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Eeywords: The rapid emergence of deep leaming long-zhort-term-memory (LSTM) technique presents a promising solution
Algal bloom forecasting to algal bloom forecasting. However, the discontinuous and non-stationary processes within algal dynamics still
De=p leaming largely limit the functions of LSTMs. To overcome this challenge, an advanced time-frequency wavelet analysis
W[m [WA) technique was introduced to enhanee the prediction aceuracy of LETMz. Herein, the novel hybrid approach

(named WLSTM) successfully decreased the algal forecasting inaccuracy of claszic LSTMs by 41% + 8% in Lake
Mendota (Wisconzin, USA), with powerful one-step-ahead predictions at hourly, daily, and monthly time reso-
Iutions (B = 0976, 0.878, and 0.814, respectively). In addition, the WLETM outperformed the other two widely
uzed algal forecasting approaches - deep neural network (DNM), and autoregrezsive-integrated-moving-average
[(ARIMA) model, represzented by average 72% and 85% decreaze in root-mean-square-error, respectively.
Furthermore, the WLSTM was implemented in an experimentally fertilized lake (Lake Tuesday, Michigan) for a
multi-step forecasting examination It zatisfactorily forecasted the algal fluctuations involving substantial peak
mde:mvzlnes{z\mgef = 0.900) and prezented accurate judgment outcomes to their bloom levels with
high accuracy > 95% on average. Thiz work highlighted the utlity of deep leaming approaches in effective early-
warning for algal blooms, and demonstrated an important direction for improving the adaptability of conven-
tional deep learning approaches to the aguatic problems.

1. Introduction Mevertheless, considering the complex disturbances of external enwvi-

ronments and the non-linear and non-stationary nature of algal dy-

Harmful algal blooms (HABz) have increased worldwide, ezpecially
in the regione that are under the intense influence of chmate change and
human activibies (Pacr]l and Secott, 2010; Reichwaldt and Ghadouam,
201 2; Xiao et al., 201 2a). Such a HAB event occurring in aquatic habitat
may cause crifical environmental izsues through toxic production and
high-biomass accumulation, posing great riskes to the ecosystem health
and water pecurity (Heisler et al, 2008; Zingone and Oksfeldt Ene-
wvoldzen, 2000). The problems arizsing from HABs have become a globally
major concern [Anderson et al | 2002; Hallegraeff, 1993).

Modeling techniques to proactively predict in-situ algal dynamics are
important for local HAB management. A powerful model can be both
beneficial in formulating strategies for the HABe mhibition and in early
planming to mitigate negative impacts from a bloom event that is
impending or already underway (Coad =t al |, 201 4; Glibert =t al | 2010).
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namice (Li =t al., 2015; Zingone and Oksfeldt Enevoldsen, 2000}, the
forecasting of algal blooms remaine a challenging work, particularly for
the traditional statistical models based on a prior form lacking
self-adaptability (e.z., inear regression, autoregressive MovIng average
modele) (Omer Paruk, 2010; Zhang, 2003).

Machine learning i1z well-known to be useful In approximating
complicated real-world observations (Zhongz =t al., 2021). Popular al-
gorithms mmecluding the neural networks (Deng ot al, 2021; Hadjizolo-
mou et al, 2021}, support vector regressions (Gonzalez Vilas et al,
2014; He =t al, 2020), random foreste (Harriz and Graham, 2017;
Segura et al |, 2017), and gradient boost machines (¥1a =t al , 2020}, have
been widely applied in HAB predictions. Recently, given the algorithmic
advancements in machine leaming, the emergence of deep-learning
techniques such as the Long-Short-Term-Memeory (LSTM) has recerved

Received 15 March 2022; Received in revized form 30 April 2022; Accepted 11 May 2022

Available online 14 May 2022
0043-1354,/% 2022 Elsevier Ltd. All rights reserved.


mailto:xi@zju.edu.cn
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2022.118591
https://doi.org/10.1016/j.watres.2022.118591
https://doi.org/10.1016/j.watres.2022.118591
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2022.118591&domain=pdf

M. Liuw et ol

increasing attention in the modeling domain of time series. Az an
advanced recurrent network, the state-of-the-art LSTM 1z capable of
sequence data through multiple hidden information-processing layers,
while avoiding the “gradient wanishing”™ and “gradient exploding”
problems in the recurrent training process (Deng, 2014; Nourani and
Behfar, 2027). It was observed that this progress in LETMe improved the
prediction of non-linear algal blooms (Huang =t al., 2021; Shin =t al |
2019; Zheng =t al, 202]1]). Howewver, pure data-drven approaches are
often inadequate to cope with the lughly varying periodicity of algal
dynamice, 1 ¢, non-stationarity (Wang =t al | 201 3; Xiao et al , 2017). In
practice, an appropriate data pre-processing procedure for the nput
algorithmie advantages of modeling approaches (Cannas =t al., 2006;
Mourani et al., 2074).

