o w er i n f or e c a sti n g al g al bl o o m e v e nt s of t h e 

Fi g. 6. P erf or m a n c e of t h e h y bri d W L S T M m o d el s f or f or e c a sti n g t h e al g al d y n a mi c s i n t h e L a k e T u e s d a y, wit h ti m e l a g of 1, 2, a n d 3 d a y s (fr o m t o p t o b ott o m, 

r e s p e cti v el y). 

Fi g. 7. T h e e x c e e d a n c e c o u nt s of t w o al g al bl o o m al ert t hr e s h ol d s f or e c a st e d b y t h e h y bri d W L S T M m o d el s i n t h e L a k e T u e s d a y, wit h ti m e l a g of 1, 2, a n d 3 d a y s.  
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next multiple time steps. 

4. Discussion 

Firstly, our results revealed the superiority of artificial-intelligence- 
based algorithms (LSTM, WLSTM, and DNN) in the HABs forecast, as 
compared to the traditional linear ARIMA model. Due to various envi
ronmental impacts, such as climatic status (Xiao et al., 2019b, 2019a), 
hydrological condition (Cha et al., 2017; Park et al., 2015), and nutri
tional level (Beaulieu et al., 2013; Heisler et al., 2008), the dynamics of 
algal growth were usually shown as a shifty and step-by-step process, 
characterized by irregular or time-limited time series that was consid
ered to be non-linear and non-stationary (Li et al., 2015; Yu et al., 2020). 
In our study, the evaluations of ARIMA models (e.g., monthly R2 0.27, 
Table 2) indicate that this complicated time-series data is too chal
lenging for the traditional methods, which are often shown to be poor to 
address HAB forecasting problems (He et al., 2020; Ömer Faruk, 2010; 
Xiao et al., 2017). Fortunately, the robust performance of deep-learning 
approaches (LSTM, WLSTM, and DNN) presents promising solutions to 
this modeling predicament (Table 2). In fact, given the rapid develop
ment of such computational intelligence approaches in the ecological 
field, they have been gradually proven to be well-suited to cope with the 
complex and real-world aquatic dataset filled with uncertainties (Ali
zadeh et al., 2018; Kargar et al., 2020; Kouadri et al., 2021; Rousso et al., 
2020). Especially, due to the useful characteristics, e.g., the self-learning 
of sequence dependencies and the efficient structure of gate units, the 
LSTM approach has been widely suggested to be useful to reliably 
handle the non-linear HAB dynamics (Cho et al., 2018; Shin et al., 2019; 
Zheng et al., 2021). However, out of our expectation, the increscent 
temporal variations and non-stationary oscillations in algal time-series 
still posed great forecasting difficulties to the advanced LSTM struc
tures. Its prediction R2 decreased largely from 0.958 (hourly) to 0.615 
(daily) and 0.036 (monthly), even lower than the conventional 
multi-layered network (Table 2). 

As we anticipated, the incorporation of the time-frequency WT 
technique significantly enhanced the LSTM approach (Table 2 & Fig. 5). 
Compared to the individual LSTM, the forecasting errors of algal dy
namics by the hybrid WLSTM were reduced at all three resolutions, with 
an average decrease of 24%, 44%, and 55% in terms of RMSE, respec
tively. Specifically, the WT in the WLSTM structure functioned as a 
powerful pre-processing tool that could remove most of the irregular and 
noisy components from the raw series, and extract its cyclic signals with 
expeditious dyadic decompositions (Cannas et al., 2006; Nourani et al., 
2014). The extracted sub-series present multi-timescale specialties of the 
original series periodically or quasi-periodically, facilitating and pro
moting the algorithmic advantages of LSTM in processing series data. 
Furthermore, the parallel forecasting process of these sub-series could 
significantly reduce the error accumulations by the LSTM recursive 
strategy (Du et al., 2018). This is why in the present study the WLSTM 
technique can lead to significant increases in the LSTM and outperform 
the other techniques in algal dynamics prediction (Table 2, Table S3). 

