
Further Advances on Discrete
Electromechanical Oscillation Control

Sebastian Martinez-Lizana, HÂector Pulgar-Painemal
Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville, TN, 37996

smart118@vols.utk.edu, hpulgar@utk.edu

AbstractÐThis paper presents further advances on a novel
power system oscillation control based on step-wise changes in
power output of electronically-interfaced resources (EIR). This
discrete control technique is used to significantly reduce the
amplitude of multiple modes in large-scale systems. The mathe-
matical formulation of the discrete electromechanical oscillation
control (DEOC) is presented, including the determination of
the required discrete power injection/absorption, and optimal
switching conditions. Time-domain simulations in a 9-bus and
a 39-bus systems validate the effectiveness of the proposed con-
trol. Through DEOC, emerging power technologies can actively
participate in the power system level control, recognizing their
technical limitations. Thereby, the system dynamic response is
substantially improved regarding electromechanical oscillations,
and new effective controllers are incorporated into the grid.

Index TermsÐinter-area oscillations, oscillation damping, dis-
crete control, power system control, power system stability.

I. INTRODUCTION

Global environmental concern all over the world has led

to prioritizing renewable, carbon-free sources of energy over

conventional generation. Therefore, electrical power systems

have been progressively uptaking renewable generation with

increasing penetration from non-conventional renewable en-

ergy (NCRE), such as wind and solar [1]. This transition,

although desirable, has technical consequences in the operation

of the electrical grid. A relative reduction of system inertia

and intrinsic variability of NCRE may cause larger and more

frequent frequency deviations [2] and recurrent electromechan-

ical oscillations. Particularly, local and inter-area oscillations

are recognized to become more critical to control in order to

guarantee system reliability and resiliency [3].
Power system stabilizers (PSSs) are deployed to improve

oscillation damping by adding a supplementary signal to the

excitation systems of selected synchronous generators (SGs).

However, these PSSs are not always suitable to handle multiple

modes of oscillation [4], situation that may be worsened

in the upcoming power grid due to features that can ease

the appearances of multiple oscillations [5]. Nowadays, the

massive deployment of phasor measurement units and the

existence of EIRs such as wind turbine generators, utility-scale
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PV plants, flexible a.c. transmission systems, high voltage d.c.

lines, controlled loads or energy storage systems (ESS) can

be exploited to tackle electromechanical oscillation problems

[6], [7]. Unfortunately, existing solutions for enabling wind

farms and solar power for damping control require power

curtailment, leading to under-utilization of available energy

potential, and undesired high cost of operation of NCRE. In

addition, the installed capacity of ESS such as batteries and

flywheels is not yet significant in most grids to be used for

damping control purposes.

The design of new control systems and the expansion

of the grid control capabilities have been identified as key

goals towards developing a highly renewable power grid [8],

[9]. Discrete±bang-bang type±control approaches to handle

oscillations have been proposed in the past. Yet, these research

efforts are based on oversimplified equivalents [10], [11] that

are not suitable for large-scale applications, and assume a

unique mode of oscillation that is favorably controlled by

a controllable component right in the oscillation path [12]±

[14]. These fundamental considerations have made these works

inapplicable to real systems. Recently, a new approach to

discrete control has been proposed [15]. This discrete control

approach is promising since it aims to enable emerging power

technologies for dynamic control actions while taking into

account their particular limitations. In this way, the grid can

gain a large number of new effective controllers that have been

excluded due to their limited or no control capabilities under

continuous control schemes.

This paper presents important advances in oscillation control

based on discrete actions of emerging power technologies,

such as EIRs. These elements are considered to work on top

of traditional oscillation damping controllers. The DEOC acts

upon the system through multiple controllable components

(CCs) and is able to handle large-scale systems with multiple

excited oscillation modes. In order to do so, a momentary

shifting of the system equilibrium point is performed at

specific switching times that are computed using a switch-

ing function and the system’s oscillating energy [16]. The

remainder of this paper is structured as follows. Section II

provides the theoretical development of the DEOC including

the general formulation of the problem, determination of

discrete power injection by CCs, and switching conditions.