In recent decades, the highly developed wavelet analysiz (WA) has
appearsd to be practical in addressing the non-stationary difficulty
(Mourani et al., 2014). The WA iz an advanced time-frequency analyzis
techmique that overcame the drawbacks of classic Fourier analysis,
which requires stationary and linear time series data (Labat, 2005).
Comparatively, WA is robust to the noisy components and can provide
multiple time-scale presentations for the observed signals, which is
useful for the interpretation of non-stabonary information mm a
time-gerice analyeis (Daubechies, 1990; Labat, 2005; Li =t al, 2015;
Mourani and Behfar, 2021). It was shown that the input signal data
decomposed by WA could contain more details and could largely benefit
the leamning of original signals by empirical models (Fisi and Cimen,
2011; MNourani et al | 2014; Xiao et al., 201 7). Therefore, in this study,
we hypothesized that the hybrid of the deep-leamning LETM algorithm
and the tme-frequency WA techmique (namely, the Wavelet-LETM;
WLSTM) would increase the modeling capacity to capture algal
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dynamics and thuz enhance the forecasting performance of classic
L5TMs.

Therefore, the main objective of thiz work was to explore the algal
bloom forecasting by the hybrid WLSTM approach. To achieve the goal:
(1) the proposed WLSTM was developed and walidated for one-step
forecasting of daily algal dynamics in Lake Mendota, Wisconsin; (2)
considering the wide temporal vanabilities of algal dynamics, the vali-
dation was simultaneously conducted at hourly and monthly time res-
olutions; (3) in addition to the conventional LSTM, the WLETM was alzo
cross-compared with two other state-of-the-art HAB forecasting ap-
proaches at hourly, daily and monthly resolution levels, 1.2, deep neural
network (DMN) and autoregressive integrated moving average (ARIMA)
model; (4) to further test its robustness and serviceability under extreme
experimentally fertilized lake (Lake Tuesday, Michigan] for a multi-step
forecasting examination. The hybrid WLSTM approach could serve az a
reliable and cost-effective HAB forecasting tool for water management
in the future.

2. Material and methods

2.]. Monitoring data of algal dynamics in the Lake Mendota and the Lake
Tuesday

The location of Lake Mendota iz near Madizon city, southern Wis-
consin, USA (Fig. 1). Itis a main drainage lake of the Yahara watershed,
with a highly developed shoreline of 33.8 km and a surface area of 39.61
km®. Az a eutrophic lake, it has frequently experienced intenze phyto-
plankton bloomes over the past decades (MNeal, 1987). In 1995, Lake
Mendota was added to the North Temperate Lakes-Long Term Ecological
Research (NTL-LTER, hitpe://lter imnology wise edu/) project, and has
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Fig. 1. Locations of monitoring site in the Lake Mendota and the Lake Tuesday.
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been continuously monitored at a regular frequency (every 2 weeks
during the ice-free season, March to September; every 6 weeks during
the ice-covered season) since then. In addition, an instrumented buoy
with multiple limnological sensors was deployed on Lake Mendota,
which started to provide high-resolution (1 min) monitoring informa-
tion from 2006, such as the chlorophyll concentration, turbidity, con-
ductivity, pH, and dissolved oxygen. As shown in Table 1, mean monthly
cyanobacterial dynamics for a 23-year period (January 1995 to
November 2018) were derived from the LTER monitored data (Mag-
nuson et al., 2020a), and were quantified as a natural unit using cell
biomass (mg/L). Hourly and daily average values of chlorophyll con-
centration from 01 Apr. 2020 were calculated from the original
high-resolution data (Magnuson et al., 2020b) measured with a
multi-parameter analyzer (YSI EXO2, Yellow Springs Instrument Inc.,
USA), and were reported as relative fluorescence units (RFU) for further
development of forecast models.

Lake Tuesday is located in the upper peninsula, Michigan, USA
(Fig. 1). It is a relatively small and shallow lake in oligotrophic to
mesotrophic conditions before the whole lake manipulation. From 2013
to 2015, a fertilization experiment was conducted there (Pace et al.,
2021a). In this experiment, the inorganic nitrogen and phosphorus were
gradually added to the lake each year (from mid-May to early
September) to cause algal blooms. Meanwhile, the high-frequency
chlorophyll fluorometer (Hydrolab DS5X, HYDROLAB Inc., U.S.A) was
deployed in this lake to continuously collect chlorophyll-a (chl-a) con-
centrations (ug/L) at 5-minute intervals. Similar to the Lake Mendota,
daily averaged chl-a dynamics were calculated based on the source
monitored data (Pace et al., 2021b) and formed the modeling dataset for
the Lake Tuesday (Table 1).

