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Abstract

Many naturally formed and processed surfaces are rough over a broad range of length scales. Surface
roughness reduces the area of contact between solids, with ramifications for phenomena that depend on
the geometry of the interface and the amount of direct contact, including friction and adhesion. In this
work, we employ large-scale boundary-element simulations for nonadhesive, elastic solids to study the size
dependence of contact patch mean pressure and geometry for patches formed between solids with self-affine
fractal surface roughness across seven decades in patch area. Contact patches with diameters smaller than
a crossover length scale of order the minimum wavelength of roughness are generally compact with simple
geometries and bear pressures well described by Hertz theory. The patch pressure in contact patches larger
than the crossover scale rises logarithmically before saturating at a finite value. Furthermore, the largest
contact patches formed during our simulations are ramified and populated with regions out of contact, or
bubbles, which reduce patch area and increase patch perimeter. As a result, we show that the mean contact
diameter of the largest patches saturates, indicating that the patch contact area is proportional to the total
patch perimeter. We quantify the effects of bubbles on patch area and perimeters as a function of Hurst
exponent and contrast our findings with results of comparable bearing-area model calculations. The slow
evolution of the mean patch pressure with patch size in our large-scale calculations explains the common
observation that the global mean contact pressure depends on the structure of the roughness, the contact
area, and even on system size.
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1. Introduction

The real area of contact between surfaces is critically important in determining the properties and
longevity of solid-on-solid interfaces. Friction, adhesion, and wear are sensitive to the total area of close
approach between the contacting interfaces, as are the effective thermal conductivity and contact resistance
of the contact [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Surface roughness generally reduces the contact area far below
the apparent or projected surface area A0 and requires that external load be applied to bring deformable
solids closer together after initial contact. Consequently, there has been widespread interest in improving
our understanding of how the contact area depends upon roughness structure and applied load.

Experimental, analytical, and numerical studies of rough surfaces commonly find proportionality be-
tween the real contact area Atot and applied load Ftot at low contact area fractions [4, 11, 12, 13, 14, 15].
Greenwood and Williamson provided the first plausible explanation for this simple relationship for elastic
bodies by assuming that rough surfaces are composed of many identical asperities with radius R, subject to
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a rapidly decaying distribution of summit heights [13]. The theory predicted Atot ∝ Ftot by summing the in-
dependent contributions of contacting asperities behaving in accordance with Hertz theory [16]. Later, Bush
et al. extended the Greenwood-Williamson formulation to include a distribution of asperity curvatures [14].
Asperity models such as these provide a useful first approximation of contact behavior but are inherently
flawed because they ignore the long-range correlations induced by elastic deformation. More recently, Pers-
son developed a model that included elastic interactions in an approximate way and is exact in the limit
of full contact [15, 17]. Bush et al. and Persson both derived expressions of the form Atot = κFtot/h

′
0E

∗,
where E∗ is the contact modulus, h′

0 is the root-mean-squared (rms) surface slope and κ is a dimensionless
constant that differed slightly between the two models: Bush et al. found κ =

√
2π ≈ 2.5, whereas Persson

arrived at the value κ =
√

8/π ≈ 1.6. The mean pressure in contacting regions, prep ≡ Ftot/Atot, is written
nondimensionally in terms of κ as prep/h

′
0E

∗ = 1/κ.
Many natural and processed surfaces exhibit self-affine fractal character over a range of length scales [18,

19, 20]. From a numerical point of view, constructing surfaces with self-affine roughness is a useful way
to control the statistical properties of synthetic representations of roughness with just a few parameters.
Chiefly, the Hurst exponent H governs height differences between locations on the surface separated by
lateral vector ~r, satisfying 〈|h(~x+ ~r)− h(~x)|2〉 ∝ |~r|2H for isotropic self-affine roughness where the average
〈·〉 runs over locations ~x on the surface. For self-affine fractals, H is between zero and unity with the special
limiting case H = 1 corresponding to self-similar fractals. Roughness characterized by H = 0.5 exhibits a
random-walk-like topography and is uncorrelated at small scales, while surfaces with H > 0.5 and H < 0.5
are correlated and anti-correlated at short scales, respectively. Measurements of surfaces most often find
values of H between 0.5–1 [18, 19, 20, 21]. However, the case of H < 0.5 is also of practical interest as such
self-affine roughness has been shown to arise from the Kardar-Parisi-Zhang (KPZ) model [22], in experiments
of sputter-deposited Au on Si(111) [23] and ion-beam-eroded graphite [24], and from numerical simulations
of plastically deformed amorphous CuZr [25]. Numerical simulations of self-affine rough surfaces have shown
that below ∼ 10% contact percentage κ usually falls between the predictions of Bush et al. and Persson,
provided that a statistically representative set of contact patches is formed [26, 27, 28, 29, 30, 31]. However,
the precise value of κ depends on the details of surface roughness and is only nominally constant over a
limited range of area fractions.

Subtle variations in prep/h
′
0E

∗ indicate that probing the mechanisms underlying the evolution of contact
area with applied load and changes in roughness is crucial. A regularly reported quantity is the contact
patch-size distribution n(Ap), which gives the probability that a connected patch containing area close
to Ap exists. Experimentally, Dieterich and Kilgore measured that the patch-size distribution appears to
decay as n(Ap) ∼ A−τ

p for a variety of roughened materials [11, 12]. The notion of a power-law patch-size
distribution is supported by numerous computational studies that have typically found τ < 2 [6, 32, 33, 34].
One difficulty associated with isolating power-law exponents for n(Ap) using simulations is the relatively
high computational cost of calculating elastic deformations. Early numerical work was limited to fitting
τ over merely 1-2 decades of scaling. Moreover, the tails of n(Ap) have proved challenging to resolve but
τ < 2 implies that the largest patches dominate the total contact area since

∫

dAp Apn(Ap) ∼ A−τ+2
p has a

positive exponent.
Recently, Müser and Wang [34] hypothesized that n(Ap) is a truncated power-law distribution with

an intrinsic maximum patch size Amax. They found that over a small range, τ agreed with the predicted
exponents for planar cuts through self-affine surfaces—the so-called bearing-area model—where τ = 2−H/2.
However, their work did not systematically vary the scales of roughness or explore how changes in contact
area affected fits to the distribution. We will show that these have significant effects on n(Ap).

Furthermore, the patch-size distribution tells only part of the story for prep/h
′
0E

∗ because the applied
load is not distributed uniformly over contact patches. The force borne by individual contact patches Fp

has previously been studied as a function of Ap [34, 35, 36]. A crossover emerges between Hertz scaling

Fp ∼ A
3/2
p for small contacts to linear scaling Fp ∼ Ap for large patches. By focusing on the mean pressure

in patches Fp/Ap instead, we will show that the crossover is not sharp but rather takes place gradually over
several decades of patch sizes. Most numerical studies to date have employed system sizes unable to produce
contact patches large enough to surpass the patch pressure crossover regime, meaning that the largest mean
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patch pressure in the system was entirely dictated by the system size. Extrapolations for prep/h
′
0E

∗ based
on simulation results obtained for such surfaces with small ranges of self-affine roughness were therefore
inapplicable to the limit of broad self-affine roughness.

The morphology of contact patches is widely assumed to be fractal because the synthetic surfaces are
fractal themselves [2, 29, 32]. It is possible to define fractal dimensions for both contact patches and the
perimeters of patches. A natural basis for comparison to elastic contact geometries is the bearing-area
model, for which analytic work has determined fractal dimensions for contour loops generated via planar
cuts through Gaussian surfaces [37, 38]. The bearing-area model, like asperity models, ignores correlations
between contacting regions mediated by elastic interactions but is nevertheless a useful tool due to its
simplicity.

