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ABSTRACT

Code-multiplexed Coulter sensors can easily be
integrated into microfluidic devices and provide
information on spatiotemporal manipulations of suspended
particles for quantitative sample assessment. In this paper,
we introduced a deep learning-based decoding algorithm to
process the output waveform from a network of code-
multiplexed Coulter sensors on a microfluidic device. Our
deep learning-based algorithm both simplifies the design of
coded Coulter sensors and increases the signal processing
speed. As a proof of principle, we designed and fabricated
a microfluidic platform with 10 code-multiplexed Coulter
sensors, and used a suspension of human ovarian cancer
cells as a test sample to characterize the system. Our deep
learning-based algorithm resulted in an 87% decoding
accuracy at a sample processing speed of 800 particles/s.
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INTRODUCTION

Coulter counters are routinely employed for rapid
enumeration and characterization of electrolyte-suspended
particles. The impedance-based detection mechanism of
Coulter counters, also known as the resistive pulse sensing,
provides a robust and high throughput sensing scheme that
can readily be combined with the Lab-on-a-Chip (LoC)
technology. LoC platforms with integrated Coulter
counters, in the form of microelectrodes within
microfluidic channels, were used for biomedical [1] and
basic research applications [2].

To integrate multiple Coulter sensors into the same
microfluidic platform, we have introduced a code-
multiplexed Coulter sensor technology, the Microfluidic
CODES [3]. In terms of the physical interface, the
Microfluidic CODES operates similarly to a conventional
Coulter sensor as it only requires a single excitation input,
and yields a single output electrical waveform. However,
unlike a conventional Coulter counter, the output
waveform of the Microfluidic CODES contains the
information from all of the Coulter sensors integrated on
the microfluidic device. To achieve multiplexing, the
Microfluidic CODES uses code division multiple access
(CDMA), which is a technique that is commonly used in
telecommunications. Specifically, each Coulter sensor in
the Microfluidic CODES is micromachined to form a
distinct electrode pattern that generates a signature output
waveform when activated.

Following the conventional CDMA networks, the
Microfluidic CODES can be designed based on an
orthogonal code-set such as Gold sequences, which are
mutually-orthogonal bi-polar sequences commonly used in
a CDMA uplink [4]. Orthogonal code-set allows individual

sensor signals to be recovered via correlation with a set of
code templates with minimum crosstalk. However, reliance
solely on orthogonal codes constraints the design of the
individual sensors [5], and the template-based decoding of
sensor network signal limits the signal processing speed.
Therefore, a straightforward sensor design based on a
flexible coding scheme coupled with a more efficient
decoding algorithm can help enhance the utility of the
Microfluidic CODES in creating LoC platforms with
integrated Coulter sensor networks.

Machine learning-based algorithms are often used in
solving complex pattern recognition problems. Recently,
deep learning has emerged as a key learning model,
especially in the processing of time-series [6]. More
specifically, deep learning is a representation learning
method, which allows a machine to be fed with raw data,
and to automatically learn and discover the representations
needed for performing further pattern recognition on the
input data. A deep neural network is a deep learning
structure. Like the vast network of neurons in a brain, a
deep neural network is based on a collection of
multilayered, interconnected nodes called artificial
neurons. These artificial neurons makeup multiple
computational layers, and each layer performs a non-linear
transformation on the output of the previous layer. In this
way, the input signal is approximated by a hierarchy of
features from lower levels to higher levels layer by layer.
Because of this non-linear multi-layer structure, a deep
neural network offers great potential in representing
complex functions and solving highly non-linear problems.
Specifically, deep learning has been successfully
implemented in speech recognition [7], human activity
recognition [8], and patient-specific electrocardiogram
(ECQ) classification [9].

In this paper, we couple the Microfluidic CODES with
a deep learning-based signal processing algorithm. We
design the algorithm based on a convolutional neural
network (ConvNet), which is a specific type of deep neural
network. Then we acquire training signals by processing
human cancer cells using a Microfluidic CODES device.
We train the ConvNet to compute the probability with
which a given sensor signal belongs to each and every
coded Coulter sensor in the network. Finally, we query the
ConvNet to characterize its accuracy and throughput.