Additionally, to determine the outbreak conditions of algal blooms in
Lake Tuesday, two chl-a thresholds related to the health-based drinking-
water supplies were adopted (1 g/L and 12 g/L), as defined by the

Alert Level Framework of the World Health Organization (World
Health Organization, 2021). The first threshold corresponds to the
Alert Level I , representing an early stage of blooms; and the second
threshold corresponds to the Alert Level II , representing the heavy
stage of bloom situation.

2.2. WLSTM model development

2.2.1. The deep learning algorithm - LSTM network

The LSTM network is a special form of recurrent neural network
(RNN), which is a variant of a deep neural network that can learn
temporal dependency from sequential data using loop structure. In the
LSTM, memory blocks are introduced to replace the hidden neurons for
connecting hidden layers (Fig. 2). Each memory block consists of a
memory cell (C), an input gate (i), a forget gate (f), and an output gate
(0). By either updating or removing previously accumulated information
to the memory cell through three control gates, the LSTM can well learn
the remote dependencies and overcome the gradient exploding and
vanishing issues in the backpropagation of conventional RNN
(Hochreiter and Schmidhuber, 1997). The learning process and internal
structure of the LSTM memory block was presented in Fig. 2a (more
algorithmic details and demonstrations were in the supporting infor-
mation, Text S1), and Fig. 2b showed a basic architecture of LSTM

Table 1
Overview of the monitoring datasets for algal dynamics.
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network modeled on the sequential inputs.

To improve the overall performance in deep learning, a standard
technique of model ensemble was applied in the LSTM network, where
multiple independent models with the same structure were trained and
their predictions were combined (Dietterich, 2000). Fig. 2¢ showed an
illustration of the ensemble of LSTM networks.

2.2.2. The time-frequency analysis technique - discrete wavelet
transformation

Wavelet transformation (WT) is a useful mathematical tool in signal
theory after Fourier transformation, which overcomes the limitations of
Fourier transformation in analyzing non-stationary time series (Labat,
2005). By decomposing the main time series into time-frequency space
to obtain several sub-series, the WT can effectively extract specific time
and frequency features from the original series simultaneously. To
achieve this task, the sub-series are generally derived from a template
known as the mother wavelet , in which these decomposed wavelets
are scaled and translated according to the mother wavelet. Yet, the
calculation of scale and translation parameters at every possible position
requires substantial computation work for a WT (e.g., continuous
wavelet transformation; CWT). Herein, the discrete wavelet trans-
formation (DWT) considerably reduces the computational complexities
to apply WT, as its scale and position are usually based on powers of two,
called dyadic scales and positions (Cannas et al., 2006). The DWT of
series f t is often conducted as follows:

@

(2)

Where j and k are the integers controlling the decomposition level and
translation, respectively; ao is the constant scale factor of decomposition
(usually is 2), by is the constant position factor of translation (usually is
1); j « t is the wavelet function; t is the mother wavelet; and
Wy j k are the DWT coefficients. Then a low-frequency approximation
sub-series (A,) and some high-frequency detail sub-series (D1, Dy, ,
D,) can be obtained by repetitively passing the approximation co-
efficients through the low-pass filter and the high-pass filter at each
decomposition level till the preset level is reached.

2.2.3. Hybrid architecture of WLSTM model

The hybrid WLSTM model was developed by combining the wavelet
transformation and LSTM network (Fig. 3). The WLSTM modeling
mainly has three stages: 1) the DWT of the original series of algal dy-
namics; 2) the input and forecasting of each sub-series using the
ensembled LSTM method individually; 3) and the re-composition of
individual output series for the final forecasted results.

2.2.4. Model training and prediction

To appropriately train the deep-learning LSTM modules within the
WLSTM structure, our modeling procedure included two phases: (a)
calibration and (b) prediction. In the calibration phase, the first 80% of
series data were used to construct the networks. To avoid over-fitting
problems, the constructing data were randomly divided into 70%