In this paper, we investigate effects of self-affine surface roughness and contact area on prep/h
′
0E

∗ for
contact area fractions Atot/A0 . 0.15 using nonadhesive contact simulations. We observe that the properties
of contact patches generally vary systematically with patch size. When possible, we make direct comparisons
between elastic calculations and the bearing-area model. Finally, we discuss possible sources of variability
for simulation results and explore what our findings imply for the thermodynamic limit of infinite system
size.

2. Methods

2.1. Rough surface generation

We use a Fourier filtering algorithm to generate instances of randomly rough, periodic surfaces with
self-affine power spectral density (PSD) [4, 39]. The roughness is isotropic, meaning that the PSD depends
only on the magnitude of the in-plane wavevector q = |~q|. The self-affine regime of the PSD is bounded by
lower and upper values q1 = 2π/λmax and q2 = 2π/λmin, respectively. The short wavelength cutoff λmin

is the length scale below which surfaces are smooth, while the long wavelength cutoff λmax corresponds to
the distance beyond which distinct surface regions are statistically independent. The ratio ζ ≡ q2/q1 =
λmax/λmin defines the extent of self-affinity of the roughness; this is the magnification central to Persson’s
model [15]. The full PSD is then given by

S(q) =



















0 if q1 < q

C0

(

q
q1

)−2(1+H)

if q1 ≤ q ≤ q2

C0

(

q2
q1

)−2(1+H)

if q2 < q ≤ 2π/L

(1)

where L is the overall linear dimension of the periodic rough topography. The prefactor C0 can be chosen to
set one of the moments of the PSD given λmin and λmax. Fourier amplitudes in the reciprocal-space surface
representation can be chosen to construct surfaces with exact PSDs or by scaling Gaussian random variables
to have the correct variance according to Eq. (1). In our simulations, the latter method produced larger
variance within the ensemble because of greater variability of the highest peak, but we found that contact
results did not strongly depend upon the amplitude-selection method.

For surfaces with broad self-affine regimes (ζ � 1), λmax independently controls the rms height variation
h0 = 〈h2(~x)〉1/2, while λmin sets h′

0 = 〈|∇h|2〉1/2 and the rms curvature h′′
0 = 〈∇2h〉1/2. Existing literature

often refers to fractal and thermodynamic limits, but often without clearly defining what these limits mean.
We here use the following definitions: The fractal limit of self-affine roughness corresponds to ζ → ∞ [31],
i.e. a broad region of self-affine scaling. The ratio L/λmax determines surface “representativity” [40]:
The rough interface is replicated (L/λmax)

2 times, but in a statistical sense—each repetition has identical
statistical properties but does not have identical surface profiles. The thermodynamic limit is then given
by L/λmax → ∞ [31]. Surfaces with L/λmax > 1 help smooth out measurement fluctuations by permitting
self-averaging over statistically independent replicas contained within the system. The resolution of the
boundary between contacting and non-contacting regions is governed by λmin/a0, where a0 is the surface
discretization. In some cases, self-affine roughness has been observed down to the atomic scale [20, 21], but
imposing λmin � a0 mitigates discretization errors.
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The principal length scale of interest for contact patches is drep, the characteristic diameter of contacting
regions. Pastewka and Robbins expressed drep in terms of h′

0 and h′′
0 by connecting the latter to the statistical

radius of curvature of asperities via Rasp = 2/h′′
0 , yielding drep = 4h′

0/h
′′
0 [2, 41]. Contributions from q1 can

be dropped for ζ � 1 giving:

drep =
2λmin

π

√

2−H

1−H
; H < 1. (2)

Note that this quantity encodes explicit dependence on H, with the narrowest diameters corresponding to
small H. We mainly report length scales normalized by drep and area scales normalized by d2rep, computed
using Eq. (2).

2.2. Elastic contact mechanics

The problem of frictionless, normal contact of two elastic solids with Young’s moduli E1 and E2 and
Poisson ratios ν1 and ν2 can be mapped to contact between a rigid body and an elastic body with effective
contact modulus given by [42]:

1

E∗
=

1− ν21
E1

+
1− ν22
E2

. (3)

A similar mapping exists for combining two rough surfaces because only the undeformed gap function matters
for linear elasticity. Statistical moments describing the roughness of the resulting composite surface increase
by a factor of

√
2 as a result of the incoherent sum of the original topographies. We take h′

0 = 0.1 for the
combined surface because it is typical of experimentally measured surfaces, and because larger slopes h′

0 ≈ 1
often produce plastic deformation in real materials. However, the value of h′

0 is inconsequential in linear
elasticity because the natural unit of pressure is h′

0E
∗. We report all pressures normalized by this quantity.

We employ a boundary-element technique to calculate the deformation of semi-infinite, linear elastic
solids [43, 44, 45, 46, 47, 48]. The interaction between substrate and rough surface is a hard wall such
that there is no interpenetration. Each node has a single degree of freedom to displace perpendicular to
the surface plane; nodes on the elastic solid’s surface are considered to be in contact where the pressure
is positive, and each contacting node contributes a20 to the overall contact area. For periodic systems, the
stiffness of the q = 0 mode (defining uniform translations of the surface layer) vanishes; therefore, we set
the q = 0 stiffness equal to the stiffness of the smallest q > 0 mode [28, 47, 48].

2.3. Corrections to contact area

Yastrebov and coworkers have emphasized the importance of using sufficient resolution to reduce dis-
cretization effects, in particular to avoid overestimation of the contact area and to prevent erroneously
merging contact patches that should be distinct [30, 49]. In a recent set of papers, they derived the correc-
tion:

A′
tot = Atot −

π − 1 + log(2)

24
Ptota0, (4)

where Atot and Ptot are the global contact area and perimeter. The contact area is computed by summing
up the areas of contacting nodes, and the perimeter is the total length of edges shared by contacting and
non-contacting nodes. In the present work, contact nodes belong to the same patch if they are next-nearest
neighbors, meaning that they share an edge or corner on the square grid. For low-resolution calculations
(λmin . 10a0), comparing nearest and next-nearest neighboring criteria will likely give slightly different
results. We apply Eq. (4) to individual contact patches by replacing Atot and Ptot with their per-patch
analogs Ap and Pp. Results were minimally affected if λmin & 10a0, and in this work, we fix λmin = 16a0
(see Supporting Information of Ref. [2] for more details).
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Figure 1: Variation of the dimensionless mean contact pressure prep/h′

0E
∗ with contact area fraction for the indicated H.

Error bars represent the standard error on the mean measured across an ensemble of more than ten typical surfaces. Solid lines
indicate linear fits to the data with matching colors.The dashed line is a tentative linear fit to the H = 0.8 data over the range
Atot/A0 & 0.04. The system side length is λmax = 16384a0 and ζ = 1024.

3. Results & Discussion

3.1. Pressure in contacting regions

3.1.1. Mean pressure in the full contact

Numerical simulations have shown that the mean contact pressure increases steadily with additional
load [29, 30, 31, 49, 50]. Figure 1 shows that prep varies continuously from low contact percentages corre-
sponding to about Atot ∼ 102λ2

min up through the 10−2 . Atot/A0 . 10−1 contact fraction regime where the
mean pressure is often assumed to be constant. The first few asperities to touch strongly dominate initial
values of prep, resulting in relatively large variation as shown most clearly by the error bar for H = 0.8
for Atot/A0 < 0.01. The surface height variance grows as ζH , so relatively few contact patches are present
at low area fractions for H > 0.5 when L = λmax. As we will show later, the mean pressure in contacts
between asperities is independent of H, so the overall mean pressure is similarly insensitive to H in this
regime. Once larger contact patches form, in this case for Atot/A0 & 10−3, mean pressure dependence on
H clearly emerges. Given a statistically representative system with large L/λmax and ζ, the onset of this
small contact patch count behavior shifts to smaller Atot/A0 (particularly for H > 0.5).