Section III presents the study cases to validate the control

performance. Conclusions are presented in Section IV.978-1-6654-9921-7/22/$31.00 ©2022 IEEE



II. DISCRETE ELECTROMECHANICAL OSCILLATION

CONTROL (DEOC)

The essence of the DEOC is to enable discrete control

mechanisms that inject/absorb active power at a given set

of buses. This set corresponds to buses whose connected

elements (EIRs) can step-wisely adjust their power output,

such as energy storage systems, PV solar generation, and

wind turbines. To lay the DEOC foundations for a general

formulation, for now, a linear model is considered.

A. General formulation

Consider m CCs with their active power output given by

Pref = P 0
ref + ∆P

(
µton − µtoff

)
, with Pref , P

0
ref ,∆P ∈

R
m. P 0

ref is the initial power set-point vector, ∆P is a vector

that contains a predefined quantity for every CC, and must be

determined based on both the particular characteristic of the

system under study and the number of CCs, µτ = 1, ∀t > τ

is the unit step function, and ton, and toff the switching

times with toff > ton. Now, consider a system with ng

SGs represented by a classical model, and the dc load flow

formulation to represent the grid of nb buses. By eliminating

algebraic variables, the model system becomes:

ẋ
︷︸︸︷
[

δ̇

ω̇

]

=

Asys

︷ ︸︸ ︷
[

0 ωsIng

− 1
2H

−1Ba 0

]

x
︷︸︸︷
[
δ

ω

]

+

[
ωs1ng

1
2H

−1(Pm +BbPL −BcPref )

]

(1)

for more details refer to [15]. By inspection, the state matrix

Asys has purely imaginary eigenvalues, then the system be-

haves as an undamped multidimensional harmonic oscillator.

Note that Pref depends on ∆P , ton, and toff . If t < ton
or t > toff , the system equilibrium point is defined as

xe = [δe ωe]
T , with δe = B−1

a (Pm + BbPL − BcP
0
ref ),

and ωe = 1ng
. Otherwise, the equilibrium point is shifted

to xce = [δce ωce]
T (ce: controlled equilibrium), with

δce = δe −B−1
a Bc∆P , and ωce = ωe = 1ng

.

Initially, the system is considered to be in steady-state at the

equilibrium point xe, but the state variables are shifted away

from the equilibrium because of a short-circuit. At time t0 the

short-circuit is cleared and the states at that time are x(t0) =
x0. A similarity transformation is used to determine the time

evolution of the state variables and its derivative ∀t ∈ [t0, ton],
given by:

x(t) = V eΛ(t−t0)V −1(x0 − xe) + xe (2)

ẋ(t) = V ΛeΛ(t−t0)V −1(x0 − xe) (3)

where V = [v1, v2, . . . , vn] is the full rank matrix of right-

eigenvectors, each eigenvector vi is associated with its corre-

sponding eigenvalue λi, Λ = V −1AsysV is a diagonal matrix

that contains all distinct and different to zero eigenvalues, i.e.,

Λ = diag{λ1, λ2, . . . , λn}, and n is the total number of states,

which in this case is n = 2ng .

As shown in Fig. 1-(a), after the short-circuit, the system

will exhibit a periodic trajectory (black dashed line) centered at

x0
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Fig. 1. Graphical description of system trajectories with DEOC: (a) optimal
solution, (b) sub-optimal solution.

xe. The DEOC is activated at some point along the trajectory

when x(t = tst) = xst (st: switching time), and the system

will shift its trajectory to another periodic orbit centered at the

controlled equilibrium point xce±described by the red dashed

line in Fig 1. In the optimal case, xe belongs to the controlled

orbit, then toff is set to t when x(t) = xe. The entire DEOC

operation will lead the system through the blue trajectory,

ultimately eliminating the oscillation. Fig. 1-(b) shows a case

when the switch-on is performed slightly after x(t) = xst.

