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Unraveling real eigenfrequencies in non-Hermitian P7 -symmetric Hamiltonians has opened avenues
in quantum physics, photonics, and most recently, phononics. However, the existing literature squarely
focuses on exploiting such systems in the context of scattering profiles (i.e., transmission and reflection)
at the boundaries of a modulated waveguide, rather than the rich dynamics of the non-Hermitian medium
itself. In this work, we investigate the wave propagation behavior of a one-dimensional non-Hermitian
elastic medium with a universal complex stiffness modulation that encompasses a static term in addition to
real and imaginary harmonic variations in both space and time. Using a plane-wave expansion, we conduct
a comprehensive dispersion analysis for a wide set of subscenarios to quantify the onset of complex
conjugate eigenfrequencies, and set forth the existence conditions for gaps that emerge along the wave-
number space. Upon defining the hierarchy and examining the asymmetry of these wave-number gaps,
we show that both the position with respect to the wave-number axis and the imaginary component of the
oscillatory frequency largely depend on the modulation type and gap order. Finally, we demonstrate the
coalescence of multiple Bloch-wave modes at the emergent exceptional points where significant direction-
dependent amplification can be realized by triggering specific harmonics through a process that is detailed

herein.
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L. INTRODUCTION

Modulating the properties of elastic media, whether
in lattice or continuum form, has been a growing topic
of interest in the field of phononic materials [1]. In its
simplest form, a phononic crystal represents a composite
periodic structure of two or more materials with differ-
ent properties, which give rise to frequency band gaps
as a result of Bragg scattering and destructive interfer-
ences [2]. This discrete periodic alternation of materials
represents the most basic form of spatial material mod-
ulation. However, phononic crystals with harmonically
varying stiffness profiles represent a different form of con-
tinuous modulation where the material change along the
spatial coordinate follows a prescribed function, e.g., a
sinusoid [3,4]. Lately, the ability to achieve wave filter-
ing using temporal modulations of material properties via
real time-periodic functions has been demonstrated [5,6],
and the notion of spatiotemporal modulations has been
theoretically and experimentally utilized to break Lorentz
symmetry and instigate nonreciprocal wave transmission.

*Corresponding author. mnouh@buffalo.edu

2331-7019/22/18(4)/044013(17)

044013-1

These space-time-periodic systems have ranged in imple-
mentation from phononic crystals [7-9] and locally res-
onant metamaterials [10—12], to stimuli-responsive mate-
rials [13]. While stiffness is typically the modulation
property of choice, given its accessibility and potential
experimental tunability, similar studies have looked into
the modulation of other inertial properties including mass
[14,15] and angular momentum in gyroscopic structures
[16]. While all the previous efforts rely on real modulation
of material property, the concept of using non-Hermitian
modulations has recently been adopted particularly in
stiffness-modulated waveguides in the form of imaginary
harmonic spatial functions [17]. Given the fact that such
non-Hermitian modulations are invariant under the action
of parity and time-reversal operators, the resultant struc-
tures are deemed to be P7 symmetric.

PT -symmetric non-Hermitian Hamiltonians, which are
capable of possessing real energy spectra, were initially
conceived of in quantum physics [18]. There, a sudden
phase transition from the exact to the broken region (or
vice versa) was realized by passing a critical threshold in
which two eigenvalues and their corresponding eigenvec-
tors coalesce, commonly known as the exceptional point
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degeneracy [19]. In the broken phase, eigenvalues emerge
as complex conjugate pairs in which modes with positive
and negative imaginary components experience exponen-
tial amplification and attenuation, respectively. Given the
similarity between the Schrodinger equation in quantum
mechanics and the wave equation, P7 symmetry was
readily extended to optics [20—23], acoustics [24-26],
and elastic systems [27-29], primarily through “gain-loss
energy pumping mechanisms” via an odd, imaginary form
of modulation. Notable among these are the realizations
of unidirectional reflectionless absorbers [30], microring
lasers [31,32], dynamic power oscillations [33,34], non-
reciprocal light propagation [35], and invisible acoustic
sensors [36]. In the photonics domain, different approaches
have been undertaken to implement P7 -symmetric opti-
cal systems, including aperiodic temporal modulation [37],
dynamic gain-loss modulation [38,39], and Floquet sys-
tems [40,41]. However, P7 -symmetric phononic systems
have been significantly less explored and limited to space-
periodic modulations. In these systems, an imaginary stiff-
ness modulation of an elastic medium becomes equivalent
to a cycle of negative (gain) and positive (loss) damping
terms in the motion equations that can be experimentally
enacted via negative and positive resistive shunt circuits
attached to piezoelectric patches that are bonded to the
elastic medium, along with a negative capacitance that
amplifies the gain and loss effects as needed [42]. Addi-
tionally, there remains a large gap between the dynamics,
response, and behavior of P7 -symmetric systems on the
one hand, and the wave dispersion patterns that culminate
from different modulation forms on the other. To date, the
vast majority of efforts have primarily focused on leverag-
ing the features of such systems in the context of scattering
properties at the boundaries and downstream of modu-
lated waveguides, with little to no attention to the wave
propagation profile inside the medium itself.

The current work aims to address the aforementioned
questions by providing a comprehensive treatment of spa-
tiotemporal stiffness modulations of an elastic medium,
ranging from purely real to complex modulations that
are used to exploit non-Hermitian degeneracies in P7 -
symmetric phononic systems. We start by deriving a
unifying theory that employs the plane-wave expansion
approach to evaluate the dispersion relations of a one-
dimensional slender bar, in which the stiffness profile
is modulated using a universal, complex spatiotemporal
waveform. Developing the analytical framework for the
most general case enables us to investigate the disper-
sion properties for a number of interesting subscenarios
and draw comparisons between P7 -symmetric systems
with different modulation forms, by extracting insight from
the evolution of the so-called wave-number gaps, their
existence conditions, and their unique behavior associ-
ated with the different scenarios. Towards the second half
of the paper, we evaluate the effect of the modulation’s

parameters on both the location and properties of the emer-
gent exceptional points (EPs), by studying and quantifying
the directional amplification taking place at such EPs in
the presence and absence of temporal modulation of mate-
rial property. The ensuing analysis interestingly shows that
directional amplification of select EPs in time-periodic
elastic systems can only be triggered by an input excitation
whose frequency signature represents a specific function of
the modulating frequency, as will be detailed.