Beyond the early contact behavior, prep is nearly independent of contact area over a range of areas that
broadens as H decreases. Note that prep consistently increases with H at fixed area above Atot/A0 ≈ 0.005.
We found that fits of the form prep/h

′
0E

∗ = p0/h
′
0E

∗ + cAtot/A0 (solid lines in Fig. 1) worked fairly well
in the 0.01-0.20 contact fraction regime for H ≤ 0.5 and over a narrower range for H > 0.5, suggesting
that there may be a unique asymptotic mean pressure in the infinitesimal contact limit for large systems
(at finite λmin/a0 [31]). Indeed, the area-independent regime extends to lower area fractions for all H when
ζ and L grow. Note that we also include a tentative linear fit for our H = 0.8 data (dashed blue line), but
the agreement for Atot/A0 . 0.01 is poor.

Figure 2 illustrates the effect of H on prep more clearly for three different applied loads. The mean
pressure generally lies around 0.5h′

0E
∗ or κ ≈ 2 even at very low area fractions. The increase in mean

pressure at fixed applied load results from the real contact area falling with H. Note that tenfold and
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Figure 2: Systematic variation of prep/h′

0E
∗ with H at the indicated applied loads roughly corresponding to 0.06% (blue),

0.6% (red) and 6% (green) contact percentage. Error bars represent the standard error on the mean. The system side length
is 16384a0 and ζ = 1024.

hundredfold increases in the applied load produced small upward shifts in the mean pressure, signifying
that in all cases the total contact area grew by slightly less than the same factors as the load. Above
Atot/A0 ≈ 0.01, prep grows monotonically with H, but at smaller area fractions the dependence is non-
monotonic. This behavior is sensitive to L and ζ but we fix both here to focus on the effect of varying H. A
wider spread of prep within the ensemble is evident for H > 0.5 and is reflected by the error bars in Fig. 2.

At Atot/A0 ≈ 0.06, data for H → 0 lie near to the prediction of Bush et al., i.e., prep/h
′
0E

∗ = κ−1 ≈
0.4, whereas as H increases values of prep/h

′
0E

∗ are closer to the value computed from Persson’s model,
κ−1 ≈ 0.63. A possible simple explanation for the systematic change between limiting numerical values
relies on observations from earlier work [5, 35, 39] that showed that the contact autocorrelation function
measured above the background decays as ∆Cc(r) ∝ r−|H−1| or, equivalently, that its Fourier transform
C̃c(q) ∼ q−(1+H) (we verified this result for our own computations). Since the autocorrelation function falls
with the distance between contact patches most rapidly for H → 0, elastic correlations are less important
for small H at large length scales. The opposite is true for H → 1, where contact correlations persist to
large length scales.

A wide variety of computational techniques have been used in numerical studies of the contact of rough
surfaces [4, 28, 30]. These studies were usually limited to system sizes with side lengths of a few thousand
nodes and total degrees of freedom numbering in the millions to tens of millions. While this is sufficient for
making general statements about trends and approximating contact distributions, it is difficult to determine
conclusively which contact quantities are fully resolved. For example, analysis by Yastrebov et al. suggested
that κ decreases logarithmically with Nayak’s parameter α, which scales as α ∼ ζ2H for large ζ [31, 50, 51].
The authors hypothesized that the trend would continue in the fractal limit for all H, implying that prep
should diverge at fixed fractional contact area for large systems. Our simulations produced results, shown in
Fig. 3, that invalidate this prediction (see also Ref. [31] for additional discussion on this issue). For H < 0.5,
we find that prep saturates rather quickly with respect to ζ at fixed load, i.e. above ζ > 300 or α > 100.
Conversely, there is significant dependence on ζ for H > 0.5; by ζ = 4096 for H = 0.8, prep/h

′
0E

∗ is only
beginning to saturate to a plateau. It is possible that ζ > 104 or α > 105 is necessary to confirm the plateau
value. We note that similar trends were observed in Ref. [31] (see Fig. 6). We include data for H = 0.5
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(a) (b)

Figure 3: (a): Variation of prep/h′

0E
∗ with ζ. Error bars are plotted when the error magnitude is larger than the marker size

and represent the standard error on the mean. L = 16384a0 for open symbols. For filled symbols, L = 65536a0 for H = 0.8
and 32768a0 for H = 0.3 and H = 0.5. (b): The same data as in panel (a), but plotted against Nayak’s parameter, α.

to show that the fractal limit gradually moves to larger ζ with increasing H. Most previous computational
work has focused on ζ smaller than shown in Fig. 3 out of computational necessity and therefore cannot be
considered to be in the fractal limit.

3.1.2. Mean pressure in individual contact patches

The preceding results have demonstrated that prep depends on roughness structure in a complicated
way, but it is difficult to find a satisfactory explanation for this dependence by only considering collectively-
measured quantities. To address this challenge, we note that prep is an area-weighted sum of the mean
pressures pp = Fp/Ap within individual contact patches. As discussed previously, Fp has been the focus
of several studies but pp provides more insight into the crossover regime. Figure 4 shows that similar to
Fp [34, 36], pp also divides contact patches into two branches. The small contact patch-size branch contains
patches with areas of order d2rep or smaller and exhibits a pp ∼

√

Ap scaling consistent with Hertz theory
(Fig. 4 inset). Contact patches in this regime are produced by asperities with radii well approximated
by Rasp ∼ drep/h

′
0, and patch pressure data for different H collapse because drep encodes the dependence

on H. The constraint that λmin > 10a0 amounts to a criterion for simulations to be able to resolve the
variation in pressure across the contact diameter and is linked with Persson’s prediction that the pressure
distribution vanishes linearly at low pressures [15, 17, 33]. We checked that the mean pressure in small
patches continues to follow Hertz scaling up to λmin = 256a0 (Fig. 4 inset). The numerical discretization
becomes increasingly important for small patches as λmin decreases and the mean pressure in the smallest
patches with size Ap ≈ a20 is always overvalued. However, the fraction of the total load carried by patches
in the Hertz branch of Fig. 4 is small for all H.

Hertz scaling breaks down once the patch size approaches d2rep, with the greatest fidelity evident for
H = 0.3. Figure 4 shows that pp undergoes a sharp transition away from Hertz scaling in the vicinity of
Ap/d

2
rep ≈ 0.1 for each H. Rather than remaining constant, pp continues to rise with increasing Ap in a

manner that may be best described as logarithmically, with a rate of increase that grows with H. The onset
of the logarithmic regime moves to smaller Ap/d

2
rep as H rises and there is a corresponding drop in the
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Figure 4: Dimensionless mean pressure within contact patches as a function of patch size for the indicated H at Atot/A0 ≈ 0.05.
For H = 0.3 and H = 0.5, L = 32768a0 and ζ = 2048. For H = 0.65 and H = 0.8, L = 65536a0 and ζ = 4096. The upper
bound of the figure corresponds to Persson’s prediction prep/h′

0E
∗ = κ−1 =

√

π/8. The thin gray line marks the prediction

of Bush et al. κ−1 = 1/
√
2π. Inset: Log-log axis representation of the pp ∼ A

1/2
p scaling of the mean patch pressure for small

patches for a surface with H = 0.8, λmax = L = 65536a0, and λmin = 256a0. The dashed black line is a fit to the data and
has power-law exponent 1/2.
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maximum pp attained in the Hertz branch. An interesting consequence of the log-like growth of pp is that
the mean pressures in large patches (i.e. Ap & 102d2rep) are similar for all values of H.

Of course, the ability to compute pp for progressively larger patches is contingent on those patches being
present. Figure 4 indirectly shows the maximum patch size we observed for each H, which plainly grows
with H. Our simulations show that the logarithmic regime persists for several decades of Ap. For H ≥ 0.5,
the rate of increase of pp slows in the range Ap ∼ 102 − 103d2rep. In particular, for H = 0.8 there is barely
any change in pp for the largest patches with Ap ∼ 105d2rep, implying that pp is saturating to a constant
value. Data for H = 0.65 and H = 0.5 show a similar trend, but the lack of such large patches makes it
difficult to state definitively that these curves are saturating. For H = 0.3, we do not observe patches larger
than Ap = 102d2rep, and the slope appears constant in the logarithmic regime.