Location Data resolution Monitoring period Sample size Input parameter Statistical information
Mean S.E. Range
Lake Mendota Hourly 2020/04/01 - 2020/7/31 2696 Chlorophyll concentration (RFU) 1.24 0.02 5.72-0.01
Daily 2020/04/01 2020/11/06 211 1.01 0.26 3.83-0.03
Monthly 1995/01 2018/11 219 Cyanobacterial cell biomass (mg/L) 1.56 0.17 14.36 - 0.01
Lake Tuesday Daily 2013/05/16 2013/09/05 108 Chlorophyll-a concentration (ug/L) 1445 0.58 30.37 7.44
2014/05/15 2014/09/05 109 16.42 0.45 30.16 9.45
2015/05/08 2015/08/29 109 15.98 0.52 34.38 8.66
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Fig. 2. Sketches of the LSTM models. (a) The leaming process and internal structure of LSTM memory block at time t. (b) The schematic architecture of the LSTM
network with hidden state of 4, LSTM layer of 2, and input dimension of 3. (¢) An illustration of the ensemble of LSTM networks. In Fiz. 2(b), Sy represents the value

of input time series § at point N, d reprezents the time lag of output tme series.

tramning sct and 30% testing set for conducting cross-validation, in
which the networks were trained and tested, respectively. After the
cross-validation was complete, the model and parameters that per-
formed best on the testing set would be retained. For conducting the
performed on a different random train-test split of the constructing data
and then averaged the outpute (Dictterich, 2000). In the prediction
phase, predictions were made on new datasets based on the calibrated
models. We implemented both the first 80% of series data (1.2, the entire
constructing data) and the remaining 20% of senes data (the unused
data), to finally evaluate the model performances on in-sample and
out-of-sample datasets, respectively. While in the case of Lake Tuesday,
2013 and 2014 data were used for constructing and 2015 data for
out-of-sample prediction.

We implemented our LSTM network using the deep-learning
framework of PyTorch (Paszke =t al | 2017). For computational «ffi-
ciency, a grid-search scheme based on mini-bateh stochastie gradient
optimization was used for tuming the network hyperparameters (sze
Tables 51 & £2). We trained an ensemble of 15 LETM models according
to our prior experiment on the effect of ensemble number on LSTM
performanee (see Fig 51). In thiz study, the Daubechies-4 (db4) was
applied az a mother wavelet to decompose the original main series into 3
levels due to itz wide acceptance and high efficiency (Mourani =t al |

2014). The DWT procedures were accomplizshed in the MATLAB =oft-
ware uzing the Wavelet Toolbox.

2.3. The other time-series forecasting approaches for comparizon - DNN
and ARTMA

For comparison purposes, the classical deep leaming approach — the
deep neural network (DNN, 1e., multi-layer feed-forward network wath
back-propagation algorithm), and the traditional univariate ime-series
prediction approach — the autoregressive-integrated-moving-average
[ARIMA) models, were alzo developed and tested (detailed informa-
tion about the two approaches were in Supporting Information, Text 52).
To conduct this, the DNN network was trained based on mini-bateh
stochastic gradient optimization using a grid-search procedure with
the sklearn library in Python 3.8 software (Pedregosza et al |, 20]9), and
the combinations of model hyperparameters scored the lowest testing
loes were lastly selected (zee also Tables 51 & £2). We also trained an
ensemble of 15 DNN models using the same technique as the LSTM. For
function of package forecast in R environment (Hyndman and Ehanda-
kar, 2008), via three iterative stepe of model identification, parameter
estimation, and model checking.
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Fig. 3. The forecasting process of the hybrid WLSTM model.

2.4. Data processing

In this study, the inputs of deep-learning models were recomposed
from the raw time series (S). We used the firet three data points (S
SH+1, SN42) of S to forecast the data points with the time lags of d (Swy. 2 4
4) (eee Text 53 in the supporting information for more details). The time
lag d waz set to 1, 2, and 3, respectively, depending on the case studied.
For WLSTM modeling, the raw time seriez (5) was replaced by the
decomposed sub-series accordingly (1.e., Ag, Dy, Da, ..., D) (Fig 2).

To facilitate the training of L5TM and DNN models, the input data
were pre-normalized. The normalization was denoted by:

r =X
X =

(3)
Xad

thmﬂ::xiisth:nmmaliz:dvahl:ufubﬂ:nmd:q;fmdxdamﬂu

mean and standard deviation of the obeerved data, respectively.

2.5. Model azzessmentz

To measure the deviation of predicted values from the observed
values, the correlation coefficient {Rz}, root-mean-square-error (RMSE),
and normalized-root-mean-square-error (NREMSE] were used and caleu-
lated as:

= 3
Rzl 4
EalF-wmt “
RMSE = Z—?-Jti" %) 5
NRMSE — _RMSE ]
¥ear — ¥emin

Whﬂtnisﬂmbuta]mmb:rnfdatapuinm;?imd)’garcthrfﬂlprcdicb:d

and observed values; ¥ 15 the mean of ¥i; ¥mar and ¥min are the maxima
and minima of ¥;.

