
Data Driven Joint Hyperspectral Band Selection and
Image Classification
Robiulhossain Mdrafi and Ali Cafer Gurbuz

Department of Electrical and Computer Engineering
Mississippi State University, Starkville, MS 39762

Email: rm2232@msstate.edu and gurbuz@ece.msstate.edu

Abstract—Hyperspectral sensors acquire data with a large
number of spectral bands. These large number of bands make
the processing computationally expensive and difficult in many
real-world applications. In addition, with the spatial dimensions,
the volume of the data creates problems for cases where the
applications permit only limited resources both in terms of
hardware computational and storage requirements. To avoid
these limitations, band selection plays very pivotal role for
many applications. Existing techniques utilize redundancy, clus-
tering, sparsity, ranking type criteria for band selection. We
propose an end-to-end deep learning pipeline together with a
constrained measurement learning structure to select bands in
a data driven manner to optimize directly the final task, which
is the classification accuracy for this paper. Our results on a
publicly available hyperspectral dataset show that the proposed
data-driven approach provides higher classification accuracy
compared to the existing state-of-art methods for the same
number of bands utilized.

Index Terms—Hyperspectral, Band Selection, Deep Learning,
Convolutional Neural Network, Gumbel-Softmax, measurement
learning.

I. INTRODUCTION

Hyperspectral sensors acquire the spectral reflectance of the
ground objects using hundreds of bands. While this provides
important spectral information on a given scene that can
differentiate objects, the number of bands together with spatial
dimensions produces a huge volume of data, which is the
hyperspectral image (HSI). This large stream of data creates
high computational cost, induces ‘curse of dimensionality’
for a low number of training samples in high dimensional
HSI data with redundant correlated information among the
bands. Hence, the classification of objects in a given HSI scene
degrades and may not be implementable on the fly in various
real-world applications. To overcome these limitations, band
selection (BS) aims to select a smaller subset of bands that
captures the most relevant information.

Over the years, various BS methods have been presented in
the literature. A review of these methods can be found in [1].
BS approaches are categorized as -ranking based, searching-
based, clustering-based, sparsity-based, embedded learning-
based, and hybrid schemes. Ranking based BS techniques
select bands based on the ranking of the bands sorted by
the selection score where the selection score prioritizes the
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selection of the top bands. Among them Maximum variance
PCA (MVPCA) [2] ranks and selects the bands based on
the variance of principal components obtained from the eigen
value decomposition of the covariance matrix of the given HSI
data. Fast density peak-based clustering (FDPC) [3] method
finds the cluster centers as the distance between all pairwise
bands to find the independent density peaks that corresponds
to the selected bands. The main advantage of these methods
are that they are computationally faster, but they fail in terms
of giving enhanced classification where more sophisticated
patterns are observed in the HSI data.

To select the subset of bands, searching based selection
approaches aims to find the suitable and best spectral infor-
mation by satisfying an optimization criterion. Among them
linear prediction (LP) [4] selects most unique bands based
on the similarity between a single band and multiple bands.
The clustering based approaches split the bands into a set of
clusters where the bands from each cluster are selected from
the similarity measures [5]–[7]. Sparsity based methods like
improved Sparse Subspace Clustering (ISSC) [8] finds the
bands based on the notion that smaller dimensional compo-
nents i.e. subspaces similarity can help us to distinguish the
set of bands. In embedded learning, BS is incorporated into the
optimization of the specific application models. For example
in recursive feature elimination-SVM, weights calculated in
SVM training are later used as ranking criteria to remove
redundant bands [9]. In hybrid-based BS, combination of
previously stated methods are utilized to find the most suitable
form of bands [10].Although existing BS techniques provide
enhanced performance, they are not directly optimizing the
task metric such as classification accuracy, and they are not
data-driven and automatic. In general, similarity or redundancy
based information is utilized to preserve the significant spectral
information which could only be a sub-optimal indicator of
final task performance.