Interestingly, the maximum value pp/h
′
0E

∗ ≈ 0.58 obtained for H = 0.8 is not far below Persson’s value
prep/h

′
0E

∗ ≈ 0.63. It is conceivable based on the data shown in Fig. 4 that pp/h
′
0E

∗ will saturate nearer to
but likely still below this prediction in the fractal limit for H = 0.8. The prediction due to Bush et al. is
marked on the right-hand side of Fig. 4 and agrees most closely with the limits of the Hertz regime. The
value of pp reached by the largest patches for each H is clearly not the same as the system-wide value prep.
Computed values of prep/h

′
0E

∗ shown in Figs. 1– 3 are necessarily lower because of the contributions from
the more numerous smaller patches. In the fractal and thermodynamic limits, the correspondence between
prep and pp is governed by the form of the patch-size distribution. We will discuss this in greater detail in
the next section.

Measures such as pp are robust with respect to ζ and changes in contact area. Figure 5 (a) shows that
pp is relatively insensitive to changes in contact area for Atot/A0 < 0.1. The pressure in patches smaller
than d2rep and in the early logarithmic regime is unaffected. The most noticeable change is the emergence of
larger patches with values of pp that smoothly follow the continuation of curves from lower contact areas.
Here, we show data only for H = 0.8 for clarity but found similar behavior for smaller H.

Although pp does not depend on area fraction in the fractal limit, there is some dependence on ζ for
H = 0.8 when ζ is small. Figure 5 (b) demonstrates the effect of adjusting ζ on pp in the range of 4-5%
contact for H = 0.8. The figure shows that pp decreases by successively smaller amounts in the logarithmic
regime as ζ grows. We conjecture that the fractal limit strongly resembles our data for ζ = 4096. The Hertz
regime is unaffected because contacts with Ap . d2rep are controlled by the highest frequency wave vectors
of order 1/drep. Curiously, the maximum pp remains roughly the same for all ζ. The most pronounced effect
of increasing ζ is that the range of patch sizes extends up to two decades further as ζ increases from 128 to
4096. We expect this trend to continue for larger ζ for H = 0.8, as will be discussed in the next section.
We checked that pp is insensitive to ζ for H < 0.5. Given the results shown in Fig. 3, this is the case when
ζ > 30.

Only patches with Ap & 103d2rep show a tendency to saturate at a plateau. The behavior of these largest
patches looks essentially log-like over the full range for surfaces with ζ < 1024. Yastrebov et al. conducted
simulations in this regime and extrapolated the logarithmic scaling to conclude that prep diverges in the
fractal limit [50]. The results we present here demonstrate that this extrapolation is based on systems that
do not generate large enough patches to probe the saturating pp regime, and thus misses that prep remains
finite.
3.1.3. Pressure in contacting regions: Summary and discussion

The main results of Section 3.1 concern the behavior of the mean patch pressure as determined by contact
patch size. From Hertz theory, the pressure in small, compact patches rises as

√

Ap for all H. The mean
pressure in patches larger than a crossover scale of order d2rep grows logarithmically before appearing to
saturate at a plateau for H > 0.5. The plateau value increases slightly with H but is insensitive to the
long-range roughness correlation length in the fractal limit. In that limit, Persson’s predicted value for the
mean contact pressure gives best agreement with our numerical results for large patches; the mean contact
pressure will be close to the value κ ≈ 0.58 we observed in our simulations.

The large value of the mean pressure attained in large patches has important implications for elasto-
plastic solids. With h′

0 ∼ 0.1, the largest patch pressure values we computed pp/E
∗ ≈ 0.06 are larger

than the yield stress of most materials. Thus, many materials would undergo plastic flow far before the
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(a) (b)

Figure 5: (a): Increasing Atot/A0 from 0.03 to 0.08 has negligible effects on pp/h′

0E
∗ for small Ap but extends the curves as

larger patches are introduced. Data are shown for H = 0.8 but similar trends were observed for other H. (b): Shifts of the
dimensionless mean patch pressure at comparable area fractions as a function of Ap/d2rep for increasing ζ. The upwards shift

apparent for intermediate Ap/d2rep as ζ decreases is most pronounced for H = 0.8 and absent for H = 0.3. Note that the size of
the largest patches observed also decreases with ζ. The system size is 32768a0 for ζ < 4096; the ζ = 4096 data are reproduced
from Fig. 4 with L = 65536a0.
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pressures we find in our simulations are reached unless the surfaces were significantly smoother at short
scales, i.e., h′

0 ∼ 10−3 − 10−2. Based on our results, the majority of plastic deformation should occur in
the largest patches and the mean pressure in flowing patches should tend towards the material hardness.
Interestingly, for soft solids undergoing plastic flow, the net result is that surface morphology plays less of
a role overall [32].
3.2. Size of disconnected contact patches

3.2.1. Contact patch-size distribution

The distribution of individual (disconnected) contact patch sizes has proven challenging to pin down
numerically [4, 6, 29, 32, 33, 34]. The general consensus is that the patch-size distribution has form n(Ap) ∼
A−τ

p over at least a part of the range of patch sizes, though the exponent τ and behavior of the tail of the
distribution are less clear. Computational studies have found a variety of exponents using fits over limited
data ranges, but most results agree that 1 < τ < 2 for all H [4, 34]. This finding is important because all
non-zeroth moments of n(Ap) are dominated by the largest contact patches for τ < 2. For example, the
total load Ftot is given by:

Ftot = FH +

∫ ∞

∼d2
rep

dAp pp(Ap)Ap n(Ap), (5)

where FH is the total force carried by patches smaller than the crossover scale ∼d2rep. The integral closely
resembles the first moment 〈Ap〉 because pp grows at most logarithmically outside the Hertz branch, and
like the first moment, Eq. (5) is dominated by the upper limit of the integral for τ < 2.

Compelling recent work by Müser & Wang [34] hypothesized that n(Ap) is a power-law distribution cut
off exponentially at a maximum patch size Amax. It is reasonable to assume that Amax is a function of
contact area so that the power-law domain of n(Ap) broadens as contact area increases. Similar to Ref. 34,
in this section we focus on H = 0.3 and H = 0.8, as these values are emblematic of the two non-marginal
ranges of H (H < 0.5 and H > 0.5). We found significant changes in n(Ap) with increasing contact area
and that contrary to Ref. [34], the bearing-area model exponents did not fit our data for either H = 0.3
(bearing-area exponent τ = 1.85) or H = 0.8 (τ = 1.6) when ζ is large. Rather, over the regimes where the
distributions could be fit by power laws, the best fit exponents were both close to 1.7. This implies that the
bearing-area model understates the probability of large patches for H = 0.3 (i.e., the distribution decays
less rapidly with patch size than predicted by the bearing-area model) and overstates the probability of
large patches for H = 0.8 (i.e., the distribution decays more rapidly with patch size than predicted by the
bearing-area model). Figure 6 (a) shows our computed n(Ap) for H = 0.3 divided by the bearing-area model
prediction n(Ap) ∼ A−1.85

p . Plotted in this way, our data reveal that the patch-size distribution obtained
from elastic contact does not agree with the bearing-area model prediction over any range as the ratio
generally has a positive slope outside the distribution tails and for Ap & d2rep; this is particularly evident
for Atot/A0 = 0.117. Likewise, the distribution for H = 0.8 is shown in Fig. 6 (b) with the approximate fit
power law A−1.72

p divided out (rather than the bearing-area model prediction n(Ap) ∼ A−1.6
p ). Note that

for all H, the distribution of patches with size Ap . d2rep is uniform. See the Supporting Information for
associated results concerning the area dependence of the bearing-area patch-size distribution for H = 0.3
and H = 0.8.