The predicted values were also used to judge the algal bloom alert
lewels in Lake Tuesday. Therefore, to evaluate the performance on
claszification, the Accuracy (overall accurate rate), TPR (true positive
rate), and TNR (true negative rate) were applied bazed on the Confusion
Matrix, defined as:

True Pasitives + True Negatives

Accwracy = (7}
n
True Positives
TPR = g Positives T False Negatives (8)
Trus Negatives
TRR = Trus Negatives + False Positives ()

Here, n iz also the total number of data points.
3. Results

3.1. Forecaszting enhancement by the hybrid WLSTM compared to the
LETM

Firetly, the WLSTM approach was developed and verified on the
daily algal dynamies in Lake Mendota, Wisconsin. The monitored daily
average algal dynamics of Lake Mendota was shown in Fiz. 4a (Apr. 1 to
MNowv. 6, 2020). In detanl, the annual algal growth presented a common
downward trend, with main peaks concentrated in the first three months
(Le., md-spring to early summer). In this non-stationary signal mode,
although the use of the LSTM model suceessfully learned algal variations
in the calibration phase, the latter prediction showed unsatisfactory
forccasting resulte (Fiz. 5b), as indicated by the calculated R, RMSE,
and NEMSE in Table 2. Purthermore, it can also be seen from Fiz. S5b that
several sharp changes ocowrred around the 40th and 20th day causing
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Fig. 4. Wavelet decomposition of the daily average chlorophyll dynamics in the Lake Mendota (5: original main series), using the db4 mother wavelet with

approximation coefficient (As) and three levels of detailed coefficients (D - Da).

large simulation errors to the LSTM model, despite it achieving high
overall calibration performance.

When coupled with the time-frequency wavelet algorithm, the per-
formance of the WLETM model significantly improved with an inerease
of 10% to 57% compared to the original LSTM medel (Takble 2 & Fig. 5b,
Table 53). The wavelet decomposition of daily original algal series (5]
usefully produced an approximation cocfficient (As) and three levels of
detailed coefficients (Dy - Dy) chown in Fig. 4b — 4e. Compared with the
main series, the general trend and major peaks of 5 were identified by
the low-frequency sub-series As, while ite more subtle characteristies
were simultaneously captured and presented in the high-frequency sub-
geries level by level from Iy to Dy, Moreover, the apparent simulation
errore along with the sudden boost or eut of the algal population in the
L5TM model were well diminished and smoothed by the hybrid WLSTM
methad (Fig. 5b).

MNoticeably, further validation both proved better forecasting per-
formance of the WLSTM approach at both hourly and monthly time
resolutions, az compared to the LSTM approach (Table 2 & Fiz. 5).
Ezpecially in the long-term monthly validation case (Fiz. S5¢), the per-
formance of WLETM: achieved approximately 3 to 6 times higher ac-
curacy than the conventional LSTM in terms of R® statistic (0. 858 vs.
0.278 m calibration, and 0.814 ve. 0. 036 in prediction, respectively).
Moreover, the WLSTM presented more accurate predictions of the
extreme situations that frequently occurred in monthly algal time series
(Fiz. 5e), with around 60% reduction in the forecasting error (Table 53).
In addition, the highest forecasting aceuracy of WLSTM was reached at
the finest hourly resolution, shown by ite biggest R (0.99] and 0.976),
smallest RMSE (0.116 and 0.052 RFU), and lowest NEMSE (0.020 and
0.027). All of these evidences indicated that the dewveloped hybrid
WLSTM method can reliably forecast the algal dynamics on multiple
time scales ranging from hours to months.

3.2, Comparizons of the hybrid WLSTM and other fme-series forecasting
approaches

The hybrid WLSTM and the other two widely used time-series fore-
casting approaches (DNMN and ARIMA) were aleo cross-compared based
on the algal dynamies in the Lake Mendota (Table 2 & Table 53). The

detailed performance of the calibrabon and predichion via DNN and
ABRIMA was shown in Fig. 52. For the DNN approach, the best forecasting
was achieved at the hourly resolution with highly satisfactory RMSE and
MEMSE walues, which iz consistent with the WLSTM and LSTM ap-
proaches. But etill, the hourly forecasting performance of DNN dropped
by 30% to 20% az compared to WLSTM in terme of RMSE and NREMSE.
Interestingly, although the DNN models performed better than LSTM at
the monthly resclution (R values of 0.161), it was =till largely worse
than the WLSTM approach with B value of 0.858, and performed poorly
in predicting the extreme values (Fig. 52c). Az for the ARIMA approach,
all models presented the lowest performance among the three cases
studied (Table 2}, showing ite imitation in coping with non-stationary
and complicated forecasting problems of algal dynamics. Furthermore,
the recommended ARIMA structure of AR order (p), differencing degree
(d), and MA order (g) were the ARIMA (3,1,2), ARIMA (0,1,0), and
ARIMA (4,0,2), corresponding to the hourly, daily, and monthly models,
respectively (please see Text S4). This indicated that the ARIMA
required a longer time series than the other three deep learning network-
based approaches to construct a forecasting model. Generally, the
WLSTM techmique showed huge advantages over the conventional
neural network and the statistical ARIMA method.