In this case, xe would not belong to the controlled periodic

trajectory and the oscillation cannot be annihilated. If the

switching is not performed at the optimal time, a sub-optimal

trajectory near the equilibrium point xe will the desirable. In

this case, an appropriate way to define the switch-off time is

needed (described in subsection II-C).

B. Power injection from controllable components

The state of the system, right after the disturbance is cleared,

will lead to the excitation of the system modes. These will

be excited with different intensities depending on both their

participation factors pki = wikvik and the initial condition

itself. The explicit solution for the k-th state variable ∀t ∈
[t0, ton], this is before the first discrete action, is written as:

xk(t) =

n∑

i=1

eλi(t−t0)wT
i (x0(k)− xe(k))vik (4)

where wT
i , vi ∈ R

n are the i-th left and right eigenvectors

related to the eigenvalue λi.



Considering that each SG is described by a classical model,

a power system with ng synchronous generators (including one

at the infinite bus) will have n = 2(ng − 1) state variables.

These states will exhibit only a few dominant modes in their

dynamic response. The main goal of the DEOC is to annihilate

the oscillations associated with those modes, thus significantly

reducing the amplitude of the oscillatory response. Along these

lines, one possible solution to tackle multi-mode systems is

presented. This solution pursues oscillation annihilation by

progressively targeting one mode at a time.

Without loss of generality, let us assume the oscillation of

the k-th mode is targeted for elimination. For that particular

mode one can define the projection P = MMT ∈ R
n×n

over the subspace span{q1, q2} ∈ R
n×2, with M = [q1 q2].

Here, q1 = Re(vk) and q2 = Im(vk) are the basis of

the 2-dimensional projected space, with vk being the k-th

eigenvector corresponding to the eigenvalue λk. The projection

of a vector x ∈ R
n over span{q1, q2} is given by Px. Now, the

representation of the projected vector in the subspace spanned

by {q1, q2} is determined as:

α =

S
︷ ︸︸ ︷

(MTM)−1MT MMT

︸ ︷︷ ︸

P

x (5)

The linear transformation S : Rn → R
2 can be decomposed

into two block matrices S = [S1 S2] with proper dimensions,

since x = [δ ω]T . In a similar fashion, an orthogonal

subspace to span{q1, q2} is defined as: N = Null(M) =
{y ∈ N | My = 0} , N ∈ R

n×(n−2). The projector over the

null space of M is given by Pn = NNT . The projected vector

is Pnx, and its representation over the projected subspace

corresponds to:

αn =

Sn
︷ ︸︸ ︷

(NTN)−1NT NNT

︸ ︷︷ ︸

Pn

x (6)

Similarly, the linear transformation Sn : Rn → R
(n−2) can

be separated into two block matrices Sn = [Sn1 Sn2] with

proper dimensions, since x = [δ ω]T . The orthogonal pro-

jections P and Pn are very useful to target one mode at a time

without exciting others due to the shifting of the equilibrium

point. As shown in Fig. 2, to annihilate the oscillation of the

dominant mode, the DEOD will affect the equilibrium point

over span{q1, q2} and there will be no displacement over the

null space of M . This means that the projected orbits related

to any mode but the targeted k-th mode will have no shifting

in the equilibrium point due to the DEOC.

Determining the power injection by each CC to achieve a

desired shift of the equilibrium point is a static problem that

does not depend on the dynamic trajectory of the system. Due

to this, the dc load flow formulation is considered as follows:
[
θ

δ

]

=

[
X11 X12

X21 X22

]

︸ ︷︷ ︸

B
−1

0

[
−PL +A∆P

PG

]

(7)
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Fig. 2. Graphical description of the representation over the projected
subspaces: (a) span{q1, q2} ∈ R

2, and (b) span{col(N)} ∈ R
n−2.