For H = 0.3, the distribution has a narrow power-law regime that broadens with additional contact
area. Figure 6 (a) shows that the distribution is cut off sharply at a maximum patch size that grows as the
contact percentage increases from near 1% to about 11%. We observed that this trend continued to larger
area fractions, and our estimate of τ ≈ 1.7 for elastic contact stems from the distribution at roughly 30%
contact (not shown). The behavior of the cutoff suggests that an analogy can be made between contact
patches in elastic contact mechanics and clusters in standard percolation theory [52]. In percolation theory,
the distribution of cluster sizes s has the form n(s) ∼ s−τpce−s/smax . In two dimensions (2D), the exponent
for uncorrelated percolation is τpc = 187/91 ≈ 2.05 > 2. The maximum cluster size smax diverges as a power
of the inverse difference of the coverage fraction p from the percolation threshold pc, written as |p− pc|−1.
For context, recent work has estimated that elastic contact percolation occurs near 39% for H = 0.3 and
42% for H = 0.8 [53].
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(b)(a)

Figure 6: Contact patch-size distributions for surfaces with H = 0.3 (a) and 0.8 (b). For comparison purposes, the computed
distributions are divided by power-law distributions. (a): A power law with exponent −τ = −1.85 matching the bearing-area
model prediction for H = 0.3 is divided out to emphasize that the predicted exponent is too large to fit the data over a
significant range. The system sizes are L = 4096a0 (circles) and 8192a0 (squares) and with ζ = 256 and ζ = 512, respectively.
Color indicates the values of Atot/A0 located in the legend. (b): A power law with exponent −τ = −1.72 is divided out for
H = 0.8 and fits the data over a broad scaling range. The effect of changing ζ with fixed L = 65536a0 is shown using the
colors/symbols in the legend.

The notion of a diverging largest patch size is qualitatively consistent with Fig. 6 (a). In the classic
percolation problem, the primary mechanism for generating larger clusters is through the unification of
neighboring clusters by progressively increasing the fraction of populated sites. Percolation theory tells us
that the cluster correlation length ξ grows as |p− pc|−ν , where ν is the correlation exponent. Working with
this analogy, the contact correlation length is of order drep at low area fractions, i.e., far below percolation
for H = 0.3. Similarly, we conclude that the corresponding basic unit of elastic contact is a patch with
area of order d2rep. Large length scales such as λmax and L are only relevant when the correlation length
has grown to be comparable in magnitude. Consequently, the patch-size distribution exhibits almost no
dependence on ζ provided that ζ � 1. The system size L controls the sampling of the rapidly vanishing
tail of n(Ap) and is most important in determining the size of the largest contact patches, as can be seen in
Fig. 6 (a).

The analogy with percolation theory does not extend to our results for H = 0.8. Figure 6 (b) shows that
n(Ap) is well described by a power law over more than four decades of scaling, deviating by at most a factor
of two over that range. The tail of the distribution falls more steeply than A−1.72

p and moves outwards to
larger Ap with increasing ζ. From this we infer that λmax, not an intrinsic scale, sets the maximum patch
size for H > 0.5. We observed that there is a limited power-law region (not shown) that may be better fit
by smaller exponents for surfaces with narrow spectral range (ζ < 500). In these cases n(Ap) seems to be
cut off in agreement with Ref. [34] for H = 0.8. Despite this, our data unambiguously show that the fitting
exponent converges to about 1.72 for large ζ at low area fractions.

Our findings for n(Ap) provide insight into the variation of prep with Atot/A0 and ζ (or Nayak’s parameter,
α). From Eq. (5), the largest contact patches are most important in determining Ftot because n(Ap) falls
slower than A−2

p , while from Fig. 4 the pressure is highest in these largest patches. Increasing the contact
area by applying higher loads raises the probability of the largest patches relative to small patches—by
unifying patches for H = 0.3 or by growing existing patches for H = 0.8. Both pathways result in new
maximum-size patches that become still more important as the contact area grows. Consequently, prep
increases with Atot/A0 (see Fig. 1) to reflect the high pressure contributions of the more heavily weighted
large size patches.

The patch-size distribution also sheds light on the dependence of prep on ζ we demonstrated earlier in
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Fig. 3 for differentH. Fig. 3 shows that forH = 0.3, provided that ζ > 100 there is essentially no dependence
on its value, a result in keeping with our observations that changing ζ had no impact on n(Ap) or pp. On
the other hand, for H = 0.8 the size of the largest patch increases with ζ. Note also that we showed in
Fig. 5 (b) that pp also depends on ζ for ζ < 4096. Thus, prep continues to rise with ζ for small systems (as
measured by ζ), while in the fractal limit, the mean contact pressure will simply attain the value of pp in
the largest patch.

3.2.2. Characteristic and maximum patch sizes

To illustrate the effect of contact area on the evolution of the elastic contact patch-size distribution, we
define the characteristic patch size Ac using the contra-harmonic mean [34]:

Ac =
〈A2

p〉
〈Ap〉

=

∫

dAp n(Ap)A
2
p

∫

dAp n(Ap)Ap
. (6)

The contra-harmonic mean measures the mean size of a patch to which a randomly chosen contact node
belongs. Assuming n(Ap) ∼ A−τ

p with 1 < τ < 2 between patch sizes of order d2rep up to a hypothetical

maximum patch size Amax � d2rep, Eq. (6) evaluates to Ac ≈ 2−τ
3−τAmax. Our numerical results for Ac/d

2
rep

are plotted in Fig. 7 for three different H at fixed L = 16384a0 and varying ζ.
Figure 7 (a) shows that Ac rises from values of order d2rep before beginning to diverge near 10–20% contact

as the onset of percolation becomes apparent for all H. Note that the non-zeroth moments (including Ac)
of n(Ap) all diverge (with different exponents) at the percolation threshold. For H = 0.3, Ac gradually
increases at low area fractions and there is little dependence on ζ, consistent with our observation that
n(Ap) is also insensitive to ζ for H < 0.5. For H = 0.8, Ac grows as a power of Atot/A0 from initial contact
and is independent of ζ below 10−4 area fraction. At increasingly large area fractions as ζ increases (e.g.,
compare ζ = 1024 with ζ = 128), Ac falls below the low area fraction power-law trend. Correspondingly,
there is a nearly proportional increase in Ac/d

2
rep with each doubling of ζ at fixed area fraction, as shown

most clearly for Atot/A0 > 10−2. We include data for H = 0.5 in Fig. 7 (a) as an intermediate case; the
data resemble H = 0.3 but there is slight spread that is roughly logarithmic. As a final aside pertinent to
these results, at initial contact we observed that fixed-load simulations exhibited less variability in values of
Ac as compared to fixed-displacement protocols, notably for H = 0.8.

Figure 7 (b) focuses on data forH = 0.3 and illustrates that Ac shows at most logarithmic growth for large
L as Atot/A0 increases from O(10−5) to O(10−2). The data collapse without scaling factors for large L/λmin,
with the onset of the collapse moving to smaller area fractions with increasing L/λmin. The smallest systems
we studied never joined the master curve but are included to show the limits of the collapse. Referring to
Fig. 6 (a), the values of Ac/d

2
rep below 10% contact lie just within the tail of n(Ap) where sampling of large

patches is controlled by L.
Conversely, Fig. 7 (c) reveals that Ac strongly depends on ζ for H = 0.8. As we noted earlier, Ac is

closely linked to the size of the largest patch when the power-law range of the distribution is broad; in
addition, the distribution tail moves outwards with increasing ζ. Scaling Ac/d

2
rep by ζ1.55 collapses the data

above roughly 5% contact and accomplishes a decent collapse at lower area fractions for each fixed value
of L/λmax (as indicated in the figure by the use of different symbols). The factor ζ1.55 is consistent with a
similar finding by Ref. [34]. The results in Fig. 7 (c) show that the characteristic patch size depends only on
ζ where all the data collapse, but for lower area fractions Ac/d

2
rep depends only on L; for example, compare

with the H = 0.8 results for Atot/A0 < 10−3 in Fig. 7 (a), which were computed using fixed L and varying
ζ. The spread evident in Fig. 7 (c) at initial contact and area fractions up to the collapse is caused by the
ζ rescaling, which instead groups data by L/λmax, as indicated by the use of symbols for constant L/λmax.

