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ABSTRACT

NASA Cyclone Global Navigation Satellite System (CYGNSS)
mission has gained attention within the land remote sensing
community for estimating soil moisture (SM) by using the
Global Navigation System Reflectometry (GNSS-R) tech-
nique. CYGNSS constellation generates Delay-Doppler
Maps (DDM) that contain valuable earth surface information
from GNSS reflection measurements. Existing approaches
use predefined features from DDMs to estimate SM. This pa-
per presents a deep-learning framework to learn optimal fea-
tures from DDMs for estimating SM. The proposed approach
is applied over the Continental United States (CONUS) by
leveraging CYGNSS DDM observations with ancillary re-
motely sensed geophysical data. The model is trained and
evaluated using the Soil Moisture Active Passive (SMAP)
mission’s enhanced SM products at a 9km × 9km resolution
with vegetation water content less than 5kg/m2. The mean
unbiased root-mean-square difference (ubRMSD) between
CYGNSS and SMAP SM retrievals from 2017 to 2020 is
0.0362 m3/m3 with a correlation coefficient of 0.9309 over
5-fold cross-validation.

Index Terms— CYGNSS, Soil Moisture, Deep-learning,
CNN, GNSS-R, SMAP

1. INTRODUCTION

Soil Moisture (SM) is essential for crop harvesting, rain fore-
casting, hydrology, meteorology, and different earth science
applications. High-resolution and accurate SM estimation is
required for many applications such as flood forecasting and
yield estimation [1]. There are several dedicated satellite mis-
sions used for SM retrieval with different spatial and tem-
poral resolutions. The National Aeronautics and Space Ad-
ministration’s (NASA) Soil Moisture Active Passive (SMAP)
[2] and the European Space Agency’s (ESA) Soil Moisture
and Ocean Salinity (SMOS) [3] are two conventional satellite
missions which are operated with L-band passive radiome-
ters and provide SM measurement approximately 36-km spa-
tial resolution and 1-3 days temporal coverage. The spatio-
temporal resolution of current SM products can be potentially
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improved by using constellations of small satellites enabled
by “receive-only” GNSS-R techniques.

NASA launched constellation of 8 micro-satellites called
the CYGNSS mission in December 2016 to improve hurri-
cane forecasting. It provides observations from 38o North to
38o South latitudes over both land and ocean. With 4 channels
per satellite, CYGNSS observations have an improved spatial
and temporal resolution under the assumption of coherent re-
flection. Many recent studies have been successfully able to
retrieve surface SM using CYGNSS observations [4, 5]. The
majority of the previous studies used effective reflectivity ob-
tained from peak reflected power in a Delay-Doppler Maps
(DDM) [6, 7]. These approaches utilize their designed fea-
tures computed from a DDM image as the main information
DDM brings into the SM estimation problem. However, be-
sides the SM content, vegetation and topographical properties
also affect entire DDMs, and DDMs carry much more infor-
mation than just its peak power value. While ancillary in-
formation from other sources can provide additional informa-
tion, the goal of this paper is to develop approaches that learn
the optimal features directly from the entire DDM images for
the SM estimation problem and by this way to increase SM
estimation accuracy. CYGNSS provides three types of DDM
images; Analog Power, effective scattering area, and bistatic
radar cross-section (BRCS). Our proposed approach utilizes
these three DDM images as inputs together with ancillary data
within a deep learning (DL) architecture to map the SM value.
A recent study showed a DDM could be used for SM esti-
mation using the DL method [8], however the approach used
only one type of DDM (Power Analog) and no quantitative
performance metric is presented for their SM retrieval model.
In this study, we have utilized three DDMs as input together
with physical ancillary data relevant to SM estimation in a DL
framework with convolutional and fully connected neural net-
work layers for enhanced SM estimations. The proposed DL
architecture is evaluated under different train/test scenarios
using the SMAP mission’s enhanced SM products at a 9km ×
9km resolution over Continental United States (CONUS).

The rest of the paper is organized as follows: Section
2 summarizes the utilized datasets. Details of the proposed
DL architecture and methodologies are provided in Section 3.
Results are presented in Section 4. Finally, conclusions are
drawn in Section 5.
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2. DATASET

2.1. Cyclone Global Navigation Satellite System

In this study, the CYGNSS Level-1 (L1) version 2.1 product is
used, which is available at the NASA Physical Oceanography
Distributed Active Archive Center. DDM is one of the key
measurements in L1 dataset that represent the received sur-
face power over a range of time delays and Doppler frequen-
cies (bin-by-bin) for each observed specular reflection point.
The DDM gives an 11 × 17 array. In addition to DDMs,
geometric and instrumental variables are also incorporated to
provide complete acquisition information for each specular
point. For this study, we have considered the CONUS region
from March 2017 to November 2020, where a total of more
than 18 Million DDM samples exist.

