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ABSTRACT 

Code-multiplexed Coulter sensors can easily be 
integrated into microfluidic devices and provide 
information on spatiotemporal manipulations of suspended 
particles for quantitative sample assessment. In this paper, 
we introduced a deep learning-based decoding algorithm to 
process the output waveform from a network of code-
multiplexed Coulter sensors on a microfluidic device. Our 
deep learning-based algorithm both simplifies the design of 
coded Coulter sensors and increases the signal processing 
speed. As a proof of principle, we designed and fabricated 
a microfluidic platform with 10 code-multiplexed Coulter 
sensors, and used a suspension of human ovarian cancer 
cells as a test sample to characterize the system. Our deep 
learning-based algorithm resulted in an 87% decoding 
accuracy at a sample processing speed of 800 particles/s. 
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INTRODUCTION 

Coulter counters are routinely employed for rapid 
enumeration and characterization of electrolyte-suspended 
particles. The impedance-based detection mechanism of 
Coulter counters, also known as the resistive pulse sensing, 
provides a robust and high throughput sensing scheme that 
can readily be combined with the Lab-on-a-Chip (LoC) 
technology. LoC platforms with integrated Coulter 
counters, in the form of microelectrodes within 
microfluidic channels, were used for biomedical [1] and 
basic research applications [2]. 

To integrate multiple Coulter sensors into the same 
microfluidic platform, we have introduced a code-
multiplexed Coulter sensor technology, the Microfluidic 
CODES [3]. In terms of the physical interface, the 
Microfluidic CODES operates similarly to a conventional 
Coulter sensor as it only requires a single excitation input, 
and yields a single output electrical waveform. However, 
unlike a conventional Coulter counter, the output 
waveform of the Microfluidic CODES contains the 
information from all of the Coulter sensors integrated on 
the microfluidic device. To achieve multiplexing, the 
Microfluidic CODES uses code division multiple access 
(CDMA), which is a technique that is commonly used in 
telecommunications. Specifically, each Coulter sensor in 
the Microfluidic CODES is micromachined to form a 
distinct electrode pattern that generates a signature output 
waveform when activated.  

Following the conventional CDMA networks, the 
Microfluidic CODES can be designed based on an 
orthogonal code-set such as Gold sequences, which are 
mutually-orthogonal bi-polar sequences commonly used in 
a CDMA uplink [4]. Orthogonal code-set allows individual 

sensor signals to be recovered via correlation with a set of 
code templates with minimum crosstalk. However, reliance 
solely on orthogonal codes constraints the design of the 
individual sensors [5], and the template-based decoding of 
sensor network signal limits the signal processing speed. 
Therefore, a straightforward sensor design based on a 
flexible coding scheme coupled with a more efficient 
decoding algorithm can help enhance the utility of the 
Microfluidic CODES in creating LoC platforms with 
integrated Coulter sensor networks. 

Machine learning-based algorithms are often used in 
solving complex pattern recognition problems. Recently, 
deep learning has emerged as a key learning model, 
especially in the processing of time-series [6]. More 
specifically, deep learning is a representation learning 
method, which allows a machine to be fed with raw data, 
and to automatically learn and discover the representations 
needed for performing further pattern recognition on the 
input data. A deep neural network is a deep learning 
structure. Like the vast network of neurons in a brain, a 
deep neural network is based on a collection of 
multilayered, interconnected nodes called artificial 
neurons. These artificial neurons makeup multiple 
computational layers, and each layer performs a non-linear 
transformation on the output of the previous layer. In this 
way, the input signal is approximated by a hierarchy of 
features from lower levels to higher levels layer by layer. 
Because of this non-linear multi-layer structure, a deep 
neural network offers great potential in representing 
complex functions and solving highly non-linear problems. 
Specifically, deep learning has been successfully 
implemented in speech recognition [7], human activity 
recognition [8], and patient-specific electrocardiogram 
(ECG) classification [9]. 

In this paper, we couple the Microfluidic CODES with 
a deep learning-based signal processing algorithm. We 
design the algorithm based on a convolutional neural 
network (ConvNet), which is a specific type of deep neural 
network. Then we acquire training signals by processing 
human cancer cells using a Microfluidic CODES device. 
We train the ConvNet to compute the probability with 
which a given sensor signal belongs to each and every 
coded Coulter sensor in the network. Finally, we query the 
ConvNet to characterize its accuracy and throughput. 
 
