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a b s t r a c t

This study carries out spatial-resolved optical birefringence observations to quantify, for mode I
(tensile opening) loading, the stress intensification at crack tip of brittle and ductile glassy polymers
(polymethyl methacrylate—PMMA, polyethylene terephthalate—PET) as well as one type of elastomer:
(ethylene propylene diene monomer—EPDM). We measure the stress buildup in a precut specimen
by correlating retardation with the corresponding tensile stress. Given the adequate spatial resolution
under 10 µm and natural bluntness of intentional through-cuts, we are able to show that (a) during
drawing at different stages up to the onset of fracture in precut PMMA and EPDM, the local stress
saturates, namely, ceases to increase as r−1/2 upon approaching the cut tip (with r reaching rss in a
range of 0.05–0.15 mm), (b) tip stress σtip, i.e., the tensile stress in the stress saturation zone (r ≤ rss),
linearly grows with (operationally defined) stress intensity factor KI until fracture, reaching a level
below the breaking stress σb observed of uncut specimen. Thus, the inherent strength σF(inh) under
plane strain, taken to be the tip stress at fracture is only comparable to σb. Moreover, a characteristic
length P, involved in the observed linearity between KI and σtip, i.e., in KI = σtipP1/2, is found to be
comparable to 2πrss. Here rss appears to depend on the tip sharpness, which may be characterized by
a radius of curvature ρtip. Thus, toughness given by the critical stress intensity factor KIc is determined
by the product of σF(inh) and ρ1/2

tip , and the critical energy release rate GIc is given by the product of
specific work of fracture wF = [σF(inh)]2/2E and ρtip.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical characteristics of polymeric materials are unique
elative to other materials in several ways. Polymers, in either
lastic or elastomeric form, can tolerate high strain without frac-
ure because of the global structural connectivity through chain
etwork. For polymers to find more applications and for new,
ore sustainable polymers to replace conventional polymers, a
etailed relationship between polymer structure and mechanical
ehavior needs to be worked out. However, despite decades
f extensive research, a quantitative and predictive chain-level
escription of key mechanical features of polymers such as duc-
ility, brittle–ductile transition, and toughness against fracture
emains intractable to derive from first principles. Specifically, it
s still formidable to theoretically estimate the inherent fracture
trength σF(inh) of a glassy polymer or an elastomer (made of
a crosslinked melt). The upper theoretical bound of inherent
strength in excess of 10 GPa for glassy polymers (achievable in
polymer fibers) has led researchers to speculate that the observed
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brittle stress σb may not reflect the inherent strength. Similarly,
it is elusive that elastomers typically only show tensile strength
on the order of 10 MPa, far lower than a theoretical estimate
of several GPa that assumes all load-bearing strands to undergo
scission at the same time.

Like the case of silica glasses treated by Griffith [1], for brittle
polymers presence of crack of length a lowers the critical far-field
stress σc for fracture according to σc ∼ a−1/2. As a decreases,
σc increases until σb, which is the fracture strength (breaking
stress) of cut-free samples. In the polymer literature, summarized
in several monographs, [2–4] brittle fracture of cut-free specimen
is usually explained by assuming existence of intrinsic flaws of
size a∗ so that the Griffith style energy balance argument can be
applied to relate the critical energy release rate GIc (i.e., loss of
stored energy per unit area upon fracture) to σb as

σb = (EGIc/πa∗)1/2. (1)

While σb can be directly measured in a tensile test, neither GIc
nor a∗ is known a priori. In practice, a large through-cut of
length a is intentionally introduced for the same material so
that its toughness G can be determined from its operational
Ic
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efinition:

Ic = πσ 2
c a/E, (2)

here E is the Young’s modulus.
For brittle PMMA [5] and PS [6], precut specimens were drawn

y Berry to fracture and shown to have GIc = 0.6 kJ/m2 and
.4 kJ/m2 respectively. Given σb = ca. 60 and 45 MPa, and
= 1.7 GPa and 2 GPa for PMMA and PS respectively, the

nknown length scale a∗ becomes known from Eq. (1): a∗ =

GIc/πσ 2
b = 0.09 mm for PMMA and 1.0 mm for PS. When

ntentional through-cut decreases in size to a∗, fracture has been
bserved [4–6] to take place at σc that is comparable to σb. Such
vidence has allowed the textbook [4] to conclude that there
re intrinsic flaws of size a∗. Although a∗ in the range of 0.1 to
mm is sufficiently large for optical inspection to detect, flaws
n such a length scale are usually not observed, thus casting
oubt on whether fracture behavior of PMMA and PS should be
escribed in terms of Eq. (1) and questioning the concept of a∗
or these polymers. Moreover, because GIc is a thousand times
igher than the surface fracture energy Γ , fracture criterion can
o longer be formulated as GIc = Γ . Thus, the Griffith–Irwin
tyle energy balance argument seems to face a major dilemma
or polymers, causing one to question whether Eq. (2) is a useful
racture criterion for such polymers.

On the other hand, there is no difficulty to perceive brittle
racture in a uniform defect/flaw-free or flaw-tolerant solid. For
xample, it is a well-defined theoretical problem to estimate
nherent fracture strength σ ∗ under plane stress or σ † under
lane strain of brittle glassy polymers in absence of any foreign
nclusions or cracks—we will subsequently label the inherent
trength as σF(inh) when the type of deformation is unspecified.
pecifically, according to a recent chain-level phenomenological
odel [7], σF(inh) at brittle–ductile transition (BDT) scales linearly
ith the areal density ψLBS of load-bearing strands (LBS) that
haracterizes the structure of chain networking: σF(inh) = ψLBSfcp,
here fcp represents the critical force for chain pullout by which
rather than chain scission [8]) the chain network undergoes
tructural breakdown. Thus, the classic Vincent plot [9] acquired a
ew interpretation: the breaking stress σb at BDT is proportional
o the bond areal density φ because ψLBS has the same scaling
s φ = 1/plK [10], where p and lK are the packing and Kuhn
engths respectively. Flaw-free uncut specimens show brittle frac-
ure when the chain network is unable to retain its structural
ntegrity during its attempt to bring about activation below BDT.
ere fcp is plausibly only a small fraction of the bond breaking
trength, which is on the order of several nano-Newtons, and
LBS is plausibly only a small fraction of φ. Therefore σ ∗ could
nly reach a level of 100 MPa, comparable to the experimental
easurement of σb. If this is the case, it would not require the
achinery of fracture mechanics to understand brittle fracture of
ut-free polymers.
The preceding discussion pertains to fracture of elastomers as

ell. Is the observed tensile strength an actual manifestation of
heir inherent strength? Why is their strength so low or what
etermines the strength? Has Lake-Thomas model [11] for GIc
aptured characteristics of elastomer fracture? Do all elastomeric
aterials also require us to apply fracture mechanics to describe

racture behavior by postulating existence of intrinsic flaws?
The present study applies birefringence measurements to probe

he local stress field in front of a precut during tensile drawing
f two glassy polymers and one elastomer, aiming to find out
hether, how and why there is an alternative fracture crite-
ion given in terms of explicit stress state at crack tip. Our
irefringence observations of precut specimens indicate that (a)
ntentional through-cut causes stress buildup in linear proportion
o the far-field stress σ , e.g., the tip stress increasing linearly
0