More interestingly, the WLSTM model was also observed to be 
intensively powerful in simulating peak and extreme values with algal 
dynamics (Figs. 5b & 5c, Figs. S2b & S2c, Table S3). Typically, it is 
difficult for a data-driven model to accurately predict extreme situa
tions, since this type of model would tend to treat extreme values as 
outliers before carrying out their normal predictions (Song et al., 2021). 
However, due to the robust resistance and smoothing capability of WT to 
the irregular signals, the inclusion of extreme components in decom
posed input sub-series can be substantiallydecreased. This not only re
duces the probability that WT-coupled models detect the original 
outliers and thus disrupt the normal prediction, but also again could lead 
to a great fitting increase in the well-transformed mutations or extreme 
points (Du et al., 2018; Nourani et al., 2014). As the HAB occurrences 
are usually accompanied by sharp changes in algal biomass dynamics, 
the low forecasting error to extreme value is especially useful for the 

reliable judgment of HAB events. For instance, for the eutrophic water in 
which high-biomass HABs frequently occur (the Lake Tuesday here), our 
WLSTM satisfactorily forecasted the highly dynamic process of algal 
blooms (Fig. 6) and presented accurate judgment outcomes to its bloom 
levels based on the predicted values (Table 3). Such progress made in 
HABs models can provide not only more reliable support for the man
agers but also a better interpretation of this phenomenon in scientific 
research. 

Cross comparison between the time resolution showed that the 
greatest forecasting improvement of HAB dynamics by WLSTM was in 
the largest resolution (monthly). Such outcomes, on the one hand, were 
partially contributed by the unsatisfactory predictions of LSTM models 
based on a monthly dataset. Compared to the short-term time series in 
relatively fine time resolutions such as hourly and daily, the long-term 
monthly series not only vary over a wide scale of time frequencies but 
could be easily contaminated by intensive cross-periodic oscillations and 
noises (namely highly non-stationary) (Li et al., 2015). It is evident that 
the computation intelligence methods still exhibit drawbacks to respond 
to this circumstance, though they own high capability and flexibility in 
modeling sequential processes (Cannas et al., 2006; Nourani et al., 2014; 
Wang et al., 2013). Nevertheless, on the other hand, it is also reported 
that the underlying periodicity pattern is more dominant in the larger 
time-scale series than in smaller ones (Nourani et al., 2014). Thus, by 
decomposing main time series into time-frequency space, the latent 
modes of periodicity components that existed in such series can be 
detected and fed to the LSTM to further improve HAB forecasting at a 
large monthly resolution. This is not alone, in the literature reported by 
Nourani and Behfar (2021), their WLSTM approach presented analogous 
modeling results for the runoff-sediment process closed to our 
time-series patterns of algal dynamics. This again indicates that the 
WLSTM technique could be useful for developing multi-temporal-scale 
HAB prediction models. 

We also tested the multi-step predictability of hybrid WLSTM models 
in another fertilized lake (Lake Tuesday). Along with the increase of 
time lags from 1 day to 3 days, the forecasting accuracy by the WLSTM 
approach gradually decreased from 0.971 to 0.843 in terms of prediction 
R2. The similar phenomenon appeared in many LSTM-based models. For 
instance, based on the 12-year time series of six water quality parame
ters, Liang et al. (2020) observed a roughly 50% drop in the performance 
of LSTM when making predictions for chl-a dynamics with the time lag 
increased from 1 day to 31 days. Zheng et al. (2021) and Shan et al. 
(2022) also found that the forecasting power of LSTMs reduced in the 
next multiple time steps (1 h to 12 days), where the RMSE of chl-a 
predictions enlarged by an average of 1.5 to 2 times. This indicated that 
the autocorrelation structure of algal time series could gradually dispel 
with the increase of time lag, consequently leading to adverse impacts 
on the overall modeling accuracy (Shamshirband et al., 2019). In 
addition, it showed the benefits of automatic capture of long-temporal 
information via LSTM recurrent chains, which may not successfully 
work to improve the performance but increase the convergence 
complexity if the lag time of prediction task is too long (Yang et al., 
2019). Therefore, despite a model with multi-step predictability which 
would be valuable for the practical deployments, selecting an appro
priate time lag is still an important concern for the HAB forecasting 
using WLSTM. 

5. Conclusion 

In this work, we developed a promising hybrid HAB forecasting 
approach (WLSTM) combining the wavelet analysis technique (WT) 
with a deep-learning model (LSTM), which: a) performed better than the 
state-of-the-art time-series tools including LSTM, DNN, and ARIMA; b) 
robustly predicted algal dynamics at the hourly, daily, monthly resolu
tions; c) showed powerful multi-step-ahead predictability and had high 
overall judgment accuracy to the extreme algal bloom situations over 
alert thresholds. Therefore, the hybrid approach could be a practical and 
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useful tool for the early warning and management of algal blooms. 
However, the current research mainly focused on the hybrid use of 
discrete wavelet transformation and conventional structured LSTMs. In 
future research, more effective time-frequency analysis techniques and 
more advanced deep-learning models will be explored to further 
improve the forecasting accuracy of algal blooms. 
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