3.3. Further application of the hybrid WLSTM in an experimental
fertilized lake

To test ite robustness and serviceability, we further applied the
hybrid WLSTM approach in a lake with experimental fertihzation (Lake
Tuesday) (Fiz. 6). In thiz lake, the excessive nutrient loads apparently
triggered the algal over-proliferations, in which the daily chl-a con-
centrations excesded the early bloom stage threshold all vear round (1.e.,
Alert level I, 1 pg/L). In addition, the large and vanational fluctuations
of algal dynamice can be obeerved there (ranging from 7.4 to 34.4 ug/L
of chl-a), much higher than that of an unmanipulated lake, such as the
Lake Mendota with chl-a maximumly ranged from 0.1 to 14.3 mg/L
(Fiz. 5e & Table 1), leading to an inerease of mutation and extreme
points within the ime series (Fig. 6).

Satisfactory simulations of the algal dynamics were observed in the
three WLETM models with an output ime lag of 1, 2, and 3 days,
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Table 2
The hourdy, daily, and monthly forecasting performance of hybrid WLSTM comparing to LSTM, DNN, and ARIMA in the Lake Mendota.
Resolution  Model Calibration phage* Prediction phage*
B RMSE HRMEE B RMSE NERMSE
Hourly WLSTM 0991 0116 0020 0976 0.052 0.027
LeT™ 0969 (-AZ.29%) 0216 (-ABS.6%) 0038 (-AB3.Tw) 0958 (-4 1.9%6) 0.069 (-AF2E%) 0.035 (-4 74.5%)
DNMN 0570 (-AZ. 19%%) 0214 (-AB4 4%) 0uas7 (-AST_4%6) 0958 (-4 1.9%6) 0.069 (-AF2E%) 0.035 (-4 73.096)
ARIMA 0968 (-AZ.39%) 0221 (-AS0.5%:) 0ua3e (-A93.5%6) 0955 (-4 1.6%6) 0.063 (-A31.2%6) 0.035 (-4 T2 79)
Daily WLSTM 0982 0115 0ua30 O.67B 0114 0.086
LeT™ 0904 (-AB.09%) 0269 (-A133.9%:) 0071 (-A136.4%6) 0615 (-4 20 0%) 0.202 [-ATE.E) 0153 (-4 T7.8%)
DNMN 0901 (-AB.39%) 0273 (-A137.1%) 0072 (4139 5%) LGS0 (-A 28 2%6) 0193 [-AT3.3%) 0150 (-4 74.1%)
ARIMA 0911 (-AT.39%) 0269 (-A133.6%) 0071 (-A136.4%6) 0.550 (-A37_4%) 0.224 [-ADE6.5%) 0166 (-493.3%)
Monthly WLSTM 0858 0.B55 0060 0.814 1.382 0112
LeT™ 0278 (-AG7.6%) 1.924 (-A125.0%:) 0134 (-A123._3%6) 0036 [-AS5.6%6) 3.057 (-4 121.2%) 0.264 (-4 135.7%)
DNMN 0183 (-ATB.5%) 2046 (-A139.3%:) 0143 (-A137.6%) 0161 (-A S0 3%6) 2932 (-4 112.2%) 0.233 -4 112 3%)

ARIMA 0.264 (-465.2%:) 1.928 (-A125.59%) 0134 (-A123.3%) 0.006 (-A99. 3% 3130 (-4 126.5%) 0.253 (-4 125.996)
* The values in parentheses reprezent their relative changes to the WLETM outeome.
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(a) Model calibration (2013 and 2014 data)
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(b) Model prediction (2015 data)
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Fig. 7. The excesdance counts of two algal bloom alert thresholds forecasted by the hybrid WLSTM models in the Lake Tuesday, with time lag of 1, 2, and 3 days.