2

ith σ0, (b) the tip stress at fracture is below the breaking
tress σb observed from cut-free specimens, (c) during drawing,
.e., at each value of σ0, the local stress tends to saturate upon
pproaching the tip, revealing a stress saturation zone of size rss,
hich appears to be related to the cut sharpness characterized
y the radius of curvature ρtip at the cut tip.

. Experimental and technical backgrounds

.1. Sample preparation

Three polymer films were studied in this work: PET from
uriga Polymers Inc., PMMA from Professional Plastics. The ethy-
ene propylene diene monomer (EPDM) sheets with thickness
–2.5 mm were crosslinked at Lion Elastomers with Royalene 511
PDM, tri-functional crosslinker SR-350 (1∼3 phr), and peroxide
iCup R (3∼4 phr), cured at 170 ◦C for 20 min.
Dogbone- and stripe-shaped specimens were prepared by first

racing a design onto the sheets and then, for PET, cutting with
cissors and paper trimmer to carefully avoid introducing sub-
tantial edge defects; for PMMA, removing excess material with a
oarse sanding belt and then smoothing the edges with a flat file;
or EPDM, simply cutting with paper trimmer along the tracing
arker. Dogbone-shaped specimens were employed to obtain the
tress-optical relationship and stripe-shaped specimens to study
he effect of single-edge notch (SEN).

SEN was introduced to specimens by several means. PET spec-
mens were chilled in a freezer (−20 ◦C) for 15–30 min, then cut
ith a similarly chilled nail clipper while still in the freezer. Rapid
pplication of force with the nail clipper generated a thin crack
hat spontaneously propagated further across the sheet. Crack
as introduced in PMMA specimens at room temperature by
ammering a glass-scrapper against the side of the sheet. Cut was
ade in EPDM stripes by pushing the edge of a thin razor blade

nto the specimens. Tensile extension of uncut and cut specimens
as carried out at room temperature on an Instron 5969 tensile
ester between crossed polarizer films from Polarization.com. The
etup is illustrated in Fig. 1. The reported draw ratio L/L0 is based
n the initial length L0 of the narrow section of the dogbone
pecimens and the inter-clamp distance for the stripe specimens
espectively.

.2. Birefringence methods

.2.1. Setups
The birefringence setup in Fig. 1 allows us to observe the evo-

lution of colors or fringe orders due to increasing birefringence
at various corresponding stresses. Given the weak strain-induced
birefringence in PMMA a negative retardation plate of 600 nm
places the PMMA at retardance of 600 nm at L/L0=1 so that
the retardance travels to higher order in the Michel-Levy chart—
PMMA shows negative birefringence at room temperature [12,
13]. Because PET is highly birefringent, a negative retardation
plate is similarly placed between the polarizer and the sample
to avoid color saturation. EPDM shows more than ten orders
of retardance. Thus, it is more effective and accurate to use a
monochromatic light source (low pressure sodium lamp) and
count the order of fringes.

During drawing, the development of birefringence is captured
by video recording, involving a variety of cameras and lenses:
for PMMA, in order to capture videos at high resolution, a 4K
video camera (Mokose C100) was used with a zoom lens (Edmund
Industrial Optics) that was employed at 2.5× magnification; for
PET, a generic CCD camera was outfitted with the same variable
magnification lens at 2.5× magnification; for EPDM, the same 4K
video camera was used along with a C-mount zoom-lens (Hayear
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Fig. 1. Sketch of a birefringence setup based on white light for measurement
of spatial retardance field, involving two crossed polarizers and a retardation
plate that is either arranged to cancel or add to the emergent retardance due
to drawing along y axis. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

model HY-180XA) set at 4.5×. Color information in such videos
is digitally stored in an 8-bit Red–Green–Blue (RGB) color space,
where every color can be described as a unique combination of
R, G and B values, each bearing a value between 0–255.

2.2.2. Stress-optical relation
In glassy polymers and elastomers, there generally exists an

explicit (linear) relationship between stress and birefringence
arising from the molecular orientation that has a one-to-one
correspondence with the stress. Consequently, we can quantify
the stress through quantitative measurement of birefringence to
obtain tensile stress ∆σ = ∆n/C, where C is stress-optical coef-
ficient. For example, Fig. 2a and Fig. 2b show such a correlation
between the retardation (RGB) and corresponding stress during
drawing of uncut PMMA and PET respectively. Similarly, the order
of fringes N represents the birefringence ∆n through

∆n = N(λ/t) (3)

that is directly related to the principal stress difference ∆σ . In
Eq. (3), t is the specimen thickness and λ is the wavelength of
the monochromatic light. By subjecting an uncut EPDM specimen
to uniaxial drawing and counting N at the corresponding Cauchy
stress we can use Eq. (3) to establish a relationship between ∆n
and∆σ as shown in Fig. 2c. Fig. 2c confirms a linear stress-optical
relation (SOR)

∆n = C∆σ , (4)

with C = 2.2 × 10−9 (Pa−1) for EPDM. Fracture in this specimen
occurs when N reaches 14, corresponding to the last data point
in Fig. 2c and in its inset. Video-uncut EPDM in the Supporting
Information recorded the birefringence as a function of time
and revealed that the birefringence actually turned somewhat
inhomogeneous along the specimen length at the last stage of
extension before fracture. For the present purpose to establish
the SOR, Fig. 2c provides adequate information although the ex-
tension was terminated by the fracture initialized by an internal
inclusion (impurity). Based the results presented in Sections 3 and
4, we think that the fracture in uncut EPDM specimens occurs
plausibly either because of impurities (larger than 50 µm) in the
specimen interior or because the ribbon-like specimen prepara-
tion introduced edge roughness on the order of 50 µm or higher.
Consequently, Cauchy stress σyy = ∆σ at fracture is below 2 MPa,
as is the case shown in Fig. 2c. Under rare circumstances, a more
impurity-free specimen with more careful sample preparation
could reach ∆σ = 3 MPa.