II. THEORY

To study elastic wave dispersion in a continuous sys-
tem with non-Hermitian space-time modulation, we start
with the one-dimensional wave equation governing the
structural dynamics of an elastic longitudinal bar, given by

0 ou(x,1) 9 ou(x, 1)

where u(x,f) describes the bar’s displacement at a field
point x and a time instant ¢, and is denoted u hereafter
for simplicity; E(x, ) and p(x, ) represent the space- and
time-dependent elastic modulus and mass per unit length,
respectively. The non-Hermitian modulations of the bar’s
elastic modulus and density are given by

E(x,t) = Eo[1 + acos(wyt — kpx) +if sin(wyt — kpx)],
(2a)

o, 1) = po[1 + acos(w,t — kpx) +if sin(wyt — kpX)],
(2b)

where E, and p, represent the average modulus and density
values, i = /—1 is the imaginary unit, w, is the tempo-
ral modulation frequency, and «,, is the spatial modulation
frequency. The coefficients « and B dictate the depths
of the real and imaginary spatiotemporal modulations,
respectively.

Owing to the periodicity of £ and p in both space and
time, both can be rewritten via Fourier expansions as

o
E(x,t)y= Y Ee"or, (3a)
r=—00
o0
pla)= ) pererm, (3b)
r=—00

The Fourier coefficients E, of the elastic modulus are given
by

2r/wp  p2m/Kp

wp K .

E =~22L / / Re(E(x, ))e”" "= dx dt
2w 21 0 0

2nfwp 27 [Kp )
i / / IM(Ex, ))e" @ gy di
27T 27T 0 0
“4)
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with the operators Re(-) and Im(-) returning the real and
imaginary parts of their arguments, respectively. Substitut-
ing Eq. (2a) into Eq. (4) gives

w, K 27 [wp 27 [kp
E.=E,—~ p/ / [1+ o cos(wpt — Kkpx)]

% e—tr(wpt—fcpx) dx dt

27 [wp 27 [kp
wp K .
+1i 02p 2;/ /o [B sin(w,t — kpx)]

x e~ @ = %) g i, 5)

which, following several mathematical manipulations, fur-
ther simplifies to

o
E. =E, |:8r + E((Sr*l + 8r+1) + g(srfl - 81‘+1):|a (6)

where §, is Dirac-delta function that is equal to unity
for » = 0 and zero otherwise. With the focus here being
on stiffness-modulated structures, we set p(x,?) = p, as
an invariant parameter and therefore the Fourier coeffi-
cient corresponding to the constant density can be defined
as p, = p,6,. By incorporating the Floquet theorem and
implementing the plane-wave expansion (PWE) method
[43], a solution of the following form is realized:

00
u(x, t) — ei(a)tflcx) Z useis(wptflcpx)' (7)

§=—00

Here u; is the amplitude of the s harmonic in the assumed
solution. Upon substituting Egs. (3) and (7) back into
Eq. (1), and canceling out the €/ =*¥ term, the following
equality can be obtained:

oo

Z Z K[r+51K[s] E,u; ez(r+s)(wpt px)

—00 §=—00

Z Z W(r45)W(s) Pris€ l(’+8)(wpt KPX) (8)

r=—00 5§=—00

Here «kj1 =« +7r«, and o) = w + rw, are shorthand
notation for wave-number and frequency shifts, respec-
tively, for any integer r. To exploit the orthogonality of
harmonic functions, both sides of Eq. (8) are first mul-
tiplied by e~ ““»!=%¥  with ¢ being a dummy integer
variable, to get

o0 o0
Z Z Kr+s1K[s] uSErei(r-i_s_() (@pt=spx)
r=—00 §$=—00
o

o
= D Y @@t T (9)

r=—00 §=—

following which, both sides of Eq. (9) are averaged over
one spatial and temporal period as

21 /o, 2 /k
“p Xp. : g
2w 2w 0 0

o0 oo
X Z Z (Kprts1ks1 E,

r — W(r45)WD(s) pr)us
F=—00 §=—00
x T @pt=ip0) g it = 0. (10)

Given the orthogonality of harmonic functions, all the
summation terms on the left-hand side of Eq. (10) can be
zeroed out, except for when r+ s = ¢ (or, equivalently,
r = £ —s). As such, Eq. (10) reduces to

o
Z (kpkpsiEr

§=—00

—s w(r)w(s‘)/orfs)us = 0 (1 1)
Expanding the powers of w gives

o0
D (s + o+ )y

§=—00

(12)

+ ,Or,SrSCU; - K[+}"]K[+S]E}‘7S)ub‘ =0.
The infinite series in Eq. (12) can be truncated by imposing

a finite bound d and consequently casting into a familiar
matrix eigenvalue problem of the form

(Aw* +Bw + Q)i =0, (13)

where @t = [ii_g, ..., 0_1, 1,11, ...,iq]" is the eigenvec-
tor, and the entries of matrices A, B, and C are given by

As,r = MUr—s> (143)
B, = (r+ S)wp/-’brfs’ (14b)
Cs‘,r = }"Sa); My—s — K[+r]K[+S]C§Y}’7Sa (140)
where ¢ = E,/p, and
Hr—s = Pres = (Srﬁs'a (153)
Lo
= o =Bt Srt1)
Vr—s = Eo = Or—s B r—s—1 r—s+1
B
+ E(‘Sr—s—l - 8r—s+l)' (15b)

II1I. GENERALIZED MODULATION SCENARIOS

By applying the most general form of harmonic stiffness
modulation (real and imaginary variations in both space
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and time) to derive the eigenvalue problem depicted in
Eq. (13), we are able to start from the generalized case
and simplify down to specific cases of interest, as will be
shown in the following subsections. We start with a cou-
ple of simple examples where the modulation is purely
real and either space or time periodic to confirm and
validate the current framework. Following which, we pro-
ceed to uncharted scenarios that will reveal the intriguing
physics of complexly modulated elastic systems ranging
from symmetry to existence conditions of different types
of dispersion gaps. In the following, £, = p, = 1 and all
the parameters are expressed in arbitrary units.

