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Abstract—We present a least-squares algorithm for time delay
(range) estimation of dual-tone spectrally sparse signals that
minimizes bias errors. Dual-tone waveforms obtain near-optimal
delay estimation performance by maximizing the mean-square
bandwidth of the signal spectra, reducing the error bound.
However, the choice of estimator may introduce bias, particularly
for dual-tone waveforms with bandwidth (tone separation) that
is small or is close to the Nyquist rate, and when the delay yields
discretization errors. We address this problem by combining a
matched filter with least-squares optimization (MF-LS). We com-
pare this to a simple matched filter and interpolation approach,
and to a matched filter and sinc-function nonlinear least squares
fit (NL-LS). We demonstrate that the MF-LS algorithm has lower
bias errors than interpolation and NL-LS over both bandwidth
and delay. We present experimental 2.8 GHz measurements of
two-tone delay estimation implemented in a software-defined
radio, and demonstrate that the MF-LS algorithm achieves
a reduction in root-mean-square error of nearly an order of
magnitude compared to interpolation or NL-LS.

Index Terms—Microwave ranging, pulse compression, radar,
spectral sparsity.

I. INTRODUCTION

STIMATION of the time delay of a signal is necessary

in a broad range of applications, including radar [1]
and sonar target detection [2], localization in wireless net-
works [3], indoor tracking of people [4], and many others.
Emerging applications in wireless networks and distributed
wireless systems are driving an increased need for more
accurate range measurements obtained through estimating the
delay of a transmitted signal. New developments in coherent
distributed array technologies necessitate range estimates be-
tween nodes with errors of a fraction of a wavelength using
techniques that can scale to an arbitrary number of nodes [5],
[6]. The most common waveforms employed for such high-
accuracy range estimation are linear frequency modulated,
ultra-wideband, pseudo-noise coded waveforms, and phase-
modulated continuous wave, among others [7]-[9]. However,
two-tone waveforms obtain the best ranging accuracy [10],
[11], and are spectrally sparse, which, in general, minimizes
interference. Two-tone waveforms are not generally used for
non-cooperative ranging due to the highly ambiguous nature of
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Fig. 1. (a) The in-phase part of a two-tone signal with fi = 53 kHz,
f2 = 1.03 MHz, and a sampling frequency of fs = 2.5 MHz showing
discretizations equivalent to two different delays (red and blue). (b) Output of
the matched filter for both scenarios, showing the error due to discretization.

the matched filter response. However, it is a perfect candidate
for cooperative ranging, where an active retransmission can
yield a strong point-like response [12].

The traditional approach to estimating the delay of a signal
is via cross-correlation processing of the delayed signal with
an ideal representation of the signal, or matched filtering, and
estimating the time of the peak of the output signal. Matched
filtering with the ideal signal realizes the maximum signal-
to-noise ratio (SNR), improving the estimation accuracy. The
lower bound on delay estimation accuracy is affected by
multiple factors including bandwidth, SNR, and the spectral
shape of the waveform [10], however the realized estimation
accuracy is further impacted by the estimation algorithm which
cannot always obtain the lower bound. Signal discretization
introduces additional errors in the estimation of the matched
filter peak, as illustrated in Fig. 1: depending on the delay, the
discretized filter output may truncate the signal peak, leading
to increased variance and bias.

We present a novel microwave ranging technique that fo-
cuses on reducing the ranging biases for high-accuracy two-
tone waveforms. The new approach employs the residual sum
of squares (RSS) which is obtained by comparing the calcu-
lated matched filter output to a filter bank of expected outputs.
By minimizing the least square error, the range of the target
is estimated. We compare the ranging performance of the new
matched filter least-squares (MF-LS) ranging technique to the
performance of two commonly-used approaches: interpolation
and nonlinear least squares sinc fitting (NL-LS). Through
simulation and experiments in Ettus USRP X310 software-
defined radios (SDRs) at 2.8 GHz, we demonstrate a reduction
in range estimation bias error of nearly an order of magnitude
using MF-LS compared to interpolation or NL-LS.