It is important to understand how the size of the mean largest patch 〈Amax〉 evolves with area fraction,
as well as its dependence on ζ and L. Plainly, the largest patch found for H = 0.3 is governed by the cutoff
of n(Ap), while Fig. 6 (b) and Fig. 7 (c) jointly suggest that ζ is most important in determining 〈Amax〉 for
H = 0.8. Our results for 〈Amax〉 are shown in Fig. 8. The approach to the fractal limit is evident for H = 0.3
in Fig. 8 (a), similar to what we found for Ac in Fig. 7 (b). However, 〈Amax〉 scales as (L/λmin)

0.4 and
also grows slowly with contact area below 10% contact. This finding is unsurprising because pushing solids
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(c)

(a)

Figure 7: (a): Characteristic patch size as a function of total contact area for the indicated H (H = 0.3 as diamonds; H = 0.5 as
squares; H = 0.8 as circles) and ζ (colors). The system side length is 16384a0. (b): System size dependence of the characteristic
patch size for H = 0.3. Here, L = λmax and is varied by factors of 2 (λmin fixed; see Methods) as indicated in the legend.
(c): Characteristic patch size for H = 0.8 normalized by ζ1.55 to collapse the data above roughly 5% contact. Color indicates
ζ while symbols signify values of L/λmax: 1 (circles), 2 (diamonds), 4 (squares), 8 (rightwards triangles) and 16 (upwards
triangles).
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(a) (b)

Figure 8: (a): The scaled size of the (ensemble-averaged) single largest patch for H = 0.3 and the values of L/λmin indicated
in the legend. The scaling factor (L/λmin)

0.4 is chosen to collapse the data above 1% contact for large L/λmin. (b): The
scaled mean area contained within the largest N = (L/λmax)

2 patches for H = 0.8. The scaling factor ζ1.73 is chosen to best
collapse the data above 3% contact, though an approximate collapse is achieved over the full range of contact patch sizes.
Color indicates ζ while symbols signify values of L/λmax: 1 (circles), 2 (diamonds), 4 (squares), 8 (rightwards triangles) and
16 (upwards triangles).

further into contact can cause existing patches to expand and/or to merge with other patches. We conjecture
that the dependence of 〈Amax〉 on L for H = 0.3 stems from improving sampling of the distribution tail
with increasing system size, as supported by Fig. 6 (a). Again, ζ is irrelevant at low area fractions where
the contact correlation length is comparable to drep.

We observed earlier in Fig. 6 (b) that ζ controlled the tail of the distribution for H = 0.8. When the
correlation length is comparable to λmax (as is the case for H = 0.8), the contact interface can be regarded

as being composed of N = (L/λmax)
2
statistically-independent regions each containing a patch with size of

order 〈Amax〉. Of course, there is always a globally maximum patch, but its size is controlled by fluctuations
about the ensemble average. To account for this, we compute the mean largest patch size 〈Amax〉N obtained
by averaging over the sizes of the N largest patches. Figure 8 (b) shows that 〈Amax〉N collapses up to a
factor of two when normalized by ζ1.73 over nearly four decades, irrespective of L. These results indicate
that the size of the average largest patch grows with both the total fractional contact area and non-trivially
with ζ as ζ1.73. The latter result affirms that increasing λmax permits the formation of larger and larger
contact patches, as we saw earlier in Fig. 6 (b). It is interesting to note that this scaling is valid even down
to ζ < 100. The discrepancy between the exponent 1.55 used in Fig. 7 (c) and the exponent 1.73 used here
may be due to a log-like correction in the relationship between Ac and 〈Amax〉N , which can easily account
for a change in exponent of approximately 0.2. Curiously, the scaling exponent 1.73 is nearly identical to the
estimated H = 0.8 patch-size distribution exponent τ = 1.72; however, we know of no obvious explanation
for the near equivalence of the two exponents.
3.2.3. Size of disconnected contact patches: Summary and discussion

The main results of Section 3.2 concern the dependence of the patch-size distribution and its moments
on the roughness structure. We showed that the behavior of the patch-size distribution as the total contact
area grows is qualitatively different above and below H = 0.5. For H < 0.5, the distribution is cut off by
a maximum patch size which diverges with increasing contact area in a manner consistent with percolation
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(a) (b) (c)

Figure 9: Example contact patches of varying size for H = 0.8. The red scale bar indicates λmin = 16a0 ≈ 2/3drep. (a):
A typical contact patch with Ap ≈ 2d2rep. Contact patches this size are usually compact. (b): A typical contact patch with

Ap ≈ 6d2rep. Contact patches this size usually contain one or two bubbles. (c): A typical contact patch with Ap ≈ 160d2rep.
Contact patches this size always have many bubbles and usually only occur for H > 0.5 at low area fractions.

theory. At low area fractions, the maximum patch size is usually much smaller than λmax, rendering
long-range roughness correlations irrelevant. The system size, on the other hand, controls sampling of the
distribution tail. The patch-size distribution for H > 0.5 is a power law over 3–4 decades of Ap and is
limited by ζ rather than a constant, intrinsic maximum patch size. For H = 0.8, we find that the patch-size
distribution depends only weakly on area fraction in the 1–10% contact regime.

As the patch-size distribution decays slower than A−2
p , regardless of H, most contact quantities are

dominated by the largest patches. Considering the area-weighted sum used to calculate the applied load
(Eq. 5), our simulations show that prep will be arbitrarily close to the pressure expected for the largest
patches observed at a given fractional contact area. Consequently, the value of prep changes slowly but is
typically within 10% of 0.5h′

0E
∗ in the low area fraction regime if ζ is large.

3.3. Geometry of disconnected contact patches

3.3.1. Contact patch classification and “bubbles”

We have already seen that pp differs substantially between small patches and those containing area many
times larger than d2rep. In this section we will show that the contact patch geometry undergoes a similar
crossover with increasing patch size. The smallest contact patches (Ap . d2rep) are formed by peak-to-peak
contact; these patches are generally compact with simple circle-like shapes. Earlier, we showed that Hertz
theory accurately predicts the mean pressure as a function of patch size under the assumption that Rasp

describes the typical asperity radius.
Contact patches with Ap & d2rep are formed when ridges connecting the peaks of asperities are pushed

into contact. These patches are often branched as depicted in Fig. 9 (a). From Fig. 4, the mean pressure
in these patches grows logarithmically with size. We find that most patches with area exceeding around
3d2rep contain non-contacting regions that we dub “bubbles”, as shown in Fig. 9 (b). Bubbles are formed
by connecting contacts along ridges between peaks, leaving the valleys between out of contact. A simple
explanation for this outcome is that the elastic energy cost of deformation is largest for the shortest scales,
meaning that valleys are the last regions to be pushed into conformal contact.

Figure 9 (c) depicts a large contact patch (Ap ≈ 160d2rep) with small-scale details still visible. Patches
this size always have many bubbles giving them a Swiss-cheese-like structure. For H = 0.8, there is a
relatively broad distribution of bubble sizes because large patches can encompass both shallow and deep
valleys. As shown in Fig. 4, the pressure in these patches begins to saturate for H > 0.5.

Figure 10 demonstrates that the distribution of bubble sizes Ab decays at least as quickly as A−2
b over

the entire range for all H. Consequently, the mean bubble size 〈Ab〉 is dominated by small sizes and remains
close to d2rep. Note that over limited ranges the distributions for H > 0.5 have exponents close to −2,
reflecting the relatively high probability for bubbles with sizes 10d2rep or larger. Figure 9 (c) provides visual

16



Figure 10: The distribution of bubble sizes with the power law A−2
b

divided out for the indicated H. For H = 0.3 and H = 0.5,
L = 32768a0 and ζ = 2048. For H = 0.65 and H = 0.8, L = 65536a0 and ζ = 4096.