A. Cases 1 and 2: E(x,f) = E,[1 + a cos(—«,x)] and
E(x,t) = E,[1 + o cos(w,?)], respectively

The stiffness modulation profile represented by case 1
describes a traditional phononic bar, albeit with a har-
monically varying modulus rather than discrete periodic
impedance mismatches. The emergence and behavior of
Bragg band gaps in infinite [44—46] and finite [47—49]
phononic systems have been thoroughly studied over the
past two decades. The approach adopted here is a free-
wave approach where a real wave number « is fed into
the dispersion relation to obtain the real and imaginary
components of the output frequency w. The left column
of Fig. 1(a) pits the real and imaginary components of the
eigenfrequency, Re(w) and Im(w), against the real wave
number « for case 1 with « =0.7, B =0, k, =1, and

(a)
— 1st band — 2nd band
<>

%%
Y

Case 1: a=0.7, =0, k,=1, w,=0

3rd band — 4th band — 5th band

2.0

1.5

FIG. 1.

=

Ll
i

wp = 0. The former shows the first five dispersion bands
(in a color-coded order) and reveals the existence of a
phononic band gap (PBG) between the first and second
bands, while the latter shows a zero imaginary compo-
nent of frequency across the entire wave-number space,
confirming the expected lack of temporal attenuation-
amplification in the nondissipative time-invariant elastic
medium. Most recently, the emergence of « gaps, a region
in the wave-number space where two bands coalesce with
complex conjugate eigenfrequencies, has been reported in
elastic structures with complex spatially modulated stiff-
ness profiles [17], as well as spatially uniform elastic
structures with real time-modulated stiffness profiles [5].
Figure 1(b) shows case 2 witha = 0.7, 8 =0, k, =0,
and w, = 1. By inspecting Egs. (13) through (15), it can
be deduced that the A, B, and C matrices are both real
and symmetric in case 2. Because of the properties of
quadratic eigenvalue problems, eigenvalues of such a sys-
tem can either be real values or complex conjugates [50].
As a result, we witness the formation of several « gaps,
as shown in the top left panel of Fig. 1(b). These « gaps
can be classified as « gaps of the nth order, and sorted
based on their proximity to the k = 0 axis. Henceforth,
we refer to the « gaps closest to the x = 0 axis as first-
order gaps. These first-order gaps form at the interface
between the first and second, third and fourth, fifth and
sixth bands, etc. We refer to following set of « gaps as
second-order gaps. These are the first set of gaps that form
at the interface between the second and third, fourth and

b Case 2: =07, 3=0, r,=0, w, =1
7 '
> lst-order }
’—> 2nd-order ¢ K gaps
2.0 «> —> 3rd-order
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Dispersion analysis for the systems described by (a) case 1, in which o = 0.7, 8 =0, x, = 1, and w, = 0; and (b) case 2,

in which o = 0.7, 8 =0, k, = 0, and w, = 1. The top left plot depicts the band structure, i.e., the real frequency Re(w) versus the
wave number k for each case. The bottom left and bottom right plots provide the variation of the imaginary frequency Im(w) versus «
and Re(w), respectively, for each case. A graphical representation of the real elastic modulus modulation Re(£) in space and time is

provided in the top right corner of each case (E, = p, = 1).
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fifth, fifth and sixth bands, etc, and so forth. The formation
of « gaps corresponds to the onset of temporal ampli-
fication (or attenuation) regions captured by the positive
(or negative) imaginary component of the eigenfrequency,
Im(w) [bottom left panel of Fig. 1(b)]. It can be seen that
both the width (with respect to the wave-number axis) and
the amplification-attenuation level, i.e., |Im(w)|, of the «
gaps decrease as they move further away from « = 0 and
their order increases. It can also be seen that x gaps of
the same order that span the same wave-number range but
occur at different frequencies have identical amplification-
attenuation levels. As a result, Im(w) corresponding to the
first-order « gap at the interface between the first and sec-
ond dispersion bands lies on top of the first-order « gap
between the third and fourth bands.

The bottom right panel of Fig. 1(b) plots the imagi-
nary component of each eigenfrequency as a function of
its real component, and confirms the presence of several
complex conjugate eigenfrequencies that share the same
real value but different imaginary parts at each « gap. The
figure also reveals that even-ordered « gaps correspond
to Re(w) = ©/2 for ¥ € {0,2,4,...}, while odd-ordered
k gaps correspond to Re(w) = ¢/2 for ¢ € {1,3,5,...}.
Finally, the frequency of each « gap is identical for left-
and right-going waves, and the symmetry of the Re(w)-«
plot about the ¥ = 0 axis is preserved.

B. Cases 3 and 4: E(x,1) = E,[1 + o cos(w,t — kpx)]
for v < 1and v > 1, respectively

For an elastic bar with a spatiotemporally modulated
stiffness, we define the modulation speed v, as the ratio
between the temporal modulation frequency w, and the
spatial modulation frequency «,, and the modulation speed
ratio as v = v, /c,, where ¢, denotes the sonic speed in
the medium. Figure 2(a) shows a phononic bar with a
purely real space-time-periodic elastic modulus, i.e., case
3, witha =0.7, 8 =0, k, =1, and w, = 0.2. The pre-
vious parameters amount to a subsonic modulation speed
(v < 1) that gives rise to a direction-dependent PBG, i.e.,
a band gap that spans different frequencies for positive and
negative values of x [9], a behavior which has recently
been exploited to realize nonreciprocal wave transmission
or a diodelike behavior in elastic metamaterials [11]. As
the value of v increases, the modulation speed approaches
that of the wave. The v =1 condition denotes what is
referred to as a luminal modulation in photonics [51]. Fur-
ther details about the implications of this condition can
be found in the work of Cassedy and Oliner [52] and
Cassedy [53]. The dispersive behavior of the medium dras-
tically changes beyond that point, once v exceeds unity, as
demonstrated by case 4.