METHODS 
Design of Coded Sensors 

We designed a network of 10 code-multiplexed 
Coulter sensors. The assigned code for each Coulter sensor 
was a randomly generated 15-bit bipolar digital code (i.e., 
each bit was treated as a Bernoulli random variable with p 
= 0.5) (Figure 1). The code-set then dictated the physical 
design of the Coulter sensor network. Specifically, the 
sensor network consisted of three coplanar electrodes, 



namely a common electrode to excite the sensor network, 
and two sensing electrodes, one positive and one negative, 
to acquire sensor signals. Individual coded sensors were 
created by placing positive and negative 5 μm-wide 
electrode fingers in a sequence that follows the assigned 
code and routing the common electrode meandering 
between these coding electrode fingers. (Figure 1). 

 
Figure 1: A microscope image of the fabricated 
microfluidic device with a network of 10 code-multiplexed 
Coulter sensors. 
 
Fabrication 

As a test platform, we fabricated a microfluidic device 
with 10 parallel channels, each of which included a coded 
Coulter sensor (Figure 1). The device consisted of a glass 
substrate with micromachined electrodes and a 
polydimethylsiloxane (PDMS) microfluidic layer. Briefly, 
the electrodes on the substrate were fabricated using a lift-
off process. A 20/480 nm Cr/Au stack was micropatterned 
on the substrate to form three interdigitated coplanar 
electrodes described earlier. The microfluidic layer was 
fabricated using a soft lithography process. A 15-μm-thick 
SU-8 mold was fabricated via photolithography, and then 
used to cast the PDMS layer with 10 parallel 30-μm-wide 
microfluidic channels. The glass substrate and PDMS layer 
were activated under O2 plasma, aligned with a 
microscope, and bonded together to form the final device. 
The detailed fabrication process can be found in [10]. 
 
Sample Preparation 

To test the device, we used human ovarian cancer cells 
(HeyA8) suspended in phosphate buffered saline (PBS) as 
a biological sample. The cells were cultured in a cell 
culture flask containing RPMI 1640 cell culture medium 
supplemented with fetal bovine serum (FBS) at a ratio of 
9:1 (v/v). The cell culture was kept in an incubator that was 

maintained at 37 °C in 5% CO2 atmosphere. Once reached 
>80% confluence, the cells were treated with trypsin, 
centrifuged, and resuspended in PBS with gentle pipetting. 
The concentration of the cells in the suspension was set to 
105 cells/mL using a Nageotte chamber. 

 
Figure 2: A schematic showing the experimental setup used 
to test the decoding of sensor network signals. 
 
Experiment Setup 

The experimental setup included a syringe pump for 
sample delivery, electronic hardware for signal acquisition 
and processing, and an inverted optical microscope for data 
validation. The cell suspension was driven into the 
microfluidic device at a constant flow rate (500 μL/h). The 
sensor network was excited by applying a 460 kHz, 1 Vpk 
sine wave to the common electrode. The sensor network 
output signal was obtained by first converting the current 
signals into voltages using transimpedance amplifiers and 
then subtracting one from the other using a differential 
amplifier. The differential signal was demodulated using a 
lock-in amplifier and subsequently low-pass filtered in the 
digital domain. During electrical measurements, the cell 
flow over the code-multiplexed sensor network was 
optically recorded using an inverted optical microscope 
equipped with a high-speed camera. As all of the sensors 
were within the microscope field of view, the recorded 
footage was later used for data validation. 
 
Data Preparation 

To build the training data set, we first implemented a 
signal-identification program to extract all the sensor 
signals from raw sensor output, and classify each identified 
signal as non-interfering or interfering (Figure 3a). Then a 
data augmentation process was implemented to enlarge the 
training data size. To perform the data augmentation, we 
first randomly selected a non-interfering signal collected in 
the previous step, and applied variations in three signal 
parameters: power, duration, and time delay (Figure 3b). 
For the variation in power, we randomly chose a scaling 
factor within a set range, determined by the expected 
variation of cancer cell size, and varied the power of the 
selected signal accordingly. A similar procedure was also 
performed on the variations in duration and time delay. 
Then an additive white Gaussian noise (SNR = 30 dB) was 
added to the signal. This pick-and-vary process was 
repeated to construct a “signal database” containing 
1,000,000 variations of the original non-interfering sensor 
signals. 150,000 signals were randomly selected from the 
constructed signal database and were used as the training 
data set for non-interfering events. The remaining 850,000 
signals were then randomly interfered in pairs to construct 
the training data set for resolving coincidence events. This 



augmented training data set was then used to train the 
ConvNet (Figure 4a). 