2.2. SMAP Radiometer Soil Moisture Data

The SMAP Enhanced L3 Radiometer Global Daily 9-km
EASE-Grid SM product is used as reference SM data to train
and validate developed SM retrieval model. SMAP uses the
L-band microwave radiometer to collect brightness tempera-
ture data and produces SM estimates. SMAP datasets contain
SM product and the associated coordinates for the descend-
ing (A.M.) and ascending (P.M.) overpasses which are then
combined to obtain daily results.

2.3. Ancillary Data

Different geophysical parameters play essential roles in accu-
rately predicting SM. In order to characterize vegetation con-
ditions, the 16-day composite Normalized Difference Veg-
etation Index (NDVI) is utilized from Moderate Resolution
Imaging Spectroradiometer (MODIS) data. Vegetation Wa-
ter Content (VWC) is calculated using the NDVI and Land
Cover Type (MCD12Q1) products using the same lookup ta-
ble method as the SMAP VWC product [9]. The Digital Ele-
vation Model GTOPO30 product (1-km resolution) is used to
provide surface elevation information from the United States
Geological Survey Earth Resources Observation and Science
archive. Soil clay and silt ratios are obtained from the Global
Gridded Soil Information (SoilGrids) [10]. A 30-m Global
Surface Water Dataset from the Joint Research Centre (GSW-
JRC) [11] is used to identify the presence of a surface inland
water body. All ancillary data are spatially aggregated from
their native resolutions to 3 km.

2.4. Quality Control Mechanisms

Several quality control criteria need to be applied to CYGNSS
observations and ancillary data to maintain the data quality.
CYGNSS metadata control flags such as S-band powered up,
substantial spacecraft attitude error, black-body DDM, DDM
test pattern, poor confidence GPS EIRP estimate are uti-
lized [12]. Observations with an incidence angle higher than
±650 are eliminated [13]. If the surface water is sufficiently

large within grid, SM estimate is highly effected. Thus, a
CYGNSS observation is removed if more than 2% of the 3
km grid centered on a specular point is covered with perma-
nent or seasonal water. Additionally, CYGNSS readings that
fall over forested areas with VWC>5 kg/m2 (dense vege-
tation canopy) are also eliminated. CYGNSS observations
before December 2017 that are above 600m from the surface
are masked out due to the altitude limitation of CYGNSS L1
data for the specified time period.

3. METHODS

In this study, we formulated SM retrieval as a complex func-
tion of CYGNSS DDMs and ancillary inputs. We consider
Convolutional neural network (CNN) as our DL model where
the primary inputs are coming from three types of CYGNSS
DDM images. CNN learns a number of features directly from
the DDM images which are later combined with ancillary fea-
tures that are described in Section 2.3. Dense layers map the
combined features to the final SM value. We consider a su-
pervised learning approach where the model is trained over a
labelled dataset of SMAP SM values (Sect. 2.2) minimizing
the mean square error loss.

3.1. CNN Design

The developed DL model consists of three major parts; convo-
lutional network, concatenation , and densely connected lay-
ers. The convolutional layers are used to extract features from
the input DDM images. At the end of the layer, extracted fea-
tures are flattened to concatenate with additional ancillary fea-
ture inputs. The concatenation layer is used for combining the
features from ancillary features with the CNN’s flattened out-
put. As mentioned earlier, three DDMs are the primary input
of the CNN network. Each type of image is given in a differ-
ent channel (a total of 3 channels) after normalization. In total
3 convolutional layers are used followed by a maxpool layer
at the end. Each convolutional layer consists of 3×3 kernel
with 0 paddings and stride 1. The filter sizes of convolutional
layers are 32, 64, and 128 respectively. A max-pooling layer
(5×11 kernel size) is applied after the convolutional layers.
A flattening layer is used to flatten the extracted features into
a vector format. After each convolutional layer, a batch nor-
malization layer followed by a Rectified Linear Unit (ReLU)
activation is used. We extract 128 features from the DDM im-
ages. DDM based features combined with 9 ancillary features
are input to 2 fully connected layer with 50 nodes where the
final regression layer maps to a single SM value. Fig. 1 shows
the overall structure of the developed DL model.