II. DELAY ESTIMATION OF DUAL-TONE WAVEFORMS

Estimating the range of a cooperative target is equivalent
to the estimate of the delay of a signal transmitted to and



reflected back from the target, which is obtained by the peak
of the response of the matched filter output

y[n] = rln] ® s*[—n] = IFT {R[k]S*[K]} , (D

where r[n] is the received baseband signal, s[n] is the
transmitted baseband signal, R[k] and S[k| are the discrete
Fourier transforms of r[n] and s[n], ® represents convolution,
(*) represents complex conjugate, and IFT {-} is the inverse
Fourier transform. Accurate peak estimation from a sampled
received signal can be challenging due to discretization error.
Conventionally, a refinement step is employed to improve the
estimation accuracy. Typical refinement approaches include in-
terpolation, NL-LS, quadratic least squares, and spectral phase
slope, among other methods [13]-[16]. Of these, interpolation
and NL-LS often provide the best performance and the lowest
bias for conventional ranging waveforms.

A waveform of two discrete frequency tones yields the
lowest delay estimation variance for a given bandwidth [10].
In this work the transmitted and noiseless received signals are
given by

sfn] = (uln] = uln — np + 1)) (271 F: 4 P71 2)

rln] = (uln = [7f]] = uln = [7fs] = nr +1])
<€j27rf1(ﬁ—7) 1 ea‘%fz(;—s—f)) NG

where /-] is the unit step function, nr is the sample represent-
ing the end of the pulse with a pulse width T' = np/ fs, f1 and
fo are the two tones of the transmitted and received signals,
/s is the sampling frequency, 7 is the time delay, [.] maps its
argument to the least integer greater than or equal to its value,
and |.] maps its argument to the greatest integer less than
or equal to its value. While matched filtering maximizes the
SNR, it results in delay ambiguities for two-tone waveforms.
These ambiguities are resolved in this work by employing the
main peak disambiguation approach in [17], where a pulse
consisting of one cycle of a sinusoidal wave is transmitted to
disambiguate the output of the matched filter.

A. Estimation Using Interpolation

Initially, the received signal is discretized with the time
interval T; = 1/f,. This limits the range estimation ability
to a coarse grid of Ty, e.g. for a 10 MS/s sampling rate,
T = 100 ns, yielding a grid of 15 m increments. Refinement
of the matched filter output can be accomplished by interpo-
lating L samples preceding and following the initial (coarse)
estimate of the discretized delay from the matched filter output
peak npy, which is given by 7. = n,;T,. Spline interpolation
with K points between each two samples is appropriate since
the underlying functions are sinusoidal. The output of a spline
interpolation is a set of third-order polynomials with 2L K + 1
samples. The refined delay estimate is obtained from the peak
of the interpolated waveform at sample k. The refined value
7 = koTs/K is added to the initial estimate 7. to obtain the
range of the target from r = ¢ (7. + 7,.) /2. When the main
lobe of the matched filter output is detected, L can be set to 1
in order to minimize the computation time. Nevertheless, this

Algorithm 1: MF-LS

Input: nr, T, f1, f2, fs, s[n], y[n], H.

Output: ..

Obtain the initial peak estimate n,;

for h = 1 to H do
dtp = npTs — 0.5/(f2 — f1) + (h/H)/(f2 — f1);
t;,[n] = 7dth : l/fg : 2(7LT — 1)/]0g — dth;
#[n] = (ulty] — ultp — T]) (€727 f1tn 4 ei2mfztn)
yln] = 7n] %5*[*71];
RSS[h] = > (y[n]/max(y) — jln]/max(§))*;

n=0

end
Using the interpolation algorithm, estimate /,,;,,, the
refined value that minimizes RS'S;
Local time delay:
dtioe = —0.5/(f2 = f1) + (hmin/H)/(f2 — f1):
Estimate the time of arrival using: 7, = npiTs + dtioc;
Return 7,
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Fig. 2. Experimental SDR setup. Extra cables were added to modify the
received signal time delay. DUC: digital upconverter. DDC: digital down-
converter. DAC: digital-to-analog converter. ADC: analog-to-digital converter.
VCO: voltage-controlled oscillator. PLL: phase-locked loop.

is not feasible if a rough estimate of the peak of the matched
filter output is not available.