(b)(a)

Figure 11: (a): The ratio of the mean cross-sectional diameter of contact patches to the predicted value drep as a function of
patch area for the indicated H. For H = 0.3 and H = 0.5, L = 32768a0 and ζ = 2048. For H = 0.65 and H = 0.8, L = 65536a0
and ζ = 4096. (b): A log-log representation of the same data with the addition of results for the bearing-area model at similar
area fractions. Solid symbols correspond to results from the full elastic calculation, while open symbols show results for the
bearing-area model.
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support for this result.
3.3.2. Diameter of contact patches

Pastewka and Robbins [2] showed that the measured global mean contact diameter is given by the ratio
πAtot/Ptot for isotropic roughness provided πAtot/Ptot & 10a0, consistent with the limits stipulated by
Yastrebov et al. [49]. Here, our aim is to determine the relationship between individual contact patch
diameters and areas, with the former defined as dp = πAp/Pp. Figure 11 (a) summarizes our findings
expressed as the ratio dp/drep. Similar to the mean patch pressure, the mean contact diameter collapses
for all H in the small patch regime when plotted as Ap/d

2
rep. The typical diameter of simple geometrical

shapes grows as dp ∝
√

Ap and the data for patches with Ap . d2rep follow this scaling. Just as for pp, λmin

controls the contact resolution and hence the power-law scaling of dp down to the smallest patches.
Again analogous to the behavior of the mean patch pressure, the growth of the contact diameter of

patches of intermediate size (Ap & 3d2rep) slows dramatically. The ratio dp/drep in the largest patches is
closest to unity for H = 0.5, while drep under-predicts the mean diameter for H > 0.5 and over-predicts
the diameter for H < 0.5. The slow increase in contact diameter with patch area can be understood by
considering the impact of bubbles on the geometry of large patches. Compact (bubble-free) patches can
only grow by expanding their outer perimeter, whereas patches with bubbles can expand at both interior
and exterior contact edges. By tracking the behavior of individual patches, we observed that expanding
patches tend to enclose new bubbles even as existing bubbles shrink so that the overall change of dp/drep
was quite small. The high mean patch pressures in large patches we measured numerically may lead to
partial filling-in of bubbles (accounting for the slow increase of dp in Fig. 11 (a)), but are evidently too small
to achieve conformal contact on the scale of drep [54, 55]. The saturating values of dp/drep shown in Fig. 11
(a) imply equal growth rates for patch contact area and perimeter due to the combination of these effects,
and provide evidence for the fractal nature of the largest patches.

In Fig. 11 (b), we directly compare contact diameter results for elastic contact with the bearing-area
model. In the bearing-area model, the contact diameters of patches larger than approximately 3d2rep exhibit
power-law scaling with Ap. The figure shows that the associated exponents depend upon H, as we will
address in subsequent paragraphs. The results from panel (a) are re-plotted in panel (b); the log-log axes
representation crystallizes the striking near-saturation of the contact diameter in large patches in elastic
contact, where dp/drep grows by at most a factor of 3/2 for patches with Ap > d2rep.
3.3.3. Fractal dimension of contact patch area and perimeter

Contact patches formed between self-affine surfaces are commonly supposed to be fractal. We define
distinct fractal dimensions for the contact patch perimeter and contact patch area that satisfy Pp ∼ RDP

and Ap ∼ RDA , where R is the radius of the smallest disk that contains the entire patch. To distinguish
separate pairs of fractal exponents for specific contact models, we append additional subscripts in the text as
shorthand; e.g. for elastic contact we use DA,E and DP,E. Fractal exponents without additional subscripts
refer to the collective case. We also identify the fractal dimension DP,C of the exterior (non-bubble) patch
perimeter, which we denote Pext, and for the fractal dimension DA,C of the total area Afill (i.e., the compact
area, or contact area + bubble area) enclosed by the exterior boundary. To isolate the exterior patch
perimeter and compact patch area, we fill in all bubbles to enforce compactness. After performing this
procedure, the only contribution to the compact patch perimeter is the outermost interface and the entire
interior is considered to be in contact.

With the scaling relations above, the mean contact diameter can be expressed in terms of the difference
between the fractal dimensions of patch areas and patch perimeters, namely:

dp ∝ Ap

Pp
∼ RDA−DP . (7)

Similar relationships can be written for compact patches and for the bearing-area model. The elastic contact
results in Fig. 11 (b) imply that DA ≥ DP for patches bigger than d2rep, where the equality holds if dp truly
saturates in the fractal limit. Figure 11 (b) further hints that the fractal dimensions for patch perimeter
and area from the bearing-area model are different and that the difference grows with H. Patches produced
by the bearing-area model are assumed to be 2D with fractal boundaries [38, 56]. Kondev and Henley [37]
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(a) (b)

Figure 12: (a): Patch areas normalized by a power law R
DA
CH

to estimate fractal dimensions for large patches obtained from
elastic calculations and from the bearing-area model for H = 0.8. The fractal exponents DA, are 1.89 for elastic contact
(squares), 1.97 for filled-in patches from elastic contact (circles) and 1.98 for the bearing-area model (diamonds). The side
length is 65536a0 and ζ = 4096. (b): The same procedure was repeated to obtain estimates for the fractal dimensions of patch
perimeters for H = 0.8. The fractal exponents DP, are 1.83 for elastic contact (squares), 1.51 for filled-in patches from elastic
contact (circles) and 1.18 for the bearing-area model (diamonds).

argued that the fractal dimension of the perimeter of such patches is DP,BA = (3−H)/2, yielding the scaling

relation Ap/Pp ∼ A
(1+H)/4
p . When H = 1 this scaling relation reduces to the trivial result, dp ∼

√

Ap, found
for simple shapes. We checked the validity of the predicted scaling for our bearing-area results in Fig. 11 (b)
and found that it is approximately correct, but for best agreement the small population of bubbles generated
in the bearing area needed to be filled in using the procedure outlined earlier. Forcing all patches to be
compact effectively ensures that they are 2D with respect to patch area.

Calculating the fractal dimension of contact patches by determining the minimum enclosing disk is
computationally intensive, so instead we determined the area of the convex hull ACH and exploited the
relationship R ∼ RCH ≡

√
ACH. We focus on data for H = 0.8 in order to have at least one decade of

scaling over which to estimate the fractal dimensions of large patches. In the trivial case of small patches,
the area and perimeter fractal dimensions are equal to the topological dimensions, i.e. DA = 2 and DP = 1.
Our results comparing fractal dimensions for area and perimeter for the bearing-area model and elastic
contact with and without filling in bubbles are shown in Fig. 12. To highlight discrepancies in scaling, we
have divided out power laws with the estimated fractal dimension exponents.

For surfaces with H = 0.8 in elastic contact, we estimate that the patch area fractal dimension is
DA,E = 1.89 ± 0.03 and DP,E = 1.83 ± 0.04 for the patch perimeters. This result is consistent with our
observation that dp grows slowly with patch size in elastic contact. Indeed, logarithmic growth and power-
law growth with exponents smaller than 0.1 are essentially indistinguishable over just two decades of scaling.
The corresponding compact elastic contact patches have DA,C = 1.97 ± 0.03 and DP,C = 1.51 ± 0.03 for
patch area and external perimeter, respectively. It is interesting that bubbles have only a small effect on the
fractal dimension of the patch area, reducing the exponent from 1.96 to 1.89. On the other hand, bubbles
have a markedly strong effect on the fractal dimension of the perimeter, which jumps from 1.51 to 1.83 when
bubbles are included in the calculation. These observations signify that bubbles are the main driver for
the saturation of the mean contact diameter in large patches because they significantly increase the patch
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Figure 13: (a): The ratio Ap/Afill as a function of Ap/d2rep for the indicated H. Elastic contact results are shown with filled
symbols and open symbols correspond to results for the bearing-area model at similar area fractions. For H = 0.3 and H = 0.5,
L = 32768a0 and ζ = 2048. For H = 0.65 and H = 0.8, L = 65536a0 and ζ = 4096. (b): The ratio of the length of the outer
patch boundary to the summed lengths of all patch interfaces versus Ap/d2rep for the same systems as in panel (a).

perimeter while only slightly reducing the total contact area.
The bearing-area model produces contact patches with DA,BA = 1.98 ± 0.02 and DP,BA = 1.18 ± 0.03.