Figs. 2d–e show the examples of the retardance buildup at cut
tips for PMMA and PET respectively. To determine the local stress
3

in notched specimens, the RGB variations with distance r to the
cut tip in PMMA and PET are compared to the images in Figs. 2a
and 2b respectively. Since color is influenced by the choice of
light and camera, images in Fig. 2a–b and 2d–e are from the same
pair of light and camera. Here locations of maxima, minima, and
intersections of RGB values provide straightforward identification
of stress. Using PMMA as an example, at location A in Fig. 2d the
G-B intersection in the second order is readily discerned from
the same feature in the SOR, marked A in Fig. 2a. At low loads
where RGB variation are less distinctive, we estimate the local
stress based on the approximate ranking and trends of the RGB
curves. For example, at location B in Fig. 2d the R value in RGB is
somewhat saturated over the rest of the distance from the notch
tip. The red curve lies atop the green curve, as green steadily
increases towards red. The stress value at point B in Fig. 2a may
be an adequate estimate of point B in Fig. 2d. The error introduced
to the assignment of local stress by this pseudo-quantitative
assignment is on the order of 0.4 to 2 MPa, corresponding to an
uncertainty in the measurement of retardance on the order of 10
to 50 nm. Similarly, for PET near an elastic-yielding transition
(EYT), the intersections, maxima, and positions marked A-G in
Fig. 2e were matched to similar features marked A-G in Fig. 2b.

Accurate determination of local stress as a function of distance
r from the notch tip requires the correct identification of the
notch edge. With 4K CCD camera attached to a microscope objec-
tive lens a resolution in the range of rb=1–4 µm per pixel may be
achieved. However, because of imperfections due to the cutting
procedure, the polymers’ mechanical response to the cutting, and
slight misalignment of the camera relative to the cut opening, the
notch edge usually appears blurry to various degrees. This limits
the available spatial resolution to, at best, rb ∼20-40 µm for the
thick PMMA specimens, and 20 µm for PET and EPDM sheets.

2.3. Theoretical analysis

Tensile extension of precut stripes (along y-axis) produces
several non-zero stress components. It is straightforward to di-
agonalize the stress tensor, i.e., to identify the principal stresses
σ1 and σ2 [14]. Spatial-resolved birefringence measurements to
determine ∆n(r) are ideally suitable to quantify ∆σ = σ1 −σ2 =

∆n/C around cut tip. In presence of a non-zero shear stress σxy the
principal stress direction rotates away from the drawing direction
to an angle α given by tan2α = 2σxy/(σyy − σxx). The principal
stress difference is given by

∆σ = [(σyy − σxx)2 + 4(σxy)2]1/2. (5)

The Westergaard’s solution [15,16] establishes one foundational
pillar for linear elastic fracture mechanics (LEFM) [17,18] by pre-
scribing the following explicit form for the quantities in Eq. (5) in
presence of an embedded crack of length 2a as

σyy(r)− σxx(r) = KIf (θ )/(2πr)1/2 + σ0, (6)

σxy = KIh(θ )/(2πr)1/2, (7)

σzz = 0 (plane stress), ν(σxx + σyy) (plane strain) with

KI = σ0(πa)1/2, (8)

f (θ ) = sin θ sin(3θ/2), (9)

h(θ ) = cos(θ/2) sin(θ/2) cos(3θ/2), (10)

where θ is the angle formed between the crack propagation
direction and the line between cut tip and the observation point.
Eq. (6) along with Eq. (9) is the near-tip limit of the full solution
[15,18]. A numerical comparison between the full solution and
Eq. (6) shows that Eq. (6) accurately reproduces the full solution
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Fig. 2. RGB variation as a function of far-field stress σ0 during uniaxial drawing of uncut (a) PMMA and (b) PET. Uncut PMMA specimen of dimensions
0×W0×H0 = 50 × 21 × 5.5 mm3 was drawn at V0/L0 = 0.2 min−1 . Uncut dogbone-shaped PET specimen of dimensions L0×W0 ×D0 = 45 × 18 × 0.25 mm3 was
rawn at V0/L0 = 0.1 min−1 . (c) Stress-optical relation of EPDM evaluated using Eq. (3) from fringe order N, based on monochromatic light source (λ = 589 nm). The
PDM specimen has an initial thickness of t0 = 2.4 mm. Inset figure shows the stress–strain curve, revealing a Young’s modulus of E = 2.7 MPa. (d) RGB variation
n pre-cut PMMA as a function of distance r from the cut tip at σ0 = 9.3 MPa. The corresponding image is presented in Fig. 3a. (e) RGB variation in pre-cut PET as
a function of r at σ0 = 15 MPa. The corresponding image is presented in Fig. 4a. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
o
t
c
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for r < a/4. The stress fields for single edge notch of size a,
which is the experimental configuration of the present study,
obey the same expressions in the limit where specimen width
W >> a, except for a small correction [17] to Eq. (8), with KI =

1.12σ0(πa)1/2.
The tensile stress field T(r, θ ) = σyy − σxx at crack tip can

be solved in terms of the principal stress difference ∆σ given in
Eq. (5)

T = σyy−σxx = {[(1+A2)(∆σ )2−A2σ 2
0 ]

1/2
+A2σ0}/(1+A2) (11)

where A(θ ) is given by

A(θ ) = 2h/f = cot(3θ/2). (12)

Since T is an explicit function of∆σ , we can determine T based on
the one-to-one correspondence that exists between ∆σ and ∆n
via Eq. (4). At θ = π/3, A(θ ) = 0 so that Eq. (11) simply reads

T(r, θ = π/3) = ∆σ = ∆n/C, (13)

where the second equality follows from Eq. (4). When monochro-
matic light is employed, T equals N(r)fσ /t, where the fringe-stress
coefficient fσ = λ/C = 0.27 MPa mm in the case of EPDM. For r
< a/4, we can apply Eqs. (6) through (10) to provide an explicit
expression for the functional dependence of T on r as

sin(π/3)KI/(2πr)1/2 + σ0 = T(r, θ = π/3). (14)