In case 4, the parameters o« = 0.7, 8 = 0, x, = 0.2, and
w, =1 lead to a supersonic modulation speed (v > 1).
As a result, ¥ gaps that are asymmetric with respect to

the ¥ = 0 axis are generated, as can be seen in Fig. 2(b).
These x gaps are not only asymmetric with respect to the
wave-number axis, but also the frequencies they corre-
spond to differ for left- and right-going waves, indicating
a nonreciprocal wave amplification-attenuation capability.
It is important to point out that the symmetry breakage
of the band structure, and the overall tilting associated
with it, slightly alters the location of x gaps of the same
order that now no longer span the same range of « val-
ues. For visualization, this is graphically pointed out in
the horizontal shift between the lower-frequency and the
higher-frequency first-order « gaps in the Re(w)-« plot of
Fig. 2(b). As a result, while these two « gaps no longer
share the same proximity to the x = 0 axis, we still define
both of them as first-order « gaps since they are the clos-
est gaps to the x = 0 axis that take place at the interface
between the first and second bands, and the third and
fourth, respectively. (The same definition extends to the «
gaps observed in the band structures of cases 7 and 8§ that
also exhibit tilting.) The circled region in the same figure
denotes the shifted location of the meeting point between
the second and third bands, which has deviated from the
k = 0 axis. Finally, similar to case 2, we note that both
the width (with respect to the wave-number axis) and the
amplification-attenuation level, i.e., |Im(w)|, of the « gaps
become smaller for higher-order gaps. In other words, they
gradually shrink and eventually vanish as we move further
away from the x = 0 axis.

C. Cases 5 and 6: E(x,t) = E,[1 + if sin(—«,x)] and
E(x,t) = E,[1 + iB sin(w,1)], respectively

In cases 5 and 6, we examine a phononic bar with a stiff-
ness modulation profile that includes a purely imaginary
spatial modulation term and a purely imaginary tempo-
ral modulation term, respectively. In both of these cases,
we utilize an odd function, namely sin(-), to synthesize a
gain-loss mechanism and trigger periodic energy pumping
into and out of the system, akin to non-Hermitian modula-
tions of optical systems [38]. A close inspection of Eq. (13)
for case 5 reveals a suppression of the matrix B due the
fact that w, = 0. Consequently, Eq. (13) becomes a lin-
ear eigenvalue problem. Furthermore, it can be observed
that, while both A and C are real, only A is symmetric.
The role of 8 in breaking the symmetry of C becomes evi-
dent, as it converts a conventional Hermitian system to a
non-Hermitian (cyclic) system, in which C is a summation
of Hermitian and skew-Hermitian matrices. Figure 3(a)
depicts case 5 with« =0, 8 =0.7, k, = 1, and w, = 0.
Despite the presence of a spatial modulation, we note the
absence of any PBGs when such modulation is purely
imaginary. And despite the absence of a temporal modula-
tion, the structure exhibits some x gaps. In this scenario,
four observations can be made about the emerging «
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Case 3: a=0.7, =0, k,=1, w, =02
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FIG. 2. Dispersion analysis for the systems described by (a) case 3, in whicha = 0.7, 8 = 0,«, = 1, and w, = 0.2; and (b) case 4,
in whicha = 0.7, 8 =0, k, = 0.2, and w, = 1. The top left plot depicts the band structure, i.e., the real frequency Re(w) versus the
wave number k for each case. The bottom left and bottom right plots provide the variation of the imaginary frequency Im(w) versus «
and Re(w), respectively, for each case. A graphical representation of the real elastic modulus modulation Re(£) in space and time is

provided in the top right corner of each case (£, = p, = 1).

gaps, all of which are notably distinct from the behav-
ior of k¥ gaps obtained via real temporal (case 2) or real
spatiotemporal (case 4) modulations.

1. The Re(w)-« plot shows that « gaps only form at a
single frequency (w = 0.5).

2. The Re(w)-k plot also shows that all even-ordered
K gaps cease to exist.

3. The Im(w)-x plot shows that peak amplification-
attenuation levels associated with the « gaps, i.e.,
+|Im(w)|, do not increase for higher-order gaps as we
move further away from the k = 0 axis, and instead remain
constant.

4. Both the Re(w)-x and Im(w)-« plots show that the
width of the « gaps remains constant as we move further
away from the « = 0 axis.

Figure 3(b) represents case 6 witha =0, 8 = 0.7, k, =
0, and w, = 1. Here, a simultaneous combination of PBGs
and even-ordered x gaps takes place. Additionally, it is
observed that the PBGs and « gaps take turns and are
alternating in nature, with only one of the two happen-
ing between each two consecutive dispersion bands. The
bottom right panel of Fig. 3(b) confirms that the « gaps
correspond to Re(w) = #/2 for ¢ € {0,2,4,...}, and the
bottom left panel shows that contrary to Fig. 3(a), their
peak amplification-attenuation levels decrease as we move
further away from the « = 0 axis towards higher-order «
gaps. The emergence of PBGs in case 6 is especially note-
worthy given the lack of a spatial modulus variation that

is typically a hallmark feature of structures with Bragg
band gaps. Interestingly, the behavior of these PBGs mim-
ics that of the « gaps in case 2, where the same temporal
modulation of the elastic modulus was imposed as a real
term. Namely, the frequency range of the PBGs shrinks as
we move further from the x = 0 axis until the gap even-
tually closes. Figure 4(a) provides the dispersion diagram
of case 6 with an extended wave-number axis range, and
the adjacent close-up inset confirms the gradual narrowing
of the space between the two dispersion branches flanking
the PBG as |«| increases. PBG bounds obtained by trac-
ing the edges of these two branches are shown in Fig. 4(b).
To illustrate the manifestation of such PBGs that vary with
the wave number, a finite bar consisting of 50 unit cells
(i.e., modulation cycles) is excited at its midpoint via two
different frequencies, namely Re(w) = 0.48 (sim I) and
0.42 (sim II). The two simulations are also indicated in
the close-up inset of Fig. 4(a) where it can be seen that
sim I lies within the space of the PBG for low values
of k¥ and does not hit the lowest dispersion branch until
k = 2.5, marked as point D. On the other hand, owing
to its excitation frequency, sim II is unable to evade the
same dispersion branch and intersects with it at the loca-
tions marked A4, B, and C. The full wave-number spectrum
of both simulations is shown in Figs. 4(c) and 4(d), and
shows the implication of this behavior on the finite struc-
tural response. The highest peak in both plots takes place
at the same « value that corresponds to (and is caused by)
the modulation frequency of w, = 1. Aside from this peak,
the bar’s response in sim I in Fig. 4(c) is insignificant,
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(a) Case 5: a=0,3=07 k=1, w,=0
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(b) Case 6: a=0,3=07, £, =0, w,=1
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Dispersion analysis for the systems described by (a) case 5, in whicha =0, 8 = 0.7, «x, = 1, and w, = 0; and (b) case 6, in

whicha =0, 8 =0.7,«, =0, and w, = 1. The top left plot depicts the band structure, i.e., the real frequency Re(w) versus the wave
number « for each case. The bottom left and bottom right plots provide the variation of the imaginary frequency Im(w) versus « and
Re(w), respectively, for each case. A graphical representation of the imaginary elastic modulus modulation Im(E) in space and time is

provided in the top right corner of each case (£, = p, = 1).

