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Abstract—This letter proposes discrete changes in the power
output of emerging power technologies (EPT) for controlling oscil-
lations and frequency excursions. For the former, a new perspective
is proposed that connects oscillations with the transient shift of the
system equilibrium point. This is transformative as discrete control
can be applied to multi-modal systems for the first time, without
any model aggregation. For the latter, new insights are provided
in regard to the nature of the discrete actions. Applications to a
2-bus, 9-bus and 39-bus test systems are presented. Through the
proposed scheme, EPT can be enabled with controls that recognize
their characteristics, while expanding grid dynamic capabilities
with the addition of new effective controllers.

Index Terms—Oscillation damping, frequency regulation, wind
turbines, solar plants, energy storage systems.

I. INTRODUCTION

D
UE to the decommissioning of old conventional power

plants and projected higher penetration levels of non-

conventional renewable sources (NCRS), frequency excursions

will be more severe and the risk for more recurrent appearances

of poorly damped oscillations will be higher. The former is

related to a relative reduction of system inertia. The latter

has a more complex nature and depends on multiple factors.

Inertia distribution and grid topology have been found to be

two of the most relevant factors involved with the appear-

ance of critical oscillations [1], [2]. In addition, these can be

worsened by the NCRS deployment away from load centers,

redirection of power flows, and the dynamic interactions among

synchronous generators (SGs) and NCRS. If these factors are

negatively affected along the grid evolution towards higher

NCRS penetration levels, oscillations will be a seriously critical

and recurrent problem in the forthcoming grid. Several control

schemes have been proposed to tackle these issues, such as

synthetic inertia, damping controllers, or virtual synchronous
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machines—all of which are continuous in nature. Although

fast and effective, these controllers, however, are significantly

limited by operational constraints when implemented in wind

turbines (WTs) and PV solar plants—this is due to the adoption

of maximum power point tracking (MPPT) logic in control

schemes. To overcome this obstacle, power curtailment has been

used for allowing room to continuously modulate up and down

their power output. Any profit reduction due to this planned

energy spillage can be seen as an indirect control cost, and

it can be excessively high, especially with increasing NCRS

penetration levels. When implemented in other components

such as energy storage systems (ESS), these controllers are

less restrained and can perform to their full potential. Still,

ESS installed power is not significant yet in most of the grids.

Moreover, the most common type are batteries, which suffer

from very limited maximum full depth charge/discharge cycles;

if batteries are used significantly, their lifespan can be negatively

affected.

Oscillations can be tackled through power system stabilizers

(PSS) installed in selected SGs, but they are not always effec-

tive [3], and this may be exacerbated in the future grid with

features that can facilitate the appearance of critical oscillations.

Regarding frequency excursions, a recent report [4] urges the

enabling of all generators for primary frequency response to

the extent feasible and recognizes that further controls such

as synthetic inertia in converter-interfaced components are not

sustained for effective regulation. This letter proposes discrete

changes in the power output of EPT for increased grid control ca-

pabilities regarding oscillations and frequency excursions. The

initial results of a long-term project on this subject are presented:

a) connection of the system equilibrium point with the oscilla-

tion orbits that allows applying discrete control in multi-modal

systems for the first time, and b) new insights about the nature of

the discrete actions for frequency excursions. The authors hope

that this letter encourages further research on this area, as the grid

can be greatly benefited from new effective controllers in EPT

that recognize their particular characteristics and operational

constraints.

II. DISCRETE CONTROL

In the case of WTs and PV solar plants, a discrete logic enable

them for effective control by a transient stepwise reduction of

their power output—without the need for curtailment. In the

case of batteries, intuitively, lesser power usage for control
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purposes due to an effective discrete logic may help minimize

any negative impact on the lifespan of batteries. Discrete control

and the Pontryagin’s maximum principle have been extensively

applied in other fields such as aerospace [5]. However, when it

comes to multi-modal systems such as the electric power grid,

plus the inclusion of a high number of controllable components

(CCs), the solution of a discrete control formulation as known

can become quite cumbersome. A new perspective is needed.

A. Discrete Electromechanical Oscillation Control (DEOC)

Moved by the effectiveness of discrete control, much work
was done on this DEOC problem a few decades ago [6], [7].
To deal with the multi-modal nature of electric power systems,
several simplifying assumptions were made to make the problem
more tractable such as focusing on a single inter-area oscillation
mode, system aggregation on both of the oscillation ends, and
a unique CC located right on the oscillation path—typically
the reactance in series compensated lines. Moreover, because
a closed-form optimal switching function could not be found,
numerical solutions were obtained by solving the time inverse
problem [7], which suffered from instabilities. Although con-
ceptually interesting, these research efforts lacked practicality
as it would be unlikely that a grid disturbance would excite
only a single oscillation mode. This letter presents new findings
that enable DEOC for multi-modal systems and provides a
closed-form optimal switching function for the first time. This is
possible by offering a new perspective that connects the system’s
oscillatory behavior with the transient shifting of the equilibrium
point. For illustrative purposes, consider a system with n buses,
ng SGs represented by a classical model, and nc CCs connected
in some of the n− ng non-generator buses:
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where h= 1
2H