B. Estimation Using Sinc Nonlinear Least Squares (NL-LS)

NL-LS is a common peak estimator used for hyperbolic and
Gaussian functions [18]-[20]. In [13] NL-LS was used for
linear frequency modulated and pseudo-noise coded ranging
waveforms. This method fits a sinc equation over the peak
of the matched filter output and it only requires three points
(the peak and two points around it). This algorithm works by
minimizing the residual error using

2

L= (yi—f(zi,N), )

i=0

where f(x;A) = Agsinc((x — A\)A2), f(z;, A) is the pre-
dicted matched filter output main lobe for the samples x; from
x = [-1,0,1]" around the peak, y : y; = |d [npr—1+4]| @ €
{0,2}, y; are the samples from y[n] around the estimated
peak, d[npr_144] represents the amplitude of the matched
filter output around the peak npk, and X = [Xo, A1, Ao s
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Fig. 3. Simulated and experimental results showing a comparison between the actual distances traveled by the signals and their estimates. The surfaces
show the simulated results, and the red dots show the experimental results of (a) Interpolation; (b) NL-LS; and (c) MF-LS. The proposed MF-LS algorithm
significantly reduces the bias error across all delays and bandwidths, with errors only for very low bandwidths or bandwidths close to the Nyquist rate.

the vector of the coefficients. Gauss—Newton optimization is
used to solve (4). More details are shown in [13].

C. Estimation Using Matched Filter Least Squares (MF-LS)

In the proposed MF-LS algorithm, the output of the matched
filter is compared to a set of H = 50 potential responses with
shifted discretization points. The steps for the MF-LS time
delay estimator are shown in Algorithm 1. The RSS of the
normalized matched filter outputs, which is defined by

N
RSS[h] = (y[n]/max(y) — g[n]/max())*, (5
n=0
is computed for all H > 3 (required for interpolation) potential
responses, where §[n] = 7[n]®s*[—n] represents the predicted
value of y[n], and 7[n| represents the predicted discretized
version of the received signal for every predicted time shift
dty, (as shown in Fig. la). The values of dt; are selected
such that a linear vector of candidate time delays around the
coarse estimate of the matched filter output 7, is considered.
By using (5) for all H potential responses, a function is
obtained and used to determine the time delay by employing
the method of least squares. Afterward, the estimated time
delay of the pulse 7. is obtained using 7. = nprTs + dt;oc.
The estimates will generally improve with large H, as more
potential outcomes are evaluated.

III. EXPERIMENTAL IMPLEMENTATION

The three ranging algorithms were tested through simu-
lation and experiment. The experimental setup is shown in
Fig. 2. The measurement was conducted using an Ettus USRP
X310 SDR with a UBX-160 daughterboard. The time delay
between the transmit and receive channels was controlled
by modifying the length of the cable(s) connected between
them. The transmitted and received signals were generated
in terms of their in-phase and quadrature components, i.e.
S[TL] = ITx[’rL] +]QTx[n] and r[n] = IRx[’rL] +]QRx[n]
Simulation and experimental results are shown in Fig. 3, in
which we used f; = 20 kHz, fs = 10 MHz, and f, was
varied from 60 kHz to 4.94 MHz. The pulse width was set to
99.8 us and the carrier frequency was 2.8 GHz. The results
were obtained by averaging 100 estimates. The root-mean-
square error (RMSE) over all bandwidths and delays for the
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Fig. 4. The standard deviation for each ranging method along with the CRLB.
The SNR for the first 100 samples was 32 dB and then it decreased by
around 2.9 dB for every added cable (every 100 samples), reaching an SNR
of 14.6 dB. For some samples, the standard deviation of both the interpolation
and NL-LS is smaller than the CRLB, this is due to the bias in the estimates.

interpolation, NL-LS, and MF-LS are as follows: 0.688 m,
0.482 m, and 0.407 m. These values are close since the bias
for both low and very high bandwidths are common for all
these methods. When only bandwidths between 2 MHz and
4.5 MHz are considered (avoiding low frequencies and those
close to Nyquist), the RMSE values are 0.78 m, 0.421 m, and
0.056 m respectively, demonstrating that the MF-LS algorithm
reduces errors by nearly an order of magnitude. A degradation
in performance at low bandwidths is observed since less than
one period of the beat frequency was captured. Thus, a larger
T can be selected for low bandwidths to minimize the bias.
The standard deviation and Cramer—Rao lower bound (CRLB)
for each waveform [21] and algorithm are shown in Fig.
4. A significant reduction in the bias was achieved using
the proposed MF-LS algorithm, which was the objective of
this work, with only a slight increase in standard deviation
compared to the interpolation and NL-LS algorithms.

IV. CONCLUSION

A novel MF-LS algorithm for two-tone delay estimation
based on matched filtering and least-squares optimization
was introduced. This method was developed to reduce the
biases seen when using common estimation approaches. MF-
LS showed better accuracies than interpolation or NL-LS,
especially at high bandwidths. Measured results showed good
agreement with simulations. For tone separations below the
Nyquist rate and above 2 MHz, the error of the MF-LS algo-
rithm had an improvement of nearly an order of magnitude.