albeit for the « value at point D, whereas contributions
from wave numbers at locations 4, B, and C can be clearly
seen in the bar’s response in sim II, shown in Fig. 4(d);
both observations being very consistent with Fig. 4(a).
Contributions from higher wave numbers (i.e., ¥ > 3) are
found to be negligible in both cases. As a final confirma-
tion, the insets in Figs. 4(c) and 4(d) show a single snapshot
of the spatial wave propagation of both excitations in the
finite bar following a low-pass filter only admitting the
k < 0.75 portion of the wave-number spectrum. The sim-
II inset in Fig. 4(d) shows the unimpeded propagation of
the wave in the finite medium consistent with the lack
of a PBG at location 4, while that in Fig. 4(c) shows an
insignificant response since the excitation frequency of sim
I squarely falls inside the PBG in the x < 0.75 range.

D. Cases 7 and 8: E(x,?) = E,[1 + if sin(w,f — k,x)]
for v < 1and v > 1, respectively

The last two scenarios combine the imaginary spatial
and temporal modulations investigated in cases 5 and 6
in one term to capture the behavior of a phononic bar
with a purely imaginary space-time-periodic elastic mod-
ulus profile. Analogous to cases 3 and 4, we investigate
the behavior of this structure at subsonic (v < 1, case 7)
and supersonic (v > 1, case 8) modulation speeds. The
parameters for case 7 are « =0, § =0.7, k, =1, and
w, = 0.2. The system in this scenario shares select features
from cases 4 (real space-time periodic) and 5 (imagi-
nary space periodic) and represents a hybrid combination
thereof. Similar to case 4, case 7 exhibits asymmetric «

gaps, both with respect to the k = 0 axis and with respect
to the frequency Re(w) at which they occur for left- and
right-going waves. However, similar to case 5, we observe
(1) a lack of even-ordered « gaps, (2) a constant level of
amplification-attenuation, Im(w), for all « gaps, and (3)
a constant width or « range spanned by all the « gaps
regardless of order.

Figure 5(b) provides the behavior of case 8 with o = 0,
B =0.7,«, =0.2, and w, = 1, which represents a super-
sonic modulation (v > 1) of the imaginary space-time-
periodic stiffness profile. The system in this case largely
behaves in a manner similar to case 6, but with a non-
reciprocal tilt of the overall band structure, as expected.
Specifically, we observe the absence of all odd-ordered «
gaps as well as an alternating cycle of nonreciprocal PBGs
and even-ordered « gaps as we move up the real frequency
axis. The width of the even-ordered « gaps narrows for
higher-order gaps. Additionally, also similar to case 6, the
frequency range of the PBGs also shrinks as we move
further from the « = 0 axis until the gap eventually closes.

As a final note, it should be pointed out that, since
eigenfrequencies inside « gaps are represented by com-
plex conjugates, the amplification-attenuation levels for a
specific k¥ gap will remain identical for all and any cases.

E. Verification of « gaps and recovery of the imaginary
eigenfrequency component of a finite
stiffness-modulated system

The formation of « gaps and the accompanying
amplification-attenuation regions in the Im(w)-x data
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(a) Dispersion diagram of case 6 with an extended wave-number axis. Close-up inset shows the gradually narrowing band-

gap region and indicates the excitation frequencies for two simulations labeled sim I and sim II. (b) Bounds of the two PBGs forming
between the first and second bands and between the third and forth bands. PBGs shrink at increasing distance from the x = 0 axis
and eventually close. (c),(d) Wave-number spectrum (i.e., spatial FFT) of the response of a finite-sized bar made of 50 unit cells to a
midpoint excitation at frequencies of (c) Re(w) = 0.48 (sim I) and (d) Re(w) = 0.42 (sim IT). Markers at 4, B, C, and D confirm peaks
corresponding to the dispersion crossings shown in the close-up inset of (a). Insets in (c) and (d) display snapshots of the spatial wave
propagation in the finite bar following a low-pass filter (LPF) admitting the k < 0.75 portion, or the shaded region, of the wave-number

spectrum.

presented so far have been predicted using an infinite
system approach, which adopts the Floquet theorem aug-
mented with a PWE method, as outlined in Sec. II. As
a result, it is incumbent upon us to examine and ver-
ify the onset of such amplification-attenuation regimes in
finite realizations of such stiffness-modulated systems. For
brevity, we focus here on cases 1 and 5 that represent real
and imaginary spatial modulations of the time-invariant
elastic modulus of a one-dimensional (1D) phononic bar.
To verify the imaginary component of the eigenfrequen-
cies, Im(w), using the finite element method (FEM), we
consider a finite bar of 50 unit cells where each cell spans
one full cycle of the spatial modulation of the elastic
modulus £ and is discretized using 30 finite elements,
as depicted in Fig. 6(a). As a result, the finite structure
contains a total of 50 x 30 = 1500 finite elements that
are modeled using conventional two-noded 1D bar ele-
ments and are assembled to form the equation of motion
of the entire structure. The eigenfrequencies are obtained
from the free vibration eigenvalue problem [M~'K]u =
w?u, where u is the discretized displacement field vector,
and M and K are the overall mass and stiffness matri-
ces, respectively. The resultant eigenfrequencies are split

into Re(w) and Im(w) that are plotted in the top and bot-
tom panels of Figs. 6(b) and 6(c), representing close-up
regions of Figs. 1(a) and 3(a). It should be noted that
the value of « corresponding to each eigenfrequency is
computed from a spatial Fourier transform of the corre-
sponding displacement field of the 1500-element structure.
Excellent agreement can be seen between the infinite dis-
persion bands obtained for both cases and the discrete
frequency-wave number obtained from the finite structures
representing both cases, including the «-gap regions of
case 5. More importantly, the bottom panels of Figs. 6(b)
and 6(c) verify the amplification-attenuation levels, i.e.,
Im(w), corresponding to the x gaps of case 5, in addition
to confirming the lack of such gaps in case 1 throughout
the entire k space.