−1[Pm +BbPL−BcP0−Bc∆P (µton(t)−µtoff

(t))]; δ rad, ω p.u., and Pm p.u. ∈ R
ng are the vectors of loading

angle, speed and mechanical power of the SGs; PL ∈ R
n−ng

p.u. is the power load vector; ωs = 120π rad/s; P0 ∈ R
nc

p.u. the CCs initial injected power vector; ∆P ∈ R
nc p.u.

the CCs power change vector; µτ (t) the Heaviside step func-

tion at time τ ; ton, toff s switching times—with ton < toff ;

H = diag{H1, . . ., Hng
} ∈ R

ng×ng s the SGs inertia matrix;

Ing
the ng × ng identity matrix; and 1ng

an ng × 1 vector

with all its components being 1. The matrices Ba ∈ R
ng×ng ,

Bb ∈ R
ng×(n−ng) and Bc ∈ R

ng×nc are obtained using the dc

load flow formulation and by eliminating algebraic variables.

Note that the system behaves as an undamped harmonic os-

cillator. If t < ton or t > toff , when DEOC is off, the sys-

tem equilibrium point is defined as xe = [δe ωe]
T , with δe =

B−1
a (Pm +BbPL −BcP0) and ωe = 1ng

. Otherwise, when

DEOC is on, the equilibrium point is shifted to xc = [δc ωc]
T ,

with δc = δe −B−1
a Bc∆P and ωc = ωe = 1ng

.

1) Oscillation Orbit: The system is initially in steady state

at xe. Now, assume the state variables drift away from xe due to

a short-circuit. If x0 = x(t0) when the short circuit is cleared at

time t0, then the evolution of the state variables is given by

x(t) = MeΛ(t−t0)M−1(x0 − xe) + xe, ∀ t ≥ t0, where M =

Fig. 1. Graphical description of the DEOC problem: (a) optimal trajectory,
(b) sub-optimal trajectory.

[q1, q2, . . ., qi, . . ., q2ng
] (full rank), qi eigenvector related to

λi, Λ = M−1AM = diag{λ1, λ2, . . ., λ2ng
} (all distinct and

different to zero). Considering x(t) and its derivative ẋ(t) =
MΛeΛ(t−t0)M−1(x0 − xe), the following hyperellipsoid in the

plane x-ẋ is obtained after some algebraic manipulations (black

dashed line in Fig. 1):

(x− xe)
TD(x− xe)

+ ẋTEẋ = 2(x0 − xe)
TD(x0 − xe) (2)

where D = (M−1)∗M−1, E = (M−1)∗(Λ−1)∗Λ−1M−1, with
∗ being the conjugate transpose. Note these matrices are real

positive definite.

2) DEOC Activation: When the system moves along the

oscillation orbit, DEOC is activated at time ton. The equilibrium

point is instantaneously shifted to xc. The state variables are de-

scribed by x(t) = MeΛ(t−tst)M−1(xst − xc) + xc, ∀ t ≥ ton,

with xst = x(ton). In the phase plane x-ẋ, this corresponds to

(see red dot-dashed line in Fig. 1):

(x− xc)
TD(x− xc)

+ ẋTEẋ = 2(xst − xc)
TD(xst − xc) (3)

Note, having a different switching time ton would change xst; as

a result, this would change the amplitude of the hyperellipsoid

centered at xc—red dotted line in Fig. 1-(b).

3) Switch-On Time Calculation: To obtain an optimal ton,

the hyperellipsoid described by (3) must contain the equilib-

rium point xe. By setting x = xe, then the unknown becomes

the variable xst = x. By ordering the resulting equation, and

realizing that ẋ = A(xe − xc) when the system reaches xe, we
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obtain the following switching function:

h(x) = 2(xe − xc)
TD(xe − xc)

− (x− xc)
T
(

D +ATEA
)

(x− xc) ∈ R (4)

Thus, while the system moves along the oscillation orbit (Path 2)

with a vector x ruled by (2), DEOC must be turned on whenever

the switching function vanishes, i.e., h(x) = 0.

4) Switch-Off Time Calculation: In the ideal case, when

DEOC is turned on at the exact optimal time ton, DEOC must

be switched off as soon as x reaches xe (Path 3 in Fig. 1(a)). In a

more realistic case, however, it would be hard to switch DEOC

on at the optimal time due to intrinsic delays and model errors,

and the point xe may never be reached (Fig. 1(b)). In this case,

as the goal is to restrain oscillations after DEOC is turned off,

the oscillation energy Ek(t) = ωs(ω − 1ng
)TH(ω − 1ng

) [8]

can be used as a switching function to determine toff . When

Ek(t) is reduced, the oscillation will be shrunk and x will be

confined to a closer orbit around xe. Thus, when x is orbiting

around xc as DEOC is on, set toff = t if at a particular time t,

Ek(t) reaches a minimum.