where θ ∈ R
nb in radians are the bus voltage angles, B0 ∈

R
ng+nb is the system susceptance matrix including generator’s

series transient reactance, X11, X12, X21, X22 are the block

partitions of B−1
0 with proper dimensions, A ∈ R

nb×m is

an incidence matrix composed of zeros and ones to adjust

the size of ∆P , such that A∆P ∈ R
nb−ng , by setting zero

to entries related to buses where CCs are not connected,

and PG ∈ R
ng is the SG injection power vector. Both the

original and controlled equilibrium points are composed of

SG loading angle and speed as follows: xe = [δe ωe]
T , and

xce = [δce ωce]
T = [δe+∆δ ωe]

T . Here ∆δ represents the

shifting of the equilibrium point with respect to the original.
Following (5) and (6), the projected displacement of the

equilibrium point onto span{q1, q2} and its orthogonal sub-

space are given by ∆α = S1∆δ and ∆αn = Sn1∆δ, respec-

tively. Impose a sufficient condition to have zero displacement

onto the null space of M : αn = 0 = Sn1∆δ. By solving for

∆δ, the required controlled equilibrium point xce is defined.

This solution is given by:

∆δ = Kd̄ ∈ Null(Sn1) : |d̄| = 1 (8)

where K is a constant real parameter, and d̄ is the unit

direction vector of displacement of the equilibrium point to

ensure αn = 0. As shown in Fig. 2-(a), different values of K

will lead to different orbits around the controlled equilibrium

xce. A proper value of K should be defined, depending on the

system, to avoid excessive amplitude of the controlled orbit.
Replacing ∆δ into eq. (7), and solving for ∆P , leads to:

A∆P = X+
21(δc −X22PG) + PL (9)



where X+
21 is the pseudo-inverse of the block matrix X21.

With this specific power injection ∆P , the equilibrium point

is only displaced on the representation over the projected

subspace span{q1, q2}. It is important to mention that once the

oscillation of the targeted dominant mode has been annihilated

through DEOC, the process can be repeated to shift the

equilibrium point on the representation over the projected

subspace span{q1, q2}± now related to the second dominant

mode and so on.

C. Switching conditions

Given the states x0 right after a short circuit is cleared, the

dynamic evolution of the system is defined by equations (2)

and (3). Rearrange the equations as follows:

V −1(x− xe) = eΛ(t−t0)V −1(x0 − xe) (10)

Λ−1V −1ẋ = eΛ(t−t0)V −1(x0 − xe) (11)

By pre-multiplying eq. (10) by (x − xe)
T (V −1)∗ and eq.

(11) by ẋT (V −1)∗(Λ−1)∗, and adding them up, lead to an

hyper-ellipsoid in the plane x− ẋ:

(x− xe)
TD(x− xe) + ẋTEẋ = 2∆xT

0 D∆x0 (12)

where D = (M−1)∗M−1, E = (M−1)∗(Λ−1)∗Λ−1M−1,

∆x0 = x0 − xe, and the symbol ∗ corresponds to the

conjugate transpose. Note that D and E are real positive

definite matrices. This hyper-ellipsoid defines the periodic

orbit around the equilibrium point xe due to the initial

condition x0. To successfully apply the DEOC, ∆P need to

be switched-on at an specific time tst. In the same way, at

toff > tst the controlled elements are switched back to zero,

eliminating the oscillation related to the targeted mode if

performed at the optimal time. Consequently, appropriate ways

to determine these specific switching times need to be defined.

1) Switch-on time: Consider that the states are x(tst) =
xst, right after ∆P is discretely switched on. The dynamic

trajectory of the system is given by:

x(t) = V eΛ(t−tst)V −1(xst − xce) + xce (13)

ẋ(t) = V ΛeΛ(t−tst)V −1(xst − xce) (14)

Rearranging and manipulating the equations in the same

fashion as in (10)-(12), lead to another hyper-ellipsoid centered

at xce, that describes the system trajectory in the plane x− ẋ:

(x− xce)
TD(x− xce) + ẋTEẋ = 2∆xT

stD∆xst (15)

where ∆xst = xst − xce. To ensure a successful controlled

operation, the switch-on should be performed only when xe

belongs to the controlled trajectory. Thus, using equation (15)

and setting x = xe, and ẋ|x=xe
= A(xe − xce), lead to:

∆xT
ce(D +ATEA)∆xce = 2∆xT

stD∆xst (16)

where ∆xce = xe − xce. Whenever x = xst satisfies equation

(16), ∆P should be switched on. Therefore, the following

switching function:

h(x) = 2(xe − xce)
TD(xe − xce)

− (x− xce)
T (D +AT

sysEAsys)(x− xce) ∈ R (17)

can effectively determine the switching time when h(x) = 0.