IV. CONDITIONS FOR DIRECTIONAL
AMPLIFICATION

Beyond the eight distinct modulation categories repre-
sented by cases | through 8, any other form of stiffness
modulation can be written as a combination of these cases,
and the behavior resulting therefrom will generally depend
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Dispersion analysis for the systems described by (a) case 7, in whicha =0, 8 = 0.7, x, = 1, and w, = 0.2; and (b) case 8,

in whiche =0, 8 =0.7,k, = 0.2, and w, = 1. The top left plot depicts the band structure, i.e., the real frequency Re(w) versus the
wave number k for each case. The bottom left and bottom right plots provide the variation of the imaginary frequency Im(w) versus
k and Re(w), respectively, for each case. A graphical representation of the imaginary elastic modulus modulation Im(E) in space and

time is provided in the top right corner of each case (£, = p, = 1).

on two primary factors: the first is whether the absolute
value of the ratio 8/« is less than, greater than, or equal
to 1, and the second is whether the modulation speed ratio
v is less than, greater than, or equal to 1. Let us consider
sufficiently weak interactions, which enable first-order har-

of equations governing the free vibrations of a dynamic
system with three coupled harmonic oscillators that are
described by

C _ (Apg=1)0* + Bla=1j® + C g1 D jg=1] = 0, (16)
monics to make accurate representations of the system
at hand. As a r.esult, we truncate the infinite matrices of  (are f4_1) = [ii_ it i ]7 and
Eq. (14) by setting d = 1. This leads to a homogeneous set
J
1 00
A|.d=1J =10 1 0 , (173)
0 0 1
2w, 0 0
Bl—i) = 0 0 |, (17b)
0 2w,
a); —ci(/c —Kp)2 —cgfc(/c —Kp)(a+ B)/2 0
Cu=1) = —cglc(/c —Kp)(a —B)/2 —c§/<2 —cgk(/c + k) + B)/2 (17¢)
0 —cgfc(/c + k) —B)/2 a); — ci(/c + Kp)2

Figures 7(a) and 7(b) show the Re(w)-« and Im(w)-«
plots of three systems, respectively, corresponding to 8 =
0, 8 < a,and B > «. In the three cases, « = 0.2 is chosen
to keep the interactions weak and a modulation frequency
of w, =0.2 is used to break the system’s reciprocity.
The transition from PBGs (8 = 0) to « gaps (8 = 2a) is

obvious and a band structure tilt equal to the value of w),
can be observed across all three plots of Fig. 7(a). In the
leftmost plot, the tilt represents the frequency shift between
the PBGs associated with forward and backward waves. In
the middle plot, it represents the frequency shift between
the two exceptional points, labeled EP 1 and EP 2. In the
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FIG. 6. Discrete dispersion data obtained from finite realizations of case 1, in whicha = 0.7, 8 = 0,«, = 1, and w, = 0; and case 5,
inwhicho =0, 8 =0.7, k, = 1, and w, = 0. (a) Discretized elastic modulus profile over a single spatial modulation cycle spanning
a unit cell of 30 finite elements for case 1 (top) and case 5 (bottom). (b),(c) The Re(w)-«k and Im(w)-«x diagrams for case 1 (left) and
case 5 (right). Finite structure eigenfrequencies (via FEM) are denoted by circles and the infinite band structure (via PWE) is denoted

by solid lines.

rightmost plot, it represents the frequency shift between
the « gaps associated with forward and backward waves.
In addition to the vertical frequency shift, it is important to
note that the emergent « gaps in the § = 2« scenario are
also asymmetric with respect to the « = 0 line and, conse-
quently, exhibit a horizontal shift that can be interestingly
quantified in two ways. The small shift between the right «

2 _ 2 2
w, — ok — Kp)
Cla=1) = 0
p=a
0

For a certain set of x values, the matrix given by Eq. (18)
becomes a defective stiffness matrix that cannot be diag-
onalized. In such a case, the corresponding system would
not support a complete basis of eigenvectors and its alge-
braic multiplicity exceeds its geometric multiplicity. This
phenomena is attributed to exceptional points in the param-
eter space that, in this problem, appear at the |8/a| =1

—2k(k — kp)a

gap and the reflected version of the left ¥ gap (shown via
faded colors) is equal to w), /c,, while the overall horizon-
tal distance between the two « gaps is equal to the spatial
modulation «,,.

Figure 8 shows the evolution of the dispersion behavior
of the system as the ratio 8/« varies between —2 and 2. Of
interest is the case where f = «, and C|4=1; simplifies to

0
—C(Z)K (K +Kp)a

w? — Ak + Kp)?

P

2

—C K

S

(18)

(=)

point for x values at the boundaries of the Brillouin zone.
As shown in Figs. 8(c) and 8(d), the eigenvalues of the sys-
tem coalesce at this point and become complex conjugates
beyond it. Figures 8(e) and 8(f) show that the two eigen-
vectors, represented by U 4—1 |, become perfectly identical
at the same point, which is verified by their difference
being zero for any |8/« > 1, further confirming that the
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Transition from PBGs to x gaps past the § = « threshold. (a) The Re(w)-x diagrams and (b) Im(w)-x diagrams for § = 0

(left), B = o (middle), and B = 2« (right). System parameters used are « = 0.2, k, = 1, w, = 0.2, and E, = p, = 1. Vertical and
horizontal shifts culminating from band tilting are marked as functions of temporal modulation frequency w,, spatial modulation

frequency «,, and sonic speed c,.

dynamics of the system significantly change before and
after each exceptional point.