5) Applications: This approach has been applied to a 9-bus

and 39-bus test systems. Data has been obtained from refer-

ence [9]. In both systems, SG1 has been defined as an infinite

bus and a CC is considered in each non-generator bus. If the

decision of how each CC would change its power output is

taken in advance, then ∆P ∈ Rnc
is defined, and the switch-

ing times ton and toff are determined as described above. If

∆P can be freely specified, a judicious definition of ∆P can

restrain oscillations even further. In this letter, ∆P is defined

such that the discrete actions cause the equilibrium point xc

to lay only in the subspace related to the most significant

excited oscillation modes. For the 9-bus test system, a short-

circuit at bus 8 is considered. The first targeted eigenvalue

is λ1 = j7.35 rad/s and the power shift is defined as ∆P =
−[16.8 32.4 26.6 62.1 54.9 44.7]T MW. By applying the

switching function h(x) and by minimizing the oscillation

energy afterward, the following switching times are obtained:

ton = 0.708 s and toff = 0.796 s. For the second eigenvalue

λ2 = j14.33 rad/s, the following parameters have been deter-

mined: ∆P = −[18.4 35.6 29.1 68.1 60.1 49.0]T MW,

ton = 1.000 s and toff = 1.051 s. Overall, DEOC has been

applied from times 0.708 s to 1.051 s, and the oscillations

are reduced dramatically. The DEOC parameters have been

determined for the 39-bus system in a similar fashion. Only

5 eigenvalues are targeted and DEOC is applied between times

0.607 s and 2.887 s. For legibility, the frequency of only a few

SGs are shown in Fig. 2, with and without DEOC.

6) Final Remarks: Discrete control can be applied to multi-

modal systems for the first time, without the need for any model

aggregation. Note that the goal is not to outperform traditional

continuous control strategies, but to enable a suitable control

logic in EPT that recognizes their particular characteristics and

limitations. Although the results validate the proposed scheme

and show its effectiveness, further theoretical development is

needed to: a) determine optimal ∆P subject to CC restrictions,

b) use standard models for the grid and its components, e.g.,

Fig. 2. DEOC application: (a) 9-bus test system, (b) 39-bus test system.

SGs, PSS, communication network, that can better capture

non-linearities and delays, c) include stability analysis, and d)

update switching times based on these new models—calculated

either through new switching functions or as a time correction

based on the discrepancy of the idealized and more realistic

representations.

B. Discrete Frequency Excursion Control (DFEC)

Consider a SG and a synchronous motor connected through a

loss-less short line. A CC is connected at the SG side. Both ma-

chines have a voltage controller, but only the SG has a governor

(IEESGO model). The power setpoint of both machines is at 0.75

pu. The frequency evolution of the machines when the motor

has an increase of 0.25 pu of its mechanical power is shown

in Fig. 3-(a) (uncontrolled response, with a frequency nadir of

4%). To investigate a discrete response, ∆P , Ton and Toff are

considered as optimization variables. Candidate solutions are

evaluated using the cost function ωs.s. −min(ω1+ω2

2 ) which

measures the maximum excursion of the average frequency of

both machines with respect to the steady-state value achieved

by the system after the disturbance. An interior point optimiza-

tion algorithm was employed to determine the optimal solution

which is shown alongside the system response in Fig. 3-(a) (op-

timal controlled response, with a frequency nadir of about 2%);

the optimal variables are ∆P ∗ = 0.1282 pu, T ∗
on = 2.77 s and

T ∗
off = 22.25 s. Additionally, a contour and level set plot shown

in Fig. 3-(b), for the special case of ∆P = ∆P ∗, was created

by evaluating over the critical range of Ton and Toff values.

These results shed light on the unique challenges faced in trying

to design discrete control strategies for the frequency excursion

problem. It demonstrates that for large power injections, the

optimal control strategy is not to immediately offset the change

in load with a corresponding change in the injected power, but

rather to allow for the natural response of the speed governor

to begin its response and inject power only during a critical

window. An additional finding is that the optimal power injection
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Fig. 3. DFEC after 0.25 pu mechanical power increase: (a) frequency,
(b) ∆fmax contour plot scaled by 1,000 when ∆P = 0.1282 pu.

window is not independent of the injected power magnitude, but

rather, becomes more narrow as the injected power magnitude

increases. A clear diminishing rate of return with respect to

the maximum frequency excursion and length of the power

injection window can also be seen. Intuitively, one can imagine

that continuing to inject power well after the frequency excursion

has reached its nadir does not continue to improve the maximum

frequency excursion. Control strategies that continue injecting

power unnecessarily in this manner are not only more inefficient

in terms of power management, they are also less robust in that

they waste reserves and will be less able to effectively mitigate

a subsequent excursion event [10].
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