Unsurprisingly, our results show that both compact-elastic and bearing-area patch areas are essentially 2D
objects. The predicted exponent for the bearing-area patch perimeter for H = 0.8 is DP,BA = (3−H)/2 =
1.1. The overall contribution of bubbles to patch perimeter and area is minimal for H = 0.8 in the bearing-
area model, but repeating the filling-in procedure here slightly improved agreement between our result and
the predicted value by reducing our estimate to 1.15± 0.03.
3.3.4. Contact patch compactness

To demonstrate the prevalence of bubbles in intermediate- and large-size contact patches, we compute
the ratio of the true patch contact area to the filled-in patch contact area as a measure of patch compactness
for elastic and bearing-area contact. Figure 13 (a) shows that in either case patches smaller than d2rep are
always compact, but the compactness of patches larger than d2rep decreases in a logarithmic manner. In
elastic contact, the slope of the drop is insensitive to H and does not saturate within the range of patch
sizes accessible to our simulations. Compactness is also unaffected by contact area (at low contact area
values) provided that the patch-size distribution is well sampled. Extrapolating the elastic contact data for
H = 0.8 suggests that patches larger than roughly 106d2rep will contain a larger fraction of bubble area than
contact area.

Our results for the bearing-area model confirm that this model produces nearly compact contact patches.
Compactness is lowest for H = 0.3 and approaches unity with increasing H. This stems from the anti-
correlated roughness for H < 0.5, as the surface slope switches sign over scales larger than λmin. At a
given low contact area fraction, cross-sectional cuts are likely to encompass the shallow valleys common to
H < 0.5 surfaces, resulting in bubbles. The converse is true for H > 0.5, where the surface slope persists
over longer distances leading to larger amplitude roughness.

In the same spirit as patch compactness, the fractional contribution of the exterior perimeter to the total
patch perimeter is simple to compute. Our results for this quantity are shown in Fig. 13 (b). As above,
the ratio is unity for patches smaller than about d2rep which only have external contact edges. The elastic
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contact perimeter ratio also drops in a log-like manner, in this case with slope that decreases slightly with
H for patches larger than d2rep. The slope is slightly steeper than we found for patch compactness. The
external perimeter outweighs the contributions from bubbles until patches are about 103d2rep for H = 0.8,
and the ratio shrinks to about 1/4 in the largest patches we observed. Our discussion of fractal dimensions
suggested that the effect of bubbles is more pronounced for the perimeter, and that is borne out here for
H = 0.8 as over the same range of Ap/d

2
rep the compactness drops 30% but the external perimeter ratio falls

75%.
We also plot the perimeter ratio for the bearing-area model in Fig. 13 (b). Interestingly, the change in

logarithmic slope with H is reversed for bearing-area results. Our results are most similar for H = 0.3, once
again because the surface slope anti-correlation favors the formation of bubbles via planar cuts, while for
H > 0.5 most of the interior perimeter contributions from bubbles are lost in the bearing-area model. Note
also that the bearing-area model tends to produce much larger contact patches than does elastic contact at
the same area fraction.
3.3.5. Geometry of disconnected contact patches: Summary and discussion

The main results of Section 3.3 concern the changes in patch geometry with patch size. Small patches
with Ap < d2rep formed by the tops of touching asperities are generally compact. The mean diameter of

such patches rises as
√

Ap as expected for simple geometric shapes. Patches with Ap > d2rep are typically
branching and irregular with bubbles of non-contact enclosed within the interior. The largest of these
patches always include many bubbles and resemble Swiss cheese. Bubbles are a consequence of the high
elastic energy cost required to deform material at the smallest scales. The primary impact of the bubbles
is on the mean contact diameter, which saturates for patches with Ap � d2rep; constant contact diameter
occurs when the fractal dimensions for contact area and perimeter are equal. The effect is absent for the
bearing-area model for which the patch diameter grows as a power of the patch area. We verified the
expected scaling of the patch diameter in the bearing-area model using relationships from earlier analytic
work.

We provided estimates of DA and DP for large patches from both elastic calculations and the bearing-
area model for H = 0.8. Elastic contact patches have fractal areas and perimeters owing to the presence of
bubbles, and the fractal dimensions we estimated for patch area and patch perimeter differed by less than
0.1. The similarity of their fractal dimensions explains the approximate proportionality between contact
area and perimeter implied by constant dp. We found that contact patches in the bearing-area model are
nearly 2D and have fractal perimeters with dimensions close to predicted values. As such, the bearing-area
model provides a fundamentally incompatible picture of the morphology of elastic contact and almost always
overestimates the total contact area.

For elastic contact, filling in bubbles revealed that the total patch perimeter is dominated by contributions
from interior bubbles in patches larger than ∼103d2rep, while the effect of bubbles on contact area is relatively
small. The net result is that the patch area fill fraction ratio, or compactness, drops by less than a third
in the largest patches while the majority of the total perimeter of the same patches comes from bubbles.
Thus, interfacial-structure-dominated quantities that depend on the total contact area such as thermal and
electrical conductivity will be less sensitive to surface structure than adhesion, which also depends on the
total contact perimeter.

The relationship between repulsive contact area and contact perimeter has important ramifications for
the study of adhesive contact in the Derjaguin-Muller-Toporov (DMT) limit [57]. In this limit, weak but
long-range adhesive forces reduce the overall load required to produce a given contact area, but leave the
contact topography unchanged. Appreciable adhesive forces originate only from narrow bands of surface
encircling load-bearing regions. Pastewka and Robbins developed a stickiness criterion for rough surfaces
by relating the repulsive area to the area contributing substantially to adhesion. Their theory assumed
that the contact perimeter is proportional to the contact area [2, 29]. Using similar assumptions about
the geometry of contact patches and near-contact regions, Monti et al. used analytic results supported by
numerical simulations to show that the distribution of interfacial separations or gaps g diverges as g−1/3

with a prefactor proportional to the contact area fraction in the DMT limit [3]. The results of both studies
hinged on the mean contact diameter attaining a finite value, meaning that the contact area and perimeter
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are proportional. The results we have presented in Section 3.3 support this assumption in the main because
the contact diameter rises at most as logAp in the largest patches, which contribute the most to the total
contact area and perimeter. Moreover, for H > 0.5 we conclude that contributions from small patches that
violate the linear patch area-perimeter relationship are largely irrelevant in the fractal limit because the
distribution of patch sizes is an untruncated power-law with (negative) exponent τ < 2.
4. Conclusion

We performed large-scale nonadhesive contact simulations with billions of degrees of freedom for elastic
solids with self-affine fractal surfaces to determine how the properties of contact patches depend on patch
size and correlations in the roughness. We showed that subtle changes in the mean contact pressure with
Hurst exponent and the roughness correlation lengths can be attributed to sampling of universal curves
describing the systematic variation of the mean patch pressure with patch size. We also showed that large
contact patches contain out of contact regions which have important ramifications for patch geometry and
fractal behavior. Lastly, the simulations we conducted represent a significant step towards providing a
precise description of the patch-size distributions for different Hurst exponents in the fractal limit, which
have been challenging to formulate to date.
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