respectvely (Fige. 6& 7, Table 3, Table &3). Among three models, the
optmal performance waz obtained using the forecasting interval of 1
day, as revealed by the highest values of R® in calibration (0.987) and
prediction (0.971). Nevertheless, it chould alzo be noticed that models
for the longer intervals of 2 and 3 daye both achieved satisfactory results,
which was valuable for the flexible deployment of forecasting worlk
Furthermore, no eclear behavior of model overestimation or

underestimation on the peak or extreme values was obeerved, and all
WLETM models suceessfully forecasted 217 (100%) exceedances of the
lewel 1 threshold in the calibration phase and 109 (100%) in the pre-
diction phase (Fige. 6& 7). For the exceedances of level II, an average
Accuracy rate of 92.5% was accomplished, with TPR > 93.1% (TPR =
95.1%) and TNE = 59.3% (TNR = 82.8%). Overall, the hybrid WLETM
technique showed a high power in forecasting algal bloom events of the
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next multiple time steps.
4. Discussion

Firstly, our results revealed the superiority of artificial-intelligence-
based algorithms (LSTM, WLSTM, and DNN) in the HABs forecast, as
compared to the traditional linear ARIMA model. Due to various envi-
ronmental impacts, such as climatic status (Xiao et al., 2019b, 2019a),
hydrological condition (Cha et al., 2017; Park et al., 2015), and nutri-
tional level (Beaulieu et al., 2013; Heisler et al., 2008), the dynamics of
algal growth were usually shown as a shifty and step-by-step process,
characterized by irregular or time-limited time series that was consid-
ered to be non-linear and non-stationary (Li et al., 2015; Yu et al., 2020).
In our study, the evaluations of ARIMA models (e.g., monthly R?  0.27,
Table 2) indicate that this complicated time-series data is too chal-
lenging for the traditional methods, which are often shown to be poor to
address HAB forecasting problems (He et al., 2020; Omer Faruk, 2010;
Xiao et al., 2017). Fortunately, the robust performance of deep-learning
approaches (LSTM, WLSTM, and DNN) presents promising solutions to
this modeling predicament (Table 2). In fact, given the rapid develop-
ment of such computational intelligence approaches in the ecological
field, they have been gradually proven to be well-suited to cope with the
complex and real-world aquatic dataset filled with uncertainties (Ali-
zadeh et al., 2018; Kargar et al., 2020; Kouadri et al., 2021; Rousso et al.,
2020). Especially, due to the useful characteristics, e.g., the self-learning
of sequence dependencies and the efficient structure of gate units, the
LSTM approach has been widely suggested to be useful to reliably
handle the non-linear HAB dynamics (Cho et al., 2018; Shin et al., 2019;
Zheng et al., 2021). However, out of our expectation, the increscent
temporal variations and non-stationary oscillations in algal time-series
still posed great forecasting difficulties to the advanced LSTM struc-
tures. Its prediction R? decreased largely from 0.958 (hourly) to 0.615
(daily) and 0.036 (monthly), even lower than the conventional
multi-layered network (Table 2).

As we anticipated, the incorporation of the time-frequency WT
technique significantly enhanced the LSTM approach (Table 2 & Fig. 5).
Compared to the individual LSTM, the forecasting errors of algal dy-
namics by the hybrid WLSTM were reduced at all three resolutions, with
an average decrease of 24%, 44%, and 55% in terms of RMSE, respec-
tively. Specifically, the WT in the WLSTM structure functioned as a
powerful pre-processing tool that could remove most of the irregular and
noisy components from the raw series, and extract its cyclic signals with
expeditious dyadic decompositions (Cannas et al., 2006; Nourani et al.,
2014). The extracted sub-series present multi-timescale specialties of the
original series periodically or quasi-periodically, facilitating and pro-
moting the algorithmic advantages of LSTM in processing series data.
Furthermore, the parallel forecasting process of these sub-series could
significantly reduce the error accumulations by the LSTM recursive
strategy (Du et al., 2018). This is why in the present study the WLSTM
technique can lead to significant increases in the LSTM and outperform
the other techniques in algal dynamics prediction (Table 2, Table S3).

More interestingly, the WLSTM model was also observed to be
intensively powerful in simulating peak and extreme values with algal
dynamics (Figs. 5b & 5c, Figs. S2b & S2c¢, Table S3). Typically, it is
difficult for a data-driven model to accurately predict extreme situa-
tions, since this type of model would tend to treat extreme values as
outliers before carrying out their normal predictions (Song et al., 2021).
However, due to the robust resistance and smoothing capability of WT to
the irregular signals, the inclusion of extreme components in decom-
posed input sub-series can be substantiallydecreased. This not only re-
duces the probability that WT-coupled models detect the original
outliers and thus disrupt the normal prediction, but also again could lead
to a great fitting increase in the well-transformed mutations or extreme
points (Du et al., 2018; Nourani et al., 2014). As the HAB occurrences
are usually accompanied by sharp changes in algal biomass dynamics,
the low forecasting error to extreme value is especially useful for the
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reliable judgment of HAB events. For instance, for the eutrophic water in
which high-biomass HABs frequently occur (the Lake Tuesday here), our
WLSTM satisfactorily forecasted the highly dynamic process of algal
blooms (Fig. 6) and presented accurate judgment outcomes to its bloom
levels based on the predicted values (Table 3). Such progress made in
HABs models can provide not only more reliable support for the man-
agers but also a better interpretation of this phenomenon in scientific
research.