Next, we investigate the amplification behavior associ-
ated with exceptional points at |§/«a| = 1 in the presence
and absence of a temporal modulation. The solid lines in
Figs. 9(a) and 9(b) show the system’s dispersion bands
when 8/« = %1 in the absence of a temporal modulation,
ie., w, = 0. The bands are color coded in the same way
they have been throughout this paper, and the two excep-
tional points, EP 1 and EP 2, are indicated on the figure.
In this case, EP 1 and EP 2 are symmetric with respect
to the x = 0 axis and share the same frequency, wgp =
0.5. The dashed lines in the same figure show the transi-
tion of the dispersion diagram from S/a < 1 to B/a > 1,
namely the changeover from PBGs to « gaps. Figure 9(c)
shows the same set of dispersion lines but when a tempo-
ral modulation of w, = 0.2 is introduced. Finally, Fig. 9(d)
shows the behavior of the system when /o = —1 and
w, = 0.2. Owing to the value of w,, EP 1 and EP 2
in both Figs. 9(c) and 9(d) take place at wgp = 0.6 and
wgp = 0.4, respectively. Figures 9(e) through 9(p) show
the numerically reconstructed dispersion surfaces that are
obtained using the “General Form PDE” module of com-
SOL Multiphysics®, with Eq. (1) being directly used to
formulate the model. The geometry is constructed using
2000 discrete points along a 1D array with a resolution of
10 points per wavelength, and a zero flux boundary con-
dition is applied to both ends. A Gaussian excitation of

the form £ (f) = e"0~9%/2% gin (w;?) is applied using the flux

(source) boundary condition at the middle of the model and
2D FFTs are performed on the time-domain fields to obtain
the dispersion data. For the wideband excitations, the fol-
lowing excitation parameters are chosen: o = 1, 7y = 20,
and w; = 0.5. To impose narrowband excitations, o is set
to 40 and w; is tuned to the center frequency of interest,
as indicated in the individual figures. For convenience, the
shape of the exciting waveform is plotted alongside each
simulation. To avoid reflections, the simulations are only
performed up to the time required for the waves to reach
the boundaries.

By inspecting the wideband excitation cases in Figs.
9(e)}9(h), significant amplification can be observed in
each of the four cases at one of the two aforementioned
EPs. The sign of the 8/« ratio dictates which EP becomes
amplified. The amplification of EP 1 corresponds to 8/« =
+1 [e.g., Figs. 9(e) and 9(g)], while the amplification of
EP 2 corresponds to 8/ = —1 [e.g., Figs. 9(f) and 9(h)].
We henceforth refer to the frequency of the amplified EP
as wgpamp. 10 further investigate the behavior of these
EPs, a narrowband excitation targeting the frequency of
the amplified EP, i.e., w; = wgpjamp, is applied to each of
the four cases. In the absence of w),, the narrowband excita-
tions in Figs. 9(i) and 9(j) generate the same amplification
as that of the wideband excitations shown in Figs. 9(e) and
9(f), respectively. However, in the presence of a tempo-
ral modulation of @, = 0.2, neither one of the narrowband
excitations used in Figs. 9(k) and 9(1) is able to gener-
ate the same amplification achieved by their respective
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FIG. 8. Effect of 8/« on the dispersion behavior, ¥ gaps, and exceptional points. (a) The Re(w)-« and (b) Im(w)-« relations for
different S/« values. Exceptional points can be observed at |3/«| = 1. (c)f) Coalescence of eigenvalues and eigenvectors for (c),(e)
k& = —0.4 and (d),(f) k = 0.6. Components of the first and second eigenvectors are different for any 8/« < 1 and identical for B/a > 1,
as confirmed by the difference bar in both (e) and (f). System parameters used are « = 0.2, k, =1, w, = 0.2, and £, = p, = 1.

wideband excitations in Figs. 9(g) and 9(h). Given the
influence of temporal modulation on the underlying sys-
tem dynamics, exciting the structure at different up and
down harmonics of the amplified EP frequency becomes
relevant [54]. To this end, a narrowband excitation corre-
sponding to @; = wgpamp + @, is imposed in Figs. 9(m)
and 9(n), and a narrowband excitation corresponding to
®; = WEpamp — @Wp 1s imposed in Figs. 9(o) and 9(p). The
results show that no amplification takes place in either
Figs. 9(m) and 9(p), but does take place in both Figs.
9(0) and 9(n) at the same EP that is shown to be ampli-
fiable using a wideband excitation. As such, the following
conclusions can be made.

1. In the absence of a temporal modulation (i.e., w, =
0), both wide and narrowband excitations with w; = wgp
will trigger an amplification at the EPs whose location has
the same sign for « and 8/«. Here, EP 1 is amplified when
B/a = +1, while EP 2 is amplified when /o = —1.

2. In the presence of a temporal modulation (i.e.,
wp, # 0) the following statements hold: (a) A wideband
excitation will result in amplification at a single EP loca-
tion, wgp/amp. However, a narrowband excitation of w; =
wgp/amp Will fail to reproduce such amplification, and (b)
for B/a = £1 and an amplifiable EP at wgp/amp, @ narrow-
band excitation of w; = wgpamp F ), is needed to activate
the EP amplification.
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Directional amplification at EPs. (a)(d) The Re(w)-« dispersion diagrams highlighting the locations of EP 1 and EP 2 for

(@) wp, =0and B/a =+1, (b) w, =0 and /o = -1, (¢c) w, =0.2 and B/ = +1, and (d) w, = 0.2 and B/a = —1. Solid lines
in each figure show the dispersion bands at |8/«| = 1, while dashed lines show the transition from |B/«| < 1 to |8/a| > 1. (e)—(h)
Numerically constructed dispersion contours from the system’s response to a wideband excitation. Excitation waveform is provided
alongside the figure for visualization. Amplification at the location of EP 1 or EP 2 is marked using green or blue circles, respectively.
(1)~(1) Numerically constructed dispersion contours from the system’s response to a narrowband excitation targeting the frequency of
the amplified EP shown in (e)}—~(h), i.e., w; = Wgpjamp. (M)—(n) Numerically constructed dispersion contours from the system’s response
to a narrowband excitation targeting the first up harmonic of the amplified EP frequency shown in (g)+(h), i.e., w; = wgpamp + @p.
(0)~(p) Numerically constructed dispersion contours from the system’s response to a narrowband excitation targeting the first down
harmonic of the amplified EP frequency shown in (g)—(h), i.e., w; = @gp/amp — @,. For comparison purposes, the color bar is kept
unchanged throughout the figure, while the maximum amplitude is listed in the top left corner of each case. System parameters used

area =0.2,k, =1,and E, = p, = 1.