[1]
[2]
[3]

[4

[l

[5]

[6

i}

[7]
[8]
[9

—

[10]

(11]

REFERENCES

M. L. Skolnik, “Introduction to radar systems,” New York, 1980.

R. J. Urick, “Principles of underwater sound,” 1975.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal processing magazine, vol. 22, no. 4, pp.
54-69, 2005.

D. Sasakawa, N. Honma, K. Nishimori, T. Nakayama, and I. Shoichi,
“Evaluation of fast human localization and tracking using mimo radar
in multi-path environment,” in 2016 IEEE 27th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), 2016, pp. 1-6.

J. A. Nanzer, R. L. Schmid, T. M. Comberiate, and J. E. Hodkin, “Open-
loop coherent distributed arrays,” IEEE Transactions on Microwave
Theory and Techniques, vol. 65, no. 5, pp. 1662-1672, 2017.

S. R. Mghabghab and J. A. Nanzer, “Open-loop distributed beamform-
ing using wireless frequency synchronization,” IEEE Transactions on
Microwave Theory and Techniques, vol. 69, no. 1, pp. 896-905, 2021.
G. Galati and G. Pavan, “Waveforms design for modern and mimo
radar,” in Eurocon 2013. 1EEE, 2013, pp. 508-513.

G. Mi, T. Huang, and W. Rao, “Comparison of detectability of radar
waveforms using a digital channelized receiver,” 2015.

L. Sakkila, Y. Elhillali, A. Rivenq, C. Tatkeu, and J.-M. Rouvaen, “Short
range automotive radar based on uwb pseudo-random coding,” in 2007
7th International Conference on ITS Telecommunications, 2007, pp. 1-6.
A. Weiss and E. Weinstein, “Fundamental limitations in passive time
delay estimation—part i: Narrow-band systems,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 31, no. 2, pp. 472-486,
1983.

E. Weinstein and A. Weiss, “Fundamental limitations in passive time-
delay estimation—part ii: Wide-band systems,” IEEE transactions on
acoustics, speech, and signal processing, vol. 32, no. 5, pp. 1064—-1078,
1984.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

S. M. Ellison and J. A. Nanzer, “High-accuracy multinode ranging for
coherent distributed antenna arrays,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 56, no. 5, pp. 4056—4066, 2020.

S. Prager, M. S. Haynes, and M. Moghaddam, “Wireless subnanosecond
rf synchronization for distributed ultrawideband software-defined radar
networks,” IEEE Transactions on Microwave Theory and Techniques,
vol. 68, no. 11, pp. 4787-4804, 2020.

R. Moddemeijer, “On the determination of the position of extrema of
sampled correlators,” IEEE Transactions on Signal Processing, vol. 39,
no. 1, pp. 216-219, 1991.

Y. Schroder, D. Reimers, and L. Wolf, “Accurate and precise distance
estimation from phase-based ranging data,” in 2018 International Con-
ference on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp.
1-8.

A. V. Oppenheim, A. S. Willsky, and S. Hamid, “Signals and systems,
processing series,” 1997.

J. E. Hodkin, K. S. Zilevu, M. D. Sharp, T. M. Comberiate, S. M. Hen-
drickson, M. J. Fitch, and J. A. Nanzer, “Microwave and millimeter-wave
ranging for coherent distributed rf systems,” in 2015 IEEE Aerospace
Conference. 1EEE, 2015, pp. 1-7.

I. Sharp, K. Yu, and Y. J. Guo, “Peak and leading edge detection
for time-of-arrival estimation in band-limited positioning systems,” IET
communications, vol. 3, no. 10, pp. 1616-1627, 2009.

H. Guo, “A simple algorithm for fitting a gaussian function [dsp tips and
tricks],” IEEE Signal Processing Magazine, vol. 28, no. 5, pp. 134-137,
2011.

R. A. Caruana, R. B. Searle, T. Heller, and S. 1. Shupack, “Fast algorithm
for the resolution of spectra,” Analytical chemistry, vol. 58, no. 6, pp.
1162-1167, 1986.

S. R. Mghabghab and J. A. Nanzer, “High accuracy adaptive microwave
ranging using snr-based perception for coherent distributed antenna
arrays,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 12, pp. 5540-5549, 2020.