Such a prediction is to be compared with T in Eq. (13), which can
be determined from the birefringence measurements.
4

3. Results

At room temperature PMMA can undergo brittle fracture with-
out crazing [4,19] when the drawing rate is relatively high. Rel-
ative to cut-free specimens, PMMA containing a large precut
becomes weaker in presence of a through-cut that causes strain
localization. The stress buildup at the cut tip can be quantified
using the birefringence observation, based on the setup shown
in Fig. 1. Fig. 3a contains a collection of snapshots at different
moments from the video recording (video-PMMA in Supporting
Information) of a precut PMMA being drawn until fracture. We
can present the RGB values as a function distance from the cut tip,
as shown in Fig. 3b, in order to describe the stress field according
to the combination of Figs. 2a and 2d that correlates RGB and
stress. By analyzing images like those in Fig. 3b the actual stress
field T around the tip at θ = π/3 can be evaluated according
to Eq. (13) and plotted as a function of r−1/2, as shown in Fig. 3c.
The linearity between T(r) and r−1/2 shows the experimental data
to be in a qualitative agreement with the approximate expression
for T in Eq. (14), apart from the fact that the slopes in Fig. 3c reveal
an experimental Kexp smaller than KI of Eq. (8). The origin of
the discrepancy arises from the experimental fact that the stress
buildup ceases near the cut tip for all values KI. The emergence
f a stress saturation zone (SSZ) of size rss, ranging from 0.08
o 0.2 mm, limits the range of the r−1/2 scaling of T under the
ondition of r < a/4. As a consequence, the experimental data
n Fig. 3a is mostly in the transitional regime where K is
exp
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Fig. 3. (a) Images of PMMA specimen (L0×W0×D0 = 50×20.8×5.5 mm3) with single-edge notch (cut length a = 1 mm) in birefringence setup of Fig. 1 at different
stages during at V0/L0 = 0.2 min−1 to failure. (b) The RGB profile as a function of distance r from tip at θ = π/3 for σ0 = 21 MPa. (c) Local tensile stress T as a
function of r at different stages of drawing, corresponding to different values of σ0 from 0 to 21 MPa, obtained by comparing the RGB profile along the diagonal
dashed line (at 60 degrees) at each load σ0 (0 to 21 MPa) to Fig. 2a. (d) Linear dependence of tip stress as a function of KI until fracture. (e) Stress–strain relationship
for uncut and precut (a = 1 mm) PMMA specimens (E = 1.8 GPa). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
necessarily lower than KI. Specimens with much larger cut size
would reduce the discrepancy.

Besides the discovery of SSZ, there are three more features
to note: First, the intercepts reveal a stress level in the far-field
that matches the nominal load σ0. Second, the local stress level
grows with σ0 in the range from 5 to 21 MPa. Third, the tip stress,
i.e., σtip = T(r = rss) increases linearly with KI of Eq. (8) until the
point of fracture, as shown in Fig. 3d. For completeness, Fig. 3e
provides the stress vs. strain curves from tensile drawing of the
uncut and precut specimens.

The linear relation between σtip and KI in Fig. 3d reveals a
characteristic length scale P = 0.9 mm. Phenomenologically, we
can simply define their relation as

σtip(KI) = T(rss) = ∆n(r = rss)/C = KI/P1/2. (15)

Detailed analysis shows [20] that in the limit of P << a P would
be 2πr independent of the cut length a. Data in Fig. 3d show P
ss

5

to be not far from 2πrss, given the range of the rss indicated in
Fig. 3c.

It is necessary to point out that the theoretical expression
Eq. (14) does not anticipate such stress saturation (SS). Since the
SS as well as the linearity between σtip and KI both take place
well before the onset of fracture, the SSZ seems to involve a
different concept from Irwin’s plastic zone concept. In order to
find out whether or not these two features are universal for glassy
polymers, we investigate a ductile polymer, i.e., amorphous PET,
because we expect LEFM to apply before the onset of yielding at
the cut tip.

In presence of sizable precut with a=4.6, PET specimen of
length L0=100 mm is drawn at a speed of V0=10 mm/min. Video
recording captures the birefringence buildup due to the cut, as
shown in video-PET in Supporting Information that produces the
images in Fig. 4a. Referring to Figs. 2b and 2e, the local stress
field can be determined relative to the distance r from the cut
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Fig. 4. (a) Images of precut PET specimen (L0 × W0 × D0 = 100 × 42 × 0.25 mm3) with size a = 4.6 mm at different stages during drawing at V0/L0 = 0.10
min−1 . The last image indicates how the RGB profile varies as a function of r, the distance from the tip. (b) The RGB profile along the diagonal dashed line (60
degrees) at each load was compared to Fig. 2b to obtain local tensile stress T(r), plotted against r−1/2 . (c) Tip stress read from the stress plateau in (b) is plotted
gainst KI of Eq. (8). (d) Stress–strain curves of PET (E = 2.3 GPa in the uncut specimen). The precut ribbon-shaped specimen (blue) was not drawn to failure. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ip, as shown in Fig. 4b, at different values of σ0. Beyond σ0 =

0 MPa, the cut tip shows sign of yielding, revealing a level of
nherent yield stress σY(inh) as shown. On the other hand, up to
0 = 12.4 MPa, the observed tip stress does not exceed the
ield stress σy (ca. 52 MPa) measured from a cut-free PET, yet

T(r) levels off for r−1/2 > 3 mm−1/2 to reveal a SSZ. The tip stress
tip in the SSZ monotonically increases with σ0. However, unlike
MMA that undergoes brittle fracture to terminate the linearity
etween σtip and KI (cf. Fig. 3d), Fig. 4c shows a kink to indicate an
lastic–plastic transition (EPT) at the cut tip. This EPT is confirmed
y observation of residual birefringence upon unloading at σ0 =

5 MPa that corresponds to the second point after the kink in
ig. 4c. Moreover, the emergence of stress plateau before the EPT
urther indicates that the SSZ for PET with σ0 ≤ 12.4 MPa as well
s for PMMA before fracture is not associated with the Irwin’s
oncept of plastic zone. In other words, since no yielding occurs
t the tip below 12 MPa, the observation is in contradiction with
ugdale model [21] that predicts emergence of tip yielding to
tart at a vanishingly low load σ0.
Similar to Fig. 3d, the first slope in Fig. 4c corresponds to

P = 0.71 mm according to Eq. (15), in quantitative agreement
with 2πrss identified in Fig. 4b. For completeness, the stress vs.
strain curves of both uncut and precut specimens are presented
in Fig. 4d.