2) Switch-off time: An energy-based approach is used to

ensure that the switch back to the equilibrium point xe is

done appropriately. The oscillation energy is defined as the

summation of the individual kinetic energy of the SGs:

Ek(t) =

ng∑

j=1

Hjωs∆ω2
j (18)

where ∆ωj is the speed deviation of SG j in p.u., and Hj is

the inertia constant of SG j in s. Note that after a disturbance,

the speed trajectories describe the oscillation energy defined

by equation (18) such that Ek(t) > 0, ∀t > t0. If damping

is neglected, Ek oscillates permanently. The switch-off time

toff should be computed such that Ek is minimum. This

guarantees that the oscillation in the state variables will be

close to the equilibrium pointÐhence the oscillation amplitude

is considerably reduced. If performed at the optimal time,

the switch-off is performed exactly at the original equilibrium

point, thus completely annihilating the targeted oscillation.

For determining the switch-off time, the integral of Ek(t)Ð
also defined as action [16]Ðover a moving time window

[t1, t1+T ] is determined. Whenever the integral is minimum,

the system is reaching a minimum oscillating energy Ek,

and it is the moment to switch-off. This integral needs to be

computed for each t1 > tst after the switch-on time. Also, an

appropriate time window T needs to be considered to capture

the oscillating energy dynamics.

III. SIMULATION RESULTS AND ANALYSIS

Simulations are performed in a 9-bus system and a 39-

bus system [17]. Grid parameters are obtained from the

MATPOWER library [18]. No additional controllers are con-

templated to evaluate the sole action of the proposed DEOC.

As wind farms, solar plants, and ESSs are considered, the

proposed DEOC will only act upon CCs connected to partic-

ular buses, located within the grid based on energy potential

or technical considerations. However, in an initial exploratory

aim to account for full controllability, this paper assumes

controllable components deployed at all non-generator buses.

In future research, this assumption will not be required.

A. 9-bus system

A self-cleared three-phase fault is applied at bus 8 with a

total duration of 150 ms. The system dynamics are dominated

by two electromechanical modes: one oscillation between

G1 (slack bus) and G2-G3 with a corresponding eigenvalue

λ1 = j7.35 (1.17 Hz), and another between G2 and G3 with

a corresponding eigenvalue λ2 = j13.69 (2.18 Hz). The fault
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at bus 8 mostly excites the 1.17 Hz mode. Because of this, the

DEOC is performed first to tackle that specific mode. In order

to do so, the equilibrium point is shifted only on the projected

subspace related to that mode (see Fig. 3-(a)).

By using the switching function defined in eq. (17), the

switch-on time is ton1 = 0.708 s. Next, every time step after

ton1, the integral of Ek(t) is computed over a moving time

window with a width of T = 1 s. When the first minimum is

found, the switch-off is activated; this is at toff1 = 0.796 s.

A minimum integral denotes that the oscillation is close to the

original equilibrium point, thus the oscillation associated with

this mode is almost annihilated. Note that after the annihilation

of this oscillation, the system is dominated exclusively by the

2.18 Hz mode. As mentioned before, this mode corresponds to

an oscillation between G2 and G3. From Fig. 4 it is noticeable

that just after this first on-off cycle, both SG frequencies are

in counter-phase.