METHODS
Design of Coded Sensors

We designed a network of 10 code-multiplexed
Coulter sensors. The assigned code for each Coulter sensor
was a randomly generated 15-bit bipolar digital code (i.e.,
each bit was treated as a Bernoulli random variable with p
= 0.5) (Figure 1). The code-set then dictated the physical
design of the Coulter sensor network. Specifically, the
sensor network consisted of three coplanar electrodes,



namely a common electrode to excite the sensor network,
and two sensing electrodes, one positive and one negative,
to acquire sensor signals. Individual coded sensors were
created by placing positive and negative 5 pm-wide
electrode fingers in a sequence that follows the assigned
code and routing the common electrode meandering
between these coding electrode fingers. (Figure 1).
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Figure 1: A microscope image of the fabricated
microfluidic device with a network of 10 code-multiplexed
Coulter sensors.

Fabrication

As a test platform, we fabricated a microfluidic device
with 10 parallel channels, each of which included a coded
Coulter sensor (Figure 1). The device consisted of a glass
substrate with micromachined electrodes and a
polydimethylsiloxane (PDMS) microfluidic layer. Briefly,
the electrodes on the substrate were fabricated using a lift-
off process. A 20/480 nm Cr/Au stack was micropatterned
on the substrate to form three interdigitated coplanar
electrodes described earlier. The microfluidic layer was
fabricated using a soft lithography process. A 15-pum-thick
SU-8 mold was fabricated via photolithography, and then
used to cast the PDMS layer with 10 parallel 30-um-wide
microfluidic channels. The glass substrate and PDMS layer
were activated under O: plasma, aligned with a
microscope, and bonded together to form the final device.
The detailed fabrication process can be found in [10].

Sample Preparation

To test the device, we used human ovarian cancer cells
(HeyA&) suspended in phosphate buffered saline (PBS) as
a biological sample. The cells were cultured in a cell
culture flask containing RPMI 1640 cell culture medium
supplemented with fetal bovine serum (FBS) at a ratio of
9:1 (v/v). The cell culture was kept in an incubator that was

maintained at 37 °C in 5% COz atmosphere. Once reached
>80% confluence, the cells were treated with trypsin,
centrifuged, and resuspended in PBS with gentle pipetting.
The concentration of the cells in the suspension was set to
10° cells/mL using a Nageotte chamber.
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Figure 2: A schematic showing the experimental setup used
to test the decoding of sensor network signals.

Experiment Setup

The experimental setup included a syringe pump for
sample delivery, electronic hardware for signal acquisition
and processing, and an inverted optical microscope for data
validation. The cell suspension was driven into the
microfluidic device at a constant flow rate (500 pL/h). The
sensor network was excited by applying a 460 kHz, 1 Vpk
sine wave to the common electrode. The sensor network
output signal was obtained by first converting the current
signals into voltages using transimpedance amplifiers and
then subtracting one from the other using a differential
amplifier. The differential signal was demodulated using a
lock-in amplifier and subsequently low-pass filtered in the
digital domain. During electrical measurements, the cell
flow over the code-multiplexed sensor network was
optically recorded using an inverted optical microscope
equipped with a high-speed camera. As all of the sensors
were within the microscope field of view, the recorded
footage was later used for data validation.

Data Preparation

To build the training data set, we first implemented a
signal-identification program to extract all the sensor
signals from raw sensor output, and classify each identified
signal as non-interfering or interfering (Figure 3a). Then a
data augmentation process was implemented to enlarge the
training data size. To perform the data augmentation, we
first randomly selected a non-interfering signal collected in
the previous step, and applied variations in three signal
parameters: power, duration, and time delay (Figure 3b).
For the variation in power, we randomly chose a scaling
factor within a set range, determined by the expected
variation of cancer cell size, and varied the power of the
selected signal accordingly. A similar procedure was also
performed on the variations in duration and time delay.
Then an additive white Gaussian noise (SNR = 30 dB) was
added to the signal. This pick-and-vary process was
repeated to construct a “signal database” containing
1,000,000 variations of the original non-interfering sensor
signals. 150,000 signals were randomly selected from the
constructed signal database and were used as the training
data set for non-interfering events. The remaining 850,000
signals were then randomly interfered in pairs to construct
the training data set for resolving coincidence events. This



augmented training data set was then used to train the
ConvNet (Figure 4a).

set to 0.001 for the first 10 epochs, 0.0001 for epochs 11
through 20, and 0.00001 for epochs 21 through 30.
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Figure 3: Data augmentation. (a) Sensor signals were
extracted from a raw sensor output signal. (b) Each non-
interfering sensor signal was varied in the power, duration,
and time delay to construct a signal database to form a
large training dataset.