To this end, we propose an end-to-end data driven pipeline
for joint band selection and classification where the architec-
ture minimizes the classification loss and at the same time
learn a constrained measurement mask to select the optimal
bands. We utilize a probability mask to generate an initial
estimate of the bands to get a proxy HSI data with only
selected bands that is fed into a deep neural network based
classification part to get the final classification score of the

1736978-1-6654-2792-0/22/$31.00 ©2022 IEEE IGARSS 2022

IG
AR

SS
 2

02
2 

- 2
02

2 
IE

EE
 In

te
rn

at
io

na
l G

eo
sc

ie
nc

e 
an

d 
Re

m
ot

e 
Se

ns
in

g 
Sy

m
po

siu
m

 |
 9

78
-1

-6
65

4-
27

92
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IG
AR

SS
46

83
4.

20
22

.9
88

38
21

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on February 28,2023 at 22:12:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Block diagram of the proposed method for T total
number of bands.

input HSI data. From the classification loss in the pipeline,
with the help of back-propagation, we learn a binary mask
that satisfies a constraint for a given number of bands and
generates the optimal bands for the problem at our hand. Our
initial results shows better classification accuracy than state-
of-the-art band selection based HSI classification methods.

The rest of the paper is organized as follows. Section II
provides the theory and the implementation details of the
proposed model for learning based joint BS and classification.
Section III demonstrates the experimental settings and results.
A concluding remark about the work and its extension is drawn
in Section IV.

II. PROPOSED METHOD

We propose an end-to-end network that jointly learns a con-
strained measurement mask to select bands and a classification
architecture to achieve the final goal of object classification.
The general block diagram of the proposed method is shown in
Fig. 1. The proposed data driven band selection/classification
architecture can be decomposed into two key parts- band
selection and classification networks. As shown in the diagram,
band selection part takes the input HSI data and generates a
proxy estimate of HSI signal via learnable masks, which is
passed into a deep neural network based classification part to
get the final classification label of the given pixel of the HSI
data. A more detailed descriptions of the network regarding
the operation of these parts are provided in the following
subsections:

A. Band Selection Network

In the band selection architecture, the HSI data X of
dimension M ×N ×T enters into pipeline as the input where
M,N, denote the height, width of the spatial dimensions and
T denotes the total numbers of bands respectively. Since, goal
of classification task is to mainly categorize each pixel into
varying object classes; we reshape the dimension of X as
P × T where P = M × N . Band selection network takes
another input of probability mask S parameterized by X such
that S = σt(X) where each point in S takes non-negative
continuous values i.e. S ∈ [0, 1]T . Here, we define σt as
an element-wise sigmoid function i.e. for each pixel i of X,
Si = 1/(1 + exp(−tXi)) where t defines the slope of the

sigmoid and acts as a hyperparameter in the pipeline. Since
the value of S lies in the region [0, 1]T ; hence, we can realize
a Bernoulli distribution at each point of S. If we draw binary
realizations from S, we will find the mask B ∈ {0, 1}T such
that B ∼

∏T
i=1 β(Si) where β(s) represents the Bernoulli

random variable with parameter s. For each pixel, the obtained
binary mask B has value 1 for the bands that are selected and
0 for the bands that will not be selected. Hence, we aim to
solve the following joint optimization problem for a selected
band ratio of α with a constraint 1

T ∥S∥1 = α:

{Ŝ, Θ̂} = argmin
S,Θ

EB∼
∏T

i=1 β(Si)
L(fΘ(B⊗X)) (1)

Here, fΘ is the classification network with parameters Θ
where X̂ = B ⊗ X is the input to it. Here, ⊗ denotes
the pointwise multiplication. L refers to cross-entropy loss
between the predicted pixel label and the ground truth one.
The selected band ratio constraint ensures that the binary mask
B has an approximate value of α which is the value of selected
bands. Here as we see from (1) that the loss function takes the
expectation over the Binary mask B; hence, via approximation
of the expectation by Monte-Carlo averaging, we get:

{Ŝ, Θ̂} = argmin
S,Θ

1

K

K∑
k=1

L(fΘ(b(k) ⊗X)) (2)

Here, b(k) are the independent realizations drawn from the∏T
i=1 β(Si) distribution. The (2) takes the same form of

variational autoencoder (VAE) in [11] where the authors use
the re-parameterization trick to rewrite the (2) as:

{Ŝ, Θ̂} = argmin
S,Θ

1

K

K∑
k=1

L(fΘ((U(k) ≤ S)⊗X)) (3)

Here, U(k) deduces the independent identical realizations from∏T
i=1 u(0, 1), which is a set of random uniform variables

varying from 0 to 1 i.e. [0, 1]. Thus the inequality tells us
that if the inequality constraint is satisfied, then the result of
this inequality would be 1.0 else 0.0. Since this inequality
only involves with the probabilistic mask S and the random
independent realizations; hence, the thresholding operation
only effects these distributions. Since the whole optimization
criteria in eqn. (3) deals with the discrete representations
and the thresholding operation is non-differentiable; hence,
the whole pipeline will not be end-to-end in this case. To
make the whole loss function for the HSI band selection and
classification task differentiable, we replace the thresholding
operation with another element wise sigmoid function σr with
slope r. Thus the obective function will take the form with the
constraint 1

T ∥S∥1 = α as:

{Ŝ, Θ̂} = argmin
S,Θ

1

K

K∑
k=1

L(fΘ(σr(S−U(k))⊗X)) (4)

Using this replacement approach helps us to use the trick
of Gumbel-softmax [12] and concrete distributions [13] to
train the proposed pipeline. Another issue is to maintain the
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constraint 1
T ∥S∥1 = α. To achieve this, we use a normalization

(norm) layer that helps to rescale the value of S. This rescaling
satisfies the constraint. The norm. layer is defined as:

Normα(S) =

{
α
sS if s ≥ α

1− 1−α
1−s (1− S) otherwise

(5)

Here, s is the average of pre-normalization of probabilistic
mask S i.e. s = ∥S∥1

T . It can also be seen that eqn. (5) gives us
Normα(S) ∈ [0, 1]T and ∥Normα(S)∥1/T = α. Using this
normalization layer, we can write our final objective function
as:

{Ŝ, Θ̂} = argmin
S,Θ

1

K

K∑
k=1

L(fΘ(σr(Normα(S))−U(k)))⊗X))

(6)
It can be seen that, in accordance with the block diagram of

Fig. 1 and the band selection network, we obtain probability
mask S by using element wise sigmoid with slope s. Then,
we get the rescaled mask R from the norm layer Normα i.e.
R = Normα(S). Using thresholding operation using another
element wise sigmoid with slope r results the binary mask
B = σr(Normα(S)) − U(k). Once we get B, we get the
proxy band selected data X̂ as the element wise multiplication
of the binary mask B and X. Although the dimension of X̂
is exactly same as of X, only columns corresponding to 1.0
in the binary mask B are used as the selected bands from the
total bands. Hence, the rest of columns the will be zero as
they are also zero in the obtained binary mask B. Once, we
receive the band selected proxy HSI data X̂ , it is then fed into
the classification network as shown in the Fig. 1.

B. Classification Network

As shown in the Fig. 1, the classification part takes the
band selected proxy HSI data X̂ and gives us the prediction
of the given pixel label ŷ in the HSI data. Since we are
performing pixel-wise classification; hence, we are interested
only on extracting features spatially from the given HSI data.
Therefore, we opt to use 1 − D convolution for extracting
features hierarchically from the BS data. We use a set of
1 − D convolutional filters (Conv1D) with ReLUs. First set
of convolutional layers consists of three Conv1D layers where
each outputs 64 filters with a stride of 1 and kernel length
of 3 followed by ReLU activation. With same stride, kernel
length and activation, each Conv1D layer in the second set
of Conv1D layers outputs 32 filters. Next, a max-pooling
layer (Maxpool1D) is used to downsample the size of the
extracted features. This downsampling apporach helps us to
get a hierarchical representation of the features. The output of
the second set of Conv1D layers are flattened before feeding
them into a set of fully connected dense layers. First dense
layer consists of 25 output neurons with ReLU activation while
second one outputs the number of classes in the given HSI
data. The output of second layers passes through soft-max
function to give us the probable class distribution for the pixel
of given HSI data. Once we find the soft-max of the given

Fig. 2: Ground truth of the Indiana Pines dataset [Color bar
showing different classes in the scene]

sample, we can write the classification loss function L is the
cross entropy loss that is defined as