The birefringence method for determination of local stress
field near crack tip is also useful in a study of fracture of elas-
tomers. In the present study, we examine a crosslinked rubber
6

based on EPDM. Given the high level of retardance in the thick
EPDM sheets, monochromatic sodium (low pressure) lamp was
employed to avoid color saturation. Specifically, we quantify the
stress field T(r) by reading the fringe orders (N or N + 1

2 ) at
he cut tip from video recording (Video-EPDM in Supporting
nformation). The values of N(r) for different r at various levels of
0, as those shown in the photos in Fig. 5a, are inserted in Eq. (13)
ia Eqs. (3)–(4) to obtain T. The spatial variation of birefringence
s explicitly displayed in Fig. 5b, analogous to Fig. 3b, showing
hat there is no higher order beyond N = 11 within a distance of
0 µm from the tip. At different stages of drawing, we obtain a
amily of corresponding curves showing how T varies with r−1/2

s shown in Fig. 5c. The most significant feature revealed in Fig. 5c
is that the r−1/2 scaling of T terminates upon approaching the
tip, i.e., there also exists a kink in the plot of T vs. r−1/2. This
character of stress saturation is similar to that shown in Fig. 3c
and Fig. 4b, with rss around 0.05 mm, i.e., about half of that seen
in PMMA and PET. Since unloading test reveals no discernible
residual birefringence, as can be expected from an elastomer
(rather than a glassy polymer), the emergence of the SS zone in
EPDM is not a plastic zone suggested in Irwin’s theory to cope
with the stress singularity.

If Eq. (14) accurately depicts the data in Fig. 5c, the intercepts
should be σ0. We find that the intercept is indeed numerically
close to σ 0. We can also evaluate Kexp from the initial slope based
n the data in Fig. 5c. Fig. 5d shows a close agreement between
Kexp and the operational KI of Eq. (8), suggesting that Eq. (14)
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Fig. 5. (a) Images of precut EPDM (L0×W0×D0 = 50×15 × 2.54 mm3) with size a = 3.46 mm in birefringence setup of Fig. 1 (monochromatic sodium lamp without
retardation plate) at different stages during drawing at strain rate V/L = 0.05 min−1 . The sixth image at 115 kPa contains a (red color online) circle at the cut tip
used to estimate the radius of local curvature, which is a method applied for all other images. The tenth image, being an enlarged region of ninth image, shows the
fringe order N up to 11 and describes how r = 0 was conservatively chosen so that the claimed resolution is a lower bound: Given the last resolvable neighboring
fringe orders of 10 and 11, their separation ∆r = 20 µm is used to locate r = 0, which 20 µm away from N = 11, as shown. (b) The gray scale profile as a function
of distance r from tip at θ = π/3 corresponding to the tenth image in (a). The edge of the specimen is approximately at r = 4-10 µm, as indicated by the two
dashed lines. (c) Local tensile stress T as a function of r−1/2 . T is calculated in two steps: Reading fringe orders N and half-orders N + 1/2 at different values of
r from images in (a) to insert into Eq. (3) for ∆n and evaluating T using Eqs. (4) and (13). The data reveal emergence of stress saturation zone of size rss at the
kinks. (d) Kexp evaluated from the first slopes in (c) at different values of KI of Eq. (8), plotted against KI . At the onset of crack propagation, the critical KIc is 0.58
MPa mm1/2 . Inset figure shows the variation of the radius of curvature, ρtip , as a function of the nominal load σ0 . (e) Tip stress read from the stress plateau in (c)
as a function of KI where the inset shows the stress vs. strain curve of the precut specimen that fractures at L/L0 = 1.07 and σc = 0.174 MPa, which is identical to
that of an uncut specimen, given in the inset of Fig. 2c. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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s a good approximation to the full Westergaard solution [20].
PDM also confirms another important characteristic in Fig. 5e

that has been seen in Figs. 3d and 4c, i.e., the tip stress as well
as birefringence increases linearly with the stress intensity factor
KI. According to Eq. (15), the linearity in Fig. 5e defines a length
scale P = 0.16 mm, not far from 2πrss identified in Fig. 5c. An
examination of kink location in Fig. 5c and inset in Fig. 5d shows
hat the variation of rss originates from that of the radius of
urvature ρtip at the cut tip, which monotonically increases with
oad. We had a similar observation of P ∼2πrss for PMMA and
ET.

. Discussion

Since EPDM undergoes large strain, the data in Fig. 5c require
larification. Theoretical studies [22,23] in the literature indicate
ore complicated stress fields near the crack tip in presence of

arge deformation than those prescribed by Eqs. (6) through (10).
The position given by (r, θ = π/3) refers to the tip, i.e., r = 0
at the tip. Thus, at the different loads from 39 to 175 kPa, we
did not report the birefringence of the various material points. If
Fig. 5c is to be compared with theoretical description based on
the deformed configuration, there would be small errors. Using
particle-tracking, we confirmed that within a distance of 1 mm
from the cut tip, the material points along θ = π/3 did not move
by more than 10%. Thus, the data in Fig. 5c could be stated to
be accurate with 10% error, leaving our conclusion completely
unaffected.

Because of the stress saturation on length scales well resolv-
able by our optical observation, the spatial variation of birefrin-
gence near crack tip at different stages including the point of
fracture has been conveniently characterized. Since our PMMA
and EPDM specimens are rather thick, over 5 and 2 mm respec-
tively, the condition at precut tip is certainly plane strain. Since
the polarized light was sent along Z axis the emergence of triaxial
stress state does not obscure the birefringence measurements.
However, since the stress-optical relation (SOR) acquired from
uniaxial extension of uncut specimen involves plane stress, the
use of SOR to convert tip birefringence to tensile stress is impre-
cise. At fracture, we have taken σtip(KIc) as the inherent strength
σF(inh).