Implementation of the ConvNet

We built a ConvNet that contained four convolutional
layers (Figure 4b). The first convolutional layer (Conv-1)
had 32 convolutional kernels of size 5, resulting in 192
trainable parameters. The output feature map was then
processed by Conv-2, which also had 32 convolutional
kernels of size 5, and a total of 5152 trainable parameters.
A max-pooling layer was placed right after Conv-2 to
down-sample the convolved signal, and the output was fed
into Conv-3, which contained 64 kernels and 10304
trainable parameters, and then Conv-4, which contained 64
kernels and 20544 trainable parameters. Another max-
pooling layer was placed after Conv-4. Following the
second max-pooling layer were a flatten layer and two
dense (fully connected) layers, in which the first dense
layer had 180224 trainable parameters and the second had
640 trainable parameters. The model had a total of 217056
trainable parameters. The second dense layer fed the final
output layer, which had 10 nodes, representing 10 Coulter
sensors (10 classes). Given an input signal, the ConvNet
predicted the probability with which the input signal
belonged to each and every Coulter sensor in the
microfluidic device. A predetermined probability threshold
was used to predict the identity of the activated sensor
(Figure 4c).

RESULTS
Training of the ConvNet

The ConvNet was trained with a batch size of 500
(batch size: the number of training signals processed before
the model is updated), and an epoch number of 30 (epoch
number: the number of times the learning algorithm works
through the entire training dataset). The binary cross
entropy (BCE) was used as the loss function to calculate
the classification error. The Adam optimizer was used to
minimize the error in each iteration. The learning rate was
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Figure 4: ConvNet implementation. (a) The training
process of the ConvNet. (b) The structure of the ConvNet.
(c) The query process of the ConvNet.
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As the number of training epoch increased, the
ConvNet improved itself to better represent the input data.
After 25 epochs, the training and testing losses remained
below 0.11 and 0.13, respectively, and the training and
testing accuracies remained above 95% and 86%,
respectively (Figure 5).
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Figure 5: Training and testing performances of the
ConvNet. (a) Training and testing losses. (b) Training and
testing accuracies.

Query of the ConvNet

For non-interfering sensor signals (Figure 6, the first
and second rows), the ConvNet output for the
corresponding sensor was close to 100%, while outputs for
other sensors were nearly 0%. In this case, we could easily
identify the activated sensor. For interfering sensor signals
due to coincident particles (Figure 6, the third row), the
corresponding output probabilities were reduced but the
activated sensor identity could be correctly determined by
using a predetermined threshold value (33% for this work).

The query speed was over 800 particles/s, which
represented an ~100% increase over the template-based
algorithm demonstrated in our earlier work [11]. Query
speeds of this order can potentially enable real-time particle
analysis in LoC devices with code-multiplexed sensor
networks.
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Figure 6: The query process of the ConvNet on both non-interfering and interfering signals. The first two rows
demonstrate the results from representative non-interfering signals that correspond to all 10 code-multiplexed Coulter
sensors in the network. The third row demonstrates the results for interfering signals. Each signal in the third row is
a combination of two non-interfering signals from the first two rows in the same column.
[5] R. Liu, et al., “Scaling Code-multiplexed Electrode
CONCLUSION Networks for Distributed Coulter Detection in

We introduced a deep learning-based pattern
recognition algorithm to decode code-multiplexed Coulter
sensor signals in microfluidic devices. Besides simplifying
the physical design of code-multiplexed Coulter sensor
networks, our work significantly improved the processing
speed of sensor signals to a level that can potentially enable
real-time applications.
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