To further elaborate, consider the analysis presented in
Fig. 10 where different components of the first eigenvector
are plotted for several scenarios, all sharing the follow-
ing feature: |B| = |«|. In Fig. 10(a), where B/a = +1,
a noticeable drop in the amplitude of i, is observed at
k = 0.6. Leading up to the same value of «, a rise in the
amplitude of #_; can also be observed. This is indicative
of an amplification taking place at EP 1 (here at k = 0.6)
corresponding to 8/« = +1, which is consistent with the
results obtained from Fig. 9. Furthermore, since #_, repre-
sents the down-harmonic component of the eigenvector as
implied by the PWE solution in Eq. (7), this also explains
why the EP amplification via a narrowband excitation is

only attainable by targeting the down harmonic of wgp/amp
in Fig. 9(0). Similarly, in Fig. 10(b), where /o = —1,
a noticeable drop in the amplitude of #, is observed at
k = —0.4. Leading up to the same value of «, a rise in the
amplitude of #,; can also be observed. This is indicative
of an amplification taking place at EP 2 (here at « = —0.4)
corresponding to 8/« = —1, which is consistent with the
results obtained from Fig. 9. Furthermore, since i, repre-
sents the up-harmonic component of the eigenvector, this
explains why the EP amplification via a narrowband exci-
tation is only attainable by targeting the up harmonic of
wgpamp 10 Fig. 9(n). Finally, it is worth noting that the
location of the EP remains unaltered regardless of the
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while i represents the fundamental component. System parameters used are « = 0.2, k, = 1,w, = 0.2, and £, = p, = 1.

equal magnitudes of « and f, as can be inferred from
the unchanging locations of the amplitude changes in i,
_1, and u; in Fig. 10. However, the distribution of energy
between different harmonics changes depending on the
magnitude of o or §. Needless to mention, the observations
made in this section can be generalized for all higher-order
harmonics (i.e., Wgp/amp & nw, for n € Z and n # 0).

V. CONCLUSIONS

In this work we investigate the wave dispersion mechan-
ics of a one-dimensional elastic medium with a stiffness
profile that is modulated using real (even) or imagi-
nary (odd) space-time waveforms corresponding to differ-
ent modulation speeds, each revealing intriguing features
across the frequency and wave-number axes, which can
be summarized as follows. For even, real spatiotemporal
modulations, either nonreciprocal PBGs or asymmetric «
gaps form depending on whether the modulation speed
ratio, v, is smaller or greater than one. At the limit states of
wp = 0 or k, = 0, reciprocal PBGs or symmetric « gaps
will be observed, respectively. For odd, imaginary spa-
tiotemporal modulations, asymmetric odd-ordered « gaps
form when v < 1, while a combination of nonreciprocal
PBGs and asymmetric even-ordered « gaps form when v >
1. At the limit states of w, = 0 or x, = 0, symmetric odd-
ordered x gaps or a combination of reciprocal PBGs and
symmetric even-ordered x gaps will be observed, respec-
tively. The above takeaways are qualitatively captured by
eight distinct examples, labeled cases 1 through 8, which

cover all the possible spatial, temporal, and spatiotempo-
ral modulation profiles in both real and imaginary forms.
The resultant behaviors of the systems undergoing these
modulations are summarized in Table 1.

Beyond the eight individually examined cases, the anal-
ysis of complex modulations with simultaneous real and
imaginary components show a large dependence on the
absolute amplitude ratio |8/«|, which reveals the follow-
ing.

1. For a generalized complex stiffness modula-
tion of the form E(x,?) = E,[1 4+ a cos(wpt — kpx) +
iff sin(w,t — kpx)], the dispersion behavior approaches
that of a system with purely real modulations when
|B/a| < 1, and that of a system with purely imaginary
modulations when |8/« > 1.

2. The |B/a| = 1 system gives rise to a series of EPs
for both right- and left-going waves. Directional amplifi-
cation will take place at the former EPs for positive values
of B/a, and for the latter EPs for negative values of 8/a.
The frequency of the amplifiable EP is denoted wgp/amp.

Finally, unlike time-invariant non-Hermitian systems
where EP amplification can simply be triggered with a
narrow excitation of wgp/amp, the amplifiable EP in a non-
Hermitian system with a temporal modulation w, # 0 can
be realized by exciting several harmonics of the amplifi-
able EP frequency, specifically wgpamp F 1w, for /o =
41 (with n € Z and n # 0); a feature that stems directly
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TABLE I.

Summary of key features accompanying different stiffness modulation forms of a one-dimensional elastic medium. The

abbreviations R, NR, S, and AS denote reciprocal, nonreciprocal, symmetric, and asymmetric, respectively; “/s” denotes a shifting

PBG at higher values of k, as demonstrated in Fig. 4.

K gaps
Case Modulation PBGs Symmetry Order Level with increasing gap order
1 cos(—«px) R

2 cos(wy1) ... S All Decreasing

3 cos(wpt — kpx); v < 1 NR

4 cos(wpt — Kpx); v > 1 AS All Decreasing

5 i sin(—k,x) ... S Odd Constant

6 isin(w,?) R/s S Even Decreasing

7 isin(wyt — kpx); v < 1 AS Odd Constant

8 isin(wyt — kpx); v > 1 NR/s AS Even Decreasing

from the properties of the different components of the sys-
tem eigenvectors. From a practical standpoint, the ability
to trigger amplification at distinct frequencies, coupled
with the significantly enhanced sensitivity to perturbations
in the vicinity of EPs, can be extremely valuable given
the rapidly increasing use of EPs in optical and acoustic
sensing devices [55,56]. In the presence of temporal mod-
ulations, EP-based sensors can therefore operate within a
wider bandwidth since the amplification can be tuned to
target multiple frequencies of interest spanning a broader
range.
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