Cross comparison between the time resolution showed that the
greatest forecasting improvement of HAB dynamics by WLSTM was in
the largest resolution (monthly). Such outcomes, on the one hand, were
partially contributed by the unsatisfactory predictions of LSTM models
based on a monthly dataset. Compared to the short-term time series in
relatively fine time resolutions such as hourly and daily, the long-term
monthly series not only vary over a wide scale of time frequencies but
could be easily contaminated by intensive cross-periodic oscillations and
noises (namely highly non-stationary) (Li et al., 2015). It is evident that
the computation intelligence methods still exhibit drawbacks to respond
to this circumstance, though they own high capability and flexibility in
modeling sequential processes (Cannas et al., 2006; Nourani et al., 2014;
Wang et al., 2013). Nevertheless, on the other hand, it is also reported
that the underlying periodicity pattern is more dominant in the larger
time-scale series than in smaller ones (Nourani et al., 2014). Thus, by
decomposing main time series into time-frequency space, the latent
modes of periodicity components that existed in such series can be
detected and fed to the LSTM to further improve HAB forecasting at a
large monthly resolution. This is not alone, in the literature reported by
Nourani and Behfar (2021), their WLSTM approach presented analogous
modeling results for the runoff-sediment process closed to our
time-series patterns of algal dynamics. This again indicates that the
WLSTM technique could be useful for developing multi-temporal-scale
HAB prediction models.

We also tested the multi-step predictability of hybrid WLSTM models
in another fertilized lake (Lake Tuesday). Along with the increase of
time lags from 1 day to 3 days, the forecasting accuracy by the WLSTM
approach gradually decreased from 0.971 to 0.843 in terms of prediction
R2. The similar phenomenon appeared in many LSTM-based models. For
instance, based on the 12-year time series of six water quality parame-
ters, Liang et al. (2020) observed a roughly 50% drop in the performance
of LSTM when making predictions for chl-a dynamics with the time lag
increased from 1 day to 31 days. Zheng et al. (2021) and Shan et al.
(2022) also found that the forecasting power of LSTMs reduced in the
next multiple time steps (1 h to 12 days), where the RMSE of chl-a
predictions enlarged by an average of 1.5 to 2 times. This indicated that
the autocorrelation structure of algal time series could gradually dispel
with the increase of time lag, consequently leading to adverse impacts
on the overall modeling accuracy (Shamshirband et al., 2019). In
addition, it showed the benefits of automatic capture of long-temporal
information via LSTM recurrent chains, which may not successfully
work to improve the performance but increase the convergence
complexity if the lag time of prediction task is too long (Yang et al.,
2019). Therefore, despite a model with multi-step predictability which
would be valuable for the practical deployments, selecting an appro-
priate time lag is still an important concern for the HAB forecasting
using WLSTM.

5. Conclusion

In this work, we developed a promising hybrid HAB forecasting
approach (WLSTM) combining the wavelet analysis technique (WT)
with a deep-learning model (LSTM), which: a) performed better than the
state-of-the-art time-series tools including LSTM, DNN, and ARIMA; b)
robustly predicted algal dynamics at the hourly, daily, monthly resolu-
tions; ¢) showed powerful multi-step-ahead predictability and had high
overall judgment accuracy to the extreme algal bloom situations over
alert thresholds. Therefore, the hybrid approach could be a practical and
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Table 3
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The accuracy of algal bloom forecasting by the hybrid WLSTM models with time lags varied from 1 to 3 days in the Lake Tuesday.

Alert level Time lag (day) Calibration phase*

Prediction phase*

TPR TNR Accuracy TPR TNR Accuracy
I N 1 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 2 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
N 3 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
I N 1 97.4% 93.5% 96.3% 97.7% 86.4% 95.4%
N 2 94.8% 95.2% 94.9% 94.3% 68.2% 89.0%
N 3 93.5% 91.9% 93.1% 93.1% 59.1% 86.3%

" The TPR, TNR, and Accuracy represent the true positive rate, true negative rate, and overall accurate rate, respectively.

useful tool for the early warning and management of algal blooms.
However, the current research mainly focused on the hybrid use of
discrete wavelet transformation and conventional structured LSTMs. In
future research, more effective time-frequency analysis techniques and
more advanced deep-learning models will be explored to further
improve the forecasting accuracy of algal blooms.
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