 
Figure 3: Data augmentation. (a) Sensor signals were 
extracted from a raw sensor output signal. (b) Each non-
interfering sensor signal was varied in the power, duration, 
and time delay to construct a signal database to form a 
large training dataset. 
 
Implementation of the ConvNet 

We built a ConvNet that contained four convolutional 
layers (Figure 4b). The first convolutional layer (Conv-1) 
had 32 convolutional kernels of size 5, resulting in 192 
trainable parameters. The output feature map was then 
processed by Conv-2, which also had 32 convolutional 
kernels of size 5, and a total of 5152 trainable parameters. 
A max-pooling layer was placed right after Conv-2 to 
down-sample the convolved signal, and the output was fed 
into Conv-3, which contained 64 kernels and 10304 
trainable parameters, and then Conv-4, which contained 64 
kernels and 20544 trainable parameters. Another max-
pooling layer was placed after Conv-4. Following the 
second max-pooling layer were a flatten layer and two 
dense (fully connected) layers, in which the first dense 
layer had 180224 trainable parameters and the second had 
640 trainable parameters. The model had a total of 217056 
trainable parameters. The second dense layer fed the final 
output layer, which had 10 nodes, representing 10 Coulter 
sensors (10 classes). Given an input signal, the ConvNet 
predicted the probability with which the input signal 
belonged to each and every Coulter sensor in the 
microfluidic device. A predetermined probability threshold 
was used to predict the identity of the activated sensor 
(Figure 4c). 
 
RESULTS 
Training of the ConvNet 

The ConvNet was trained with a batch size of 500 
(batch size: the number of training signals processed before 
the model is updated), and an epoch number of 30 (epoch 
number: the number of times the learning algorithm works 
through the entire training dataset). The binary cross 
entropy (BCE) was used as the loss function to calculate 
the classification error. The Adam optimizer was used to 
minimize the error in each iteration. The learning rate was 

set to 0.001 for the first 10 epochs, 0.0001 for epochs 11 
through 20, and 0.00001 for epochs 21 through 30.  

 
Figure 4: ConvNet implementation. (a) The training 
process of the ConvNet. (b) The structure of the ConvNet. 
(c) The query process of the ConvNet.  
 

As the number of training epoch increased, the 
ConvNet improved itself to better represent the input data. 
After 25 epochs, the training and testing losses remained 
below 0.11 and 0.13, respectively, and the training and 
testing accuracies remained above 95% and 86%, 
respectively (Figure 5). 
 

 
Figure 5: Training and testing performances of the 
ConvNet. (a) Training and testing losses. (b) Training and 
testing accuracies. 
 
Query of the ConvNet 

For non-interfering sensor signals (Figure 6, the first 
and second rows), the ConvNet output for the 
corresponding sensor was close to 100%, while outputs for 
other sensors were nearly 0%. In this case, we could easily 
identify the activated sensor. For interfering sensor signals 
due to coincident particles (Figure 6, the third row), the 
corresponding output probabilities were reduced but the 
activated sensor identity could be correctly determined by 
using a predetermined threshold value (33% for this work). 

The query speed was over 800 particles/s, which 
represented an ~100× increase over the template-based 
algorithm demonstrated in our earlier work [11]. Query 
speeds of this order can potentially enable real-time particle 
analysis in LoC devices with code-multiplexed sensor 
networks. 
 



CONCLUSION 
We introduced a deep learning-based pattern 

recognition algorithm to decode code-multiplexed Coulter 
sensor signals in microfluidic devices. Besides simplifying 
the physical design of code-multiplexed Coulter sensor 
networks, our work significantly improved the processing 
speed of sensor signals to a level that can potentially enable 
real-time applications.  
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Figure 6: The query process of the ConvNet on both non-interfering and interfering signals. The first two rows 
demonstrate the results from representative non-interfering signals that correspond to all 10 code-multiplexed Coulter 
sensors in the network. The third row demonstrates the results for interfering signals. Each signal in the third row is 
a combination of two non-interfering signals from the first two rows in the same column.  