L(l̂i, li) = −
P∑
i=1

C∑
g=1

li,glogSoft(l̂i,g). (7)

where Soft(l̂i,c) is the soft-max layer output that gives the
probability that sample i belongs to class g. Here, l̂iandli
represents predicted and ground truth respectively. Once we
have the predict the probabilities of all class labels, class
label is declared as the one that corresponds to the maximum
value i.e. ŷi = argmaxi l̂i. Since in the whole network where
BS and classification stages are learned with minimizing the
classification loss, the selected bands are learned to optimize
classification performance and hence, we opt to name our net-
work as Measurement learning based Band Selection (MLBS).

III. EXPERIMENTAL SETTINGS AND RESULTS ANALYSIS

In this work, we use a publicly available Indian Pines dataset
[14] provided by Purdue University. This dataset was collected
in a test site in Indiana via AVIRIS airborne sensor. Initially,
the collected HSI data had the shape of 145 × 145 × 224
where 224 denotes the total number of bands. The band
number was further reduced to 200 by eliminating corrupted
bands due to water absorption and radiometric corrections.
The HSI data has 16 classes of ground objects in the imaging
scene. It contains a total of 10249 samples with classes being
alfalfa, no-till corn 1, minimal-till corn, corn, grass/pasture,
grass/trees, mowed grass/pasture, windowed hay, oats, no-
till soybeans, minimal-till soybeans , clean soybeans, wheat,
woods, building/grass/tree drives and stone/steel towers. The
ground truth of the Indian pines dataset is given in Fig. 2.
We use 10% of the data from all classes for training, and the
rest for the testing. We ran the proposed network for 10 times
independently to get the average performance measures.

1738

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on February 28,2023 at 22:12:25 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Comparison of overall classification accuracy for
compared methods as a function of number of selected bands.

A. Implementation of the proposed network

For implementing the probability mask S, we use the value
of slope t = 5 for σt to squash the value of X to the range
[0, 1]. For approximating the thresholding operation by σr, we
use the value of slope r = 200. These values are selected based
on the grid-search technique. We use gradient descent based on
adaptive moment estimation (ADAM) optimizer with a batch
size of 16 for a varying learning rate from 0.1 to 0.0001 to
determine the network parameters via Keras API.

B. Results Analysis

In this work, we use overall accuracy (OCA), average
accuracy (ACA), and kappa statistics (KC) as the measures
to evaluate the performance of the proposed method. For
comparison purposes, we report the results of state-of-the-art
band selection techniques MVPCA [2], FDPC [3], LP [4], and
IISC [8] under same number of selected bands.

We show overall classification accuracy as a function of
number of selected bands for compared approaches in Fig. 3.
We can see that the proposed MLBS approach outperforms
compared state-of-the-art approaches providing higher overall
classification accuracy for all tested number of selected bands.
We can also see that around 30(α = 0.15 in our case) selected
bands, performance of most methods become flatter. For this
number of selected bands, the proposed MLBS results around
8% more accuracy than the closest compared approach. Here,
the results of all methods compared for 30 selected bands are
provided in the Table I with respect to OCA, ACA, and KC for
all classes in the dataset. The results reported in the table also
show that the proposed MLBS approach results in superior
classification performance.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a data driven deep neural network based
pipeline is proposed to jointly select the bands from the

TABLE I: Classification results of different band selection
methods for 30 selected bands.

Class Name Method
MVPCA FDPC LP ISSC MLBS ALL

ACA 65.99 68.09 67.04 76.85 82.88 72.65
OCA 70.18 77.45 73.5 81.61 89.08 79.12
KC 65.83 74.22 69.56 78.98 81.14 76.05

hyperspectral data in order to minimize classification loss. This
way different from existing approaches who look for similarity
or redundancy related metrics to select bands, the bands that
directly optimize the final task (i.e., classification) related cost
are selected. It has been shown on a publicly available dataset
that the proposed band selection method outperforms state-of-
the-art approaches for hyperspectral object classification. The
future work will provide enhanced analysis and comparisons
of the proposed approach under varying scenarios .
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