Taking the last data points in Fig. 3d and Fig. 5e as σF(inh) we
note that in either case σF(inh) might be lower than σb, which is
the fracture strength or breaking stress of uncut specimen, given
by the last point of Fig. 3e showing 70 MPa for PMMA and the last
point of the inset in Fig. 2c showing 1.7 MPa for EPDM. The as-
sumption of σF(inh) < σb (under plane stress) is reasonable because
σF(inh) is upper-bounded by the inherent strength σ ∗ under plane
stress and σb is also upper bounded by σ ∗. Fracture in PMMA
and EPDM requires higher stress in plane stress because the chain
network (associated with either intermolecular uncrossability or
crosslinking) is free to contract along the specimen thickness
direction (Z axis) – the lack of contraction under plane strain may
either lower the threshold for chain pullout in PMMA or cause
more chain stretching towards scission in EPDM.

The linear increase of the tip stress with KI, as shown in
Fig. 3d and Fig. 5e, holds true all the way to the onset of crack
propagation, i.e., Eq. (15) is valid at fracture. Equating σtip(KIc),
.e., the tip stress at fracture, with σF(inh), the following expression
hows that the critical stress intensity factor KIc

Ic = σF(inh)P1/2 (16)

s determined by two material parameters. Here σF(inh) should be
egarded as a material constant. Thus, KIc would be as a material
onstant if P in Eq. (16) is material-characteristic. It can be shown
y making a large number of precut PMMA specimens that K
Ic

8

aries [5] from 0.8 to 1.4 MPa m1/2, corresponding to P in Eq. (16)
arying from 0.6 to 1.2 mm, given σF(inh) = 40 MPa from Fig. 3d. In
ther words, the variation in KIc for PMMA can be traced to that in
. Fig. 5c and inset in Fig. 5d shows the variation to arise from the

cut characteristic, i.e., radius of curvature ρtip. It is reasonable to
assert that P in Eq. (16) is given by the geometric characteristics of
the tip, e.g., the tip being partially through-thickness in the case
of thick PMMA, or the tip turning blunter during drawing in the
case of EPDM.

In LEFM, KIc is usually determined from specimens containing
through-cuts and is therefore a function of how the precut is
made. Some cuts have more blunt tips than others so that the
local curvature at the tip is a variable. Theoretical analyses and
finite-element calculations [24–27] have shown that the local
stress saturates upon approaching the tip due to the finite cur-
vature. The SS zone revealed by our experiments on PMMA and
EPDM has little in common with the concept of Irwin plastic zone
that is commonly invoked within the second pillar of fracture
mechanics to cope with the mathematical stress singularity. For
polymers under current investigation, the intentional cut is never
sharp enough to call for Irwin’s remedy—plastic zone formation.
For a given cutting method, the value of ρtip is inherent to the ma-
terial. It is in this sense that P is also characteristic of the material
under study. In passing, we note that the effect of tip bluntness
on impact strength is well documented, and such effect has been
suggested to imply that tip stress is a controlling parameter for
fracture [4].

Energy balance argument of Griffith [1] and Irwin [28] prevails
because little is generally known about the stress state at crack
tip. The stress intensification approach [15,29] resorts back to
the energy balance argument because the prediction of stress
singularity at cut tip forces one [30] to give up any attempt to
arrive at a local fracture criterion based on the stress state at
the tip. Specifically, the second pillar suggests that fracture is
controlled by the stress intensity factor KI in Eq. (8). Since GI
and KI are related as GI = K 2

I /E, stating that fracture occurs at
KIc is equivalent to saying Eq. (2) is the condition for fracture.
Therefore, GIc is usually the only parameter evaluated at fracture
and is taken as the fracture criterion: GI needs to exceed GIc for
fracture to take place. On the other hand, Eq. (2) only indicates
how to measure GIc by examining a precut specimen with cut
length a and by recording its fracture stress σc. But we do not
know what determines GIc and why GIc is of the value as revealed
by experiment of polymers. This is in sharp contrast to materials
such as silica glasses where one could argue GIc is given by surface
fracture energy Γ .

When GIc varies by a factor of three for PMMA as shown by
Berry [5], we are at loss about the origin of this variation. Eq. (16)
shows how GIc is actually dependent on local conditions at crack
tip as

GIc = (KIc)2/E = 2P{[σF(inh)]2/2E}, (17)

where the quantity inside the curled brackets may be regarded
as the work density of fracture wF for an uncut specimen if
σF(inh)∼σb. Eq. (17) points at the origin of toughness GIc, as Eq. (16)
does for KIc. Since the radius of curvature of cut tip ρtip prescribes
the magnitude of P, we can conclude that toughness defined
either in terms of GIc or KIc is characterized by inherent strength
σF(inh) and cut characteristic ρtip. Specifically, the spread of GIc by
a factor of three for PMMA5 is plausibly due to a variation in P.

Finally, it is instructive to combine the operational definition
Eq. (8) for KI with Eq. (16) and indicate the relation between
global and local stress states, i.e., to ‘‘predict’’ the fracture stress
in a precut specimen as

σ = σ (P/πa)1/2, (18)
c F(inh)

sw113
Highlight

sw113
Highlight
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evealing the proportionlity constant in σc ∝ a−1/2 is determined
y σF(inh) and P . This expression also reveals the meaning of σc. At
σc the stress at the crack tip has intensified by a factor of (πa/P)1/2
to reach the level of inherent strength.

5. Summary and conclusion

Using spatial-resolved birefringence measurements of poly-
mers in either amorphous glassy or elastomeric state, we have
demonstrated the elusive connection between global and local
mechanical characteristics during fracture. For example, tough-
ness given in terms of global features (i.e., far-field stress and cut
length) is shown to relate to the material physics at the crack tip
of given sharpness, i.e., the tip stress reaching inherent strength.
Thus, for brittle plastics such as PMMA and elastomers in the
example of EPDM, we have provided a much needed and long-
waited explanation for why toughness appears to be a material
constant, or more broadly, why linear elastic fracture mechanics
can successfully capture the essence of fracture, e.g., the critical
load σc for fracture in a precut specimen scaling with the cut
length a as a−1/2. In other words, for polymers we have identified
pertinent parameters that quantify the magnitude of toughness
so that the prefactor in σc ∼a−1/2 can be prescribed. Specifi-
cally, toughness (cf. Eq. (16) or (17)) is given by a combination
of inherent strength and radius of curvature of intentional cut.
Related to this conclusion is the finding, for brittle polymers, that
the breaking strength (stress) σb of cut-free polymers is on the
same order of magnitude as the inherent strength σF(inh), provided
inherent strength does not vary greatly between plane stress (σ ∗)
and plane strain (σ †).