3.2. Training the Model

We trained the proposed DL model for three different scenar-
ios. First, a single model is trained for the whole CONUS
region. Second, clusters of 72km and 144km are formed, and
a model is learned for each cluster separately. For clusters
models are learned for smaller regions, however using less

6178

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on February 28,2023 at 21:49:28 UTC from IEEE Xplore.  Restrictions apply. 



Fig.1.OverallstructureofCNN-basedsoilmoistureestimationusingDDMsandotherancillaryinput.

Table1.Performancemetricsfordifferentmodelsusing5-foldcross-validation

Numberofmodels no.ofsamples
RMSD
(m3m−3)

meanubRMSD
(m3m−3)

medianubRMSD
(m3m−3)

Rvalue
(m3m−3)

72KM-cluster 5725 3247 0.0403 0.0362 0.0350 0.9309
144KM-cluster 1667 11148 0.0480 0.0417 0.0410 0.9009
One-cluster 1 1.86e+7 0.0580 0.0482 0.0470 0.8512

Table2.PerformancecomparisonofdifferentSMproduct
overCONUSregions(72kmclustermodel)

Models
RMSD
(m3m−3)

ubRMSD
(m3m−3)

R-value

OurDLSM 0.0407 0.0366 0.93
MSU-GRIproduct 0.0518 0.0434 0.91

numberoftrainingdata.Rootmeansquarepropagation(RM-
SProp)isusedasanoptimizer.Thenetworkistrainedusing
mini-batchgradientdescent,wherethetrainingdataisran-
domlysplitintosubsetsandthemini-batchisselectedde-
pendinguponthetypesofmodelweused.Thetotalnumber
ofepochsusedis250.Therequiredcomputationsarecarried
outusingtheDLtoolboxofMATLABR2021bsoftwareover
amachinewithIntel(R)Xeon(R)CPUE5-2643and128GB
memory.

4. RESULTS

Inthissection,theSMretrievalresultsfromDLbasedap-
proachesarepresented.TheoverallperformanceoftheDL
modelforSMretrievalisevaluatedthrough5-foldcross
validationtechnique. Table1showstheoverallSMpre-
dictionperformancederivedviatheDLmodelfordifferent
approaches.ThedevelopedmodelreachesanoverallRMSD

of0.0403m3/m3andaRvalueof0.9309usingthe72km
clustermodels.Forthismodel,totalnumberof72kmcluster
is5725andthemeanubRMSD0.0362m3/m3andmedian
0.0350m3/m3.Thetotalnumberofmodelfor144kmcluster
is1667andit’smeanubRMSD0.0417m3/m3andmedian
0.0410m3/m3. Wehavealsotrainedasinglemodelfor
CONUSregion.ThissinglemodelreachesanoverallRMSD
of0.0580m3/m3andaRvalueof0.8512.Fig.2shows
ubRMSDandcorrelationcoeficientforeach9kmgridusing
themodelfor72kmclusters.Fig.2ashowsthatSMpre-
dictionsaremoreaccurateforthelowvegetatedregionsof
theCONUS.However,theerrorishigherfortherelatively
morevegetatedeasternpartoftheCONUS.Fig.3depictsthe
scatterplotbetweenlabelSMandpredictedSMforthe72km
clustermodelwithanRvalueof0.93. Wecompareourap-
proachwithML-based[14]SMretrieval.Table2showsthe
comparisonofthe72-kmclusterbetweenthetwoapproaches,
anditisclearlyobservedthatourDLapproachoutperformed
theexitingML-basedmodel.

5. CONCLUSION

Inthispaper,DLbasedframeworkhasbeendemonstrated
forestimatingSMusingtheCYGNSSDDMsalongwithan-
cillarygeophysicaldata. Differentmodelsaretrainedus-
ingSMAPSMvaluesaslabels. Modelsarevalidatedusing
the5-foldcross-validationandthebestubRMSDandcor-
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Fig. 2. (a) ubRMSD and (b) correlation coefficient map for
72 KM model test result (4-years averaged)

Fig. 3. The scatter plot of the predicted SM versus SMAP SM

relation coefficient is achieved for the 72km clusters with a
mean ubRMSD of 0.0362 m3/m3 and R of 0.93. As a fu-
ture study, the proposed model will be applied globally with
varying train/test scenarios.
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