Then, the targeted mode is changed to the one with a

frequency of 2.18 Hz. Now, it is desired to shift the equilibrium

point only on the subspace associated with this mode. As

shown in Fig. 3-(b), the controlled orbit centered at xce2 does

not induce any displacement on the already tackled 1.17 Hz

mode. Next, the second switchings are at ton2 = 1.000 s and

toff2 = 1.051 s. With this second operation, a sub-optimal

annihilation of both modes is performed. Even though both

modes are not completely eliminated, the SGs frequency time

evolution shown in Fig. 4 validates the performance of the

DEOC with a reduction of oscillation amplitude greater than

95% in both modes. The total actuation of the DEOC is 0.343

s. Note that in a practical operation scenario, SG dampers and

PSSs would take care of the remaining oscillation.

B. 39-bus system

A self-cleared three-phase short-circuit is considered at bus

9 with a total duration of 150 ms. In a real setup, online

measurement and oscillation identification techniques can be

used to determine the most dominant modes, which will be

targeted with a given order. In this simulation, the order is

defined as shown in Table I, based on the amplitude of each

excited mode. A moving time window with a width of T = 1
s is considered to compute the integral of Ek(t).

TABLE I
39-BUS SYSTEM MODES AND DEOC SWITCHING TIMES

Mode Frequency (Hz) DEOC order ton (s) toff (s)
1 0.62 1 0.607 0.807
2 1.53 2 1.456 1.611
3 2.52 3 1.668 1.756
4 1.75 4 2.199 2.286
5 1.72 5 2.823 2.887
6 2.83 - - -
7 2.75 - - -
8 2.37 - - -
9 1.29 - - -

Simulation results are shown in Fig. 5, where the speed of

all SGs is compared with the case without DEOC. Fig. 5-

(a) shows the DEOC application when the switching function

derived in equation (17) is used. Even though, this function

ensures that the original equilibrium point xe belongs to the

controlled trajectory, it does not give a specific time when

this is going to happen. In a multi-mode system, this optimal

time may exceed an expected time for control purposes.

Consequently, only a sub-optimal solution is found in a short

time to perform each switch-off. Because of this, a complete

annihilation of each dominant mode cannot be achieved within

a reasonable time frame for this system.

However, a local search is done around the switch-on time to

shed light on this issue. After a few tries, adequate switch-on

times have been found that almost annihilate the oscillations.

The result is shown in Fig. 5-(b) using the following adjusted
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Fig. 5. 39-bus system dynamics: (a) sub-optimal solution by using h(x) = 0,
(b) optimal solution by ensuring xe belongs to the controlled trajectory in an
adequate time to switch off.

switch-on times for the 5 targeted modes: 0.642, 1.497, 1.678,

2.165, and 2.800 s. The authors recognize that further explo-

ration is needed to acquire a formal theoretical foundation

to guarantee this condition. An additional time-dependent

constraint to the switching function h(x) might suffice to

improve the DEOC performance. The remaining oscillations

after the DEOC are in essence the initially exciting modes that

are not tackled. This result validates the effectiveness of the

proposed control and its application to handle a large-scale

system with a multi-mode dynamic nature. A total oscillation

amplitude reduction greater than 90% of all five dominant

modes is achieved.

IV. CONCLUSION

This paper presents significant advances in the discrete

electromechanical oscillation control problem. The DEOC

aims to incorporate EIRs into the control of the dynamic

response of the system. These controllable components are

considered to provide step-wise changes in their power output

to transiently shift the system equilibrium point. By doing so,

the oscillations of dominant excited modes are proposed to be

progressively annihilated. Orthogonal projections are used to

define the required power output of every CC. A switching

function is derived to define the switch-on time. In the same

way, the integral of the oscillation energy is used as a merit

function to establish the switch-off time. The incorporation of

the DEOC is validated in a 9-bus and a 39-bus systems. To

fully explore the theoretical implications of CC locations, a

CC is assumed to be connected to every non-generator bus.

Simulation results are categorical: the oscillation amplitude

of dominant modes is significantly reduced (greater than

90%) with a short time of DEOC actuation (<2.3 s). These

results reveal that the proposed approach can handle large-

scale systems, with multi-mode dynamics. The next step in

developing this control technique is to achieve similar results

only considering a subset of non-generator buses.
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