We resort to fracture mechanics whenever we inquire about
mechanical behavior in presence of large cracks. When crack tip
is blunt, as is often the case for intentional through-cuts that
experimenters routinely make, the tip stress is rather low at early
stage when nominal load σ0 is low, unlike the assumption of
LEFM, and grows approximately linearly with σ0. Moreover, the
local stress tends to plateau as the tip is approached within a
distance rss that is comparable to the radius of curvature ρtip of
the tip. Such features allow us to determine the maximum stress
at crack tip upon fracture through birefringence observations and
demonstrate an explicit relationship in Eq. (16) for toughness. For
both glassy polymers (PMMA and PET) and elastomeric EPDM, rss
is in the range of 0.04 to 0.2 mm, which prescribes KIc because P
in Eqs. (16)–(17) seem to be controlled by rss, which is dependent
on the geometric characteristics of the crack tip. In other words,
Eq. (17) shows why toughness GIc is of a certain magnitude, set by
the value of P. Although P varies to a degree, it is material specific.
Because of the observed stress saturation at the tip, we conclude
that PMMA and EPDM may be flaw tolerant as long as defects or
impurities are appreciably below rss ∼50 µm. At this juncture, it
is necessary to indicate the cuts of other sizes in PMMA and EPDM
have been introduced and the corresponding precut specimens
have been found to produce data that collapse onto Fig. 3c and
Fig. 5e respectively, suggesting that brittle fracture commences
when the tip stress reaches a common value independent of cut
length a. It remains unknown whether this conclusion applies
to all brittle polymers. Only further investigation can begin to
address such a question.

At the present, while we have relatively good theoretical un-
derstanding of how σF(ihn) may be related to the structure of the
chain networking and how to increase σF(inh) for glassy polymers
[7], it is less clear how to increase σF(inh) for crosslinked rubbers.
Separately, toughness can also increase according to Eq. (16) and
Eq. (17) if P increases. The introduction of a sacrificial network
[31,32] to construct double-network in hydrogels [33–35] may
have partially achieved the goal by increasing P. It remains to
9

be demonstrated whether strain-induced crystallization actually
causes tip blunting to increase the toughness of vulcanized nat-
ural rubbers by increasing P in Eq. (16)–(17). Future studies may
also explore fatigue failure of polymers in light of the present re-
sults. Since available phenomenology suggests GI to be a pertinent
parameter controlling fatigue, it is desirable to find out in the case
of elastomers whether a threshold GI0 < GIc can also be expressed
in a way similar to Eq. (17) for GIc. As an activated processes,
we expect fatigue to be understood in terms of the relationship
between the barrier lowering and induction time. For example,
more cycles are required for crack growth under a lower load.

Finally, we remark that for EPDM elastomer GIc is convention-
ally evaluated from the Rivlin-Thomas formula [36–38]: GIc(RT) =

6w(λc)a/
√
λc , where λc is the critical draw ratio at fracture, and

w is the strain energy density, obtainable from the area under
the stress vs. strain curve, e.g., inset of Fig. 2c. We found GIc(RT) =

× (0.07× 0.174/2)× 103
× 3.46× 1.07−1/2

= 122 J/m2. On the
ther hand, Eq. (17) gives GIc = [(0.58)2/2.7] × 103

= 125 J/m2.
uch an excellent agreement may be taken to imply that Eq. (17)
olds true for this elastomer. This is unsurprising given the fact
hat the fracture strain of λc = 1.07 is rather small. In other
ords, the agreement takes place because the present EPDM is
ot highly stretchable, and tip blunting is insignificant.
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ppendix A. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.eml.2022.101819. Video-uncut
PDM: Uniaxial extension of ribbon like EPDM specimen involv-
ng the setup of Fig. 1 with sodium light.

Video-PMMA: Taken with a C-mount zoom-lens (Edmund Op-
ics) at 2.5× mounted on a digital camera (Mokose C100) based
n a setup sketched in Fig. 1 to provide the images at 4K reso-

lution, used in Fig. 3 to quantify the local stress field around cut
2
tip. The field of view of this video is 3.47 × 1.95 mm .

https://doi.org/10.1016/j.eml.2022.101819
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Video-PET: Taken with a micro-lens (2.5×) mounted on CCD
camera based on a setup sketched in Fig. 1 to provide the images
sed in Fig. 4 to quantify the local stress field around cut tip. The
ield of view is 2.65 × 1.77 mm2.

Video-EPDM: Taken with a C-mount zoom-lens (Hayear model
Y-180XA) at 4.5× mounted on a digital camera (Mokose C100)
ased on a setup sketched in Fig. 1 to provide the images at 4K
esolution, used in Fig. 5 to quantify the local stress field around
ut tip. The field of view is 3.13 × 1.76 mm2.

eferences

[1] A. Griffith, A. VI, The phenomena of rupture and flow in solids, Philos.
Trans. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Charact. 221
(582–593) (1921) 163–198.

[2] C.B. Bucknall, Toughened Plastics, Springer, 1977.
[3] I.M. Ward, J. Sweeney, Mechanical Properties of Solid Polymers, third ed.,

John Wiley & Sons, Ltd, Chichester, UK, 2012.
[4] A.J. Kinloch, Fracture Behaviour of Polymers, Springer Science & Business

Media, 2013.
[5] J. Berry, Fracture processes in polymeric materials. I. The surface en-

ergy of poly (methyl methacrylate), J. Polym. Sci. 50 (153) (1961)
107–115.

[6] J. Berry, Fracture processes in polymeric materials. II. The tensile strength
of polystyrene, J. Polym. Sci. 50 (154) (1961) 313–321.

[7] S.-Q. Wang, S. Cheng, P. Lin, X. Li, A phenomenological molecular model
for yielding and brittle–ductile transition of polymer glasses, J. Chem. Phys.
141 (9) (2014) 094905.

[8] S.Q. Wang, S.W. Cheng, Experiments-inspired molecular modeling of yield-
ing and failure of polymer glasses under large deformation, chapter 12, in:
C. Roth (Ed.), Polymer Glasses, CRC Press, 2016, pp. 395–423.

[9] P.I. Vincent, A correlation between critical tensile strength and polymer
cross-sectional area, Polymer 13 (12) (1972) 558–560.

[10] S.-Q. Wang, On chain statistics and entanglement of flexible linear polymer
melts, Macromolecules 40 (24) (2007) 8684–8694.

[11] G. Lake, A. Thomas, The strength of highly elastic materials, Proc. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci. 300 (1460) (1967) 108–119.

[12] A. Tagaya, H. Ohkita, T. Harada, K. Ishibashi, Y. Koike, Zero-birefringence
optical polymers, Macromolecules 39 (8) (2006) 3019–3023.

[13] H. Shafiee, A. Tagaya, Y. Koike, Mechanism of generation of photoelastic
birefringence in methacrylate polymers for optical devices, J. Polym. Sci. B
Polym. Phys. 48 (19) (2010) 2029–2037.

[14] E. Hearn, Mechanics of Materials, Vols. 1-2, Pergamon Press, Headington
Hill Hall, Oxford OX 3 0, BW, UK, 1985, 1985.

[15] H.M. Westergaard, Bearing pressures and cracks, Trans. AIME J. Appl. Mech.
6 (1939) 49–53.

[16] G.R. Irwin, Analysis of stresses and strains near the end of a crack
traversing a plate, 1957.

[17] T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC
Press, 2017.

[18] C.-T. Sun, Z. Jin, Fracture Mechanics, Academic Press, 2011.
10
[19] R.N. Haward, R.J. Young, The Physics of Glassy Polymers, Springer,
Netherlands, 1997.

[20] S.Q. Wang, T. Smith, C. Gupta, Z. Fan, Fracture mechanics of polymers
informed from local stress state, 2022, Review article, unpublished.

[21] D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids
8 (2) (1960) 100–104.

[22] R. Long, C.-Y. Hui, Crack tip fields in soft elastic solids subjected to
large quasi-static deformation — A review, Extrem. Mech. Lett. 4 (2015)
131–155.

[23] R. Long, M. Lefranc, E. Bouchaud, C.-Y. Hui, Large deformation effect in
mode I crack opening displacement of an agar gel: A comparison of
experiment and theory, Extrem. Mech. Lett. 9 (2016) 66–73.

[24] G. Glinka, Calculation of inelastic notch-tip strain-stress histories under
cyclic loading, Eng. Fract. Mech. 22 (5) (1985) 839–854.

[25] G. Glinka, A. Newport, Universal features of elastic notch-tip stress fields,
Int. J. Fatigue 9 (3) (1987) 143–150.

[26] P. Lazzarin, R. Tovo, A unified approach to the evaluation of linear elastic
stress fields in the neighborhood of cracks and notches, Int. J. Fract. 78 (1)
(1996) 3–19.

[27] S. Filippi, P. Lazzarin, R. Tovo, Developments of some explicit formulas
useful to describe elastic stress fields ahead of notches in plates, Int. J.
Solids Struct. 39 (17) (2002) 4543–4565.

[28] G.R. Irwin, Onset of fast crack propagation in high strength steel and
aluminum alloys, in: Sagamore Research Conference Proceedings, 1956,
pp. 289–305.

[29] G.R. Irwin, Analysis of stresses and strains near the end of a crack
transversing a plate, Trans. ASME Ser. E J. Appl. Mech. 24 (1957) 361–364.

[30] Kinloch stated in his book on page 88: From Eq. (6)-(8) it is evident that
as r approaches 0 then the stress approaches infinity and hence stress
alone does not make a reasonable local fracture criterion. Therefore, since
the level of KI uniquely defines the stress field around the crack, Irwin
postulated that the condition KI > KIc represented a fracture criterion.

[31] J. Slootman, V. Waltz, C.J. Yeh, C. Baumann, R. Gostl, J. Comtet, C.
Creton, Quantifying rate- and temperature-dependent molecular damage
in elastomer fracture, Phys. Rev. X 10 (4) (2020).

[32] Y.J. Chen, G. Sanoja, C. Creton, Mechanochemistry unveils stress transfer
during sacrificial bond fracture of tough multiple network elastomers,
Chem. Sci. 12 (33) (2021) 11098–11108.

[33] J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels
with extremely high mechanical strength, Adv. Mater. 15 (14) (2003)
1155–1158.

[34] J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6 (12)
(2010) 2583–2590.

[35] J.-Y. Sun, X. Zhao, W.R. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J.
Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 (7414)
(2012) 133–136.

[36] R. Rivlin, A.G. Thomas, Rupture of rubber. I. Characteristic energy for
tearing, J. Polym. Sci. 10 (1953) 291–318.

[37] H. Greensmith, Rupture of rubber. X. The change in stored energy on
making a small cut in a test piece held in simple extension, J. Appl. Polym.
Sci. 7 (1963) 993–1002.

[38] C. Creton, M. Ciccotti, Fracture and adhesion of soft materials: a review,
Rep. Prog. Phys. 79 (2016) 046601.

http://refhub.elsevier.com/S2352-4316(22)00127-4/sb1
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb1
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb1
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb1
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb1
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb2
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb3
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb3
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb3
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb4
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb4
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb4
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb5
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb5
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb5
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb5
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb5
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb6
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb6
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb6
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb7
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb7
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb7
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb7
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb7
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb8
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb8
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb8
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb8
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb8
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb9
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb9
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb9
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb10
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb10
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb10
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb11
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb11
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb11
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb12
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb12
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb12
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb13
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb13
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb13
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb13
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb13
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb14
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb14
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb14
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb15
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb15
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb15
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb16
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb16
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb16
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb17
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb17
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb17
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb18
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb19
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb19
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb19
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb20
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb20
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb20
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb21
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb21
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb21
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb22
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb22
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb22
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb22
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb22
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb23
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb23
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb23
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb23
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb23
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb24
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb24
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb24
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb25
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb25
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb25
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb26
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb26
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb26
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb26
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb26
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb27
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb27
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb27
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb27
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb27
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb28
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb28
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb28
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb28
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb28
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb29
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb29
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb29
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb31
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb31
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb31
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb31
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb31
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb32
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb32
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb32
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb32
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb32
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb33
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb33
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb33
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb33
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb33
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb34
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb34
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb34
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb35
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb35
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb35
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb35
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb35
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb36
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb36
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb36
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb37
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb37
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb37
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb37
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb37
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb38
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb38
http://refhub.elsevier.com/S2352-4316(22)00127-4/sb38

	Toughness arising from inherent strength of polymers 
	Introduction
	Experimental and technical backgrounds
	Sample preparation
	Birefringence methods
	Setups
	Stress-optical relation

	Theoretical analysis

	Results
	Discussion
	Summary and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References




