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Abstract—We present a distributed antenna array supporting
open-loop distributed beamforming at 1.5 GHz. Based on a scal-
able, high-accuracy internode ranging technique, we demonstrate
open-loop beamforming experiments using three transmitting
nodes. To support distributed beamforming without feedback
from the destination, the relative positions of the nodes in
the distributed array must be known with accuracies below
λ/15 of the beamforming carrier frequency to ensure that the
array maintains at least 90% coherent beamforming gain at
the receive location. For operations in the microwave range,
this leads to range estimation accuracies of centimeters or
lower. We present a scalable, high-accuracy waveform and new
approaches to refine range measurements to significantly improve
the estimation accuracy. Using this waveform with a three-node
array, we demonstrate high-accuracy ranging simultaneously
between multiple nodes, from which phase corrections on two
secondary nodes are implemented to maintain beamforming
with the primary node, thereby supporting open-loop distributed
beamforming. Upon movement of the nodes, the range estimation
is used to dynamically update the phase correction, maintaining
beamforming as the nodes move. We show the first open-loop
distributed beamforming at 1.5 GHz with a three-node array,
demonstrating the ability to implement and maintain phase-based
beamforming without feedback from the destination.

Index Terms—Coherent distributed arrays, cooperative rang-
ing, disaggregated arrays, distributed antenna arrays, distributed
beamforming, radar

I. INTRODUCTION

Progress in wireless communications systems, as well as
other wireless applications such as remote sensing, radar, and
imaging, depends on the ability to continually improve the
capabilities of antennas, arrays, and transceivers in terms of
power, gain, throughput, and resolution, among other metrics.
Improvements in these metrics are often achieved by focusing
on new individual components and subsystems, resulting in
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better individual platform-based systems. However, limitations
of this platform-centric model, stemming from constraints on
size, weight, cost, and power consumption, make it increas-
ingly challenging to scale such performance metrics on a
single platform. To address this challenge, recent research
has focused on the development of distributed wireless tech-
nologies, where collections of small, relatively inexpensive
wireless systems are coordinated to mimic the performance
of a single, large system, or to achieve performance oth-
erwise unattainable with a single platform. Implemented in
Multiple Input Multiple Output (MIMO) [1]–[6] or distributed
beamforming [7]–[12] applications, such distributed wireless
systems enable direct performance scalability by adding or
removing inexpensive nodes from the array [13], [14].

Coherent distributed arrays (CDAs) are a particular form of
distributed wireless system where individual wireless elements
coordinate at the level of the radio frequency (RF) phase
to enable distributed beamforming [9], [15], [16]. Coordi-
nation of separate moving nodes is a challenging problem,
in which the following three fundamental coordination tasks
must be accomplished: frequency synchronization to ensure
all elements are operating at the same reference frequency
[17]–[20]; time alignment to ensure that there is sufficient
overlap of the information at the target destination [21]–[23];
and phase alignment to enable constructive interference at the
target. Phase alignment presents the most challenges due to the
extremely small tolerance to errors at microwave frequencies.
Past works approached this issue through closed-loop feedback
loops where a receiver co-located with the target location
provides information to the transmitting array, from which the
transmitters can determine how to adjust their relative phases
to converge to a phase-coherent state at the receiver. Among
these closed-loop approaches are one-bit feedback [24], [25],
three-bit feedback [26], primary-secondary synchronization
[9], receiver-coordinated explicit-feedback [27], reciprocity
where channel estimation is performed from signals sent by
the target receiver [28], [29], round-trip synchronization [30],
and two-way synchronization [31]. Although these feedback
methods are effective, they are restricted to applications where
reliable feedback can be provided by the destination. Nu-
merous situations arise where such feedback is not available,
particularly in cases where individual nodes in the array
do not have sufficient sensitivity to close a link to a base
station on their own. Furthermore, closed-loop architectures
are inherently unable to support wireless applications beyond
communications, such as remote sensing, imaging, and radar
where coherent feedback is generally not present.
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In this work, we present what is, to the best of our knowl-
edge, the first open-loop distributed beamforming system using
a scalable, high-accuracy ranging waveform with more than
two transmitting nodes. The ranging waveform is based on a
two-tone stepped-frequency waveform that supports ranging
to multiple nodes simultaneously. We demonstrate the use of
this waveform in an open-loop distributed transmitter array
consisting of three separate 1.5 GHz transmitters. One node is
designated as the primary node, with the two additional sec-
ondary nodes performing high-accuracy ranging from which
the secondary nodes implement a phase-coherent transmission
to cohere at a separate receiver. We demonstrate coherent
signal summation at end-fire orientation that is maximally
impacted by range-induced phase errors and thus represents
the most challenging beamforming case. The results of this
work may be combined with wireless frequency synchroniza-
tion techniques [17]–[20] for fully wireless beamforming. In
Section III we describe the waveform parameters associated
with internode localization followed by Section III-A where
the hardware setup associated with both the primary and
secondary nodes is discussed. Section IV reviews the tolerance
of gain degradation due to errors in position and explores
the inherent uncertainty that is present in the localization
waveform. Methods for improvement in localization, such as
retransmit gain from the primary, matched filtering, interpo-
lation, and Kalman filtering, and are discussed in Section V
followed by a discussion of the measurements incorporating
dynamic phase shifting to implement distributed beamforming.

II. OPEN-LOOP DISTRIBUTED BEAMFORMING MODEL

Open-loop CDAs (i.e. feedback-free distributed arrays) are
types of CDAs where feedback from the destination location
is not leveraged, thus the array self-coordinates to a phase-
aligned state [16], [32]. To achieve phase alignment and
implement a phase-based beamsteering operation, the relative
positions of the individual nodes must be known to within
a fraction of the wavelength of the beamforming frequency.
Previous works have shown that these internode ranging mea-
surements must have accuracies of less than λ/15 to have no
more than 0.5 dB reduction in coherent gain with a probability
of 90% [16], [33]. To operate in the microwave range this
calls for accuracies on a sub-centimeter level. Furthermore,
this accuracy must be obtained before the nodes move out of
coherence due to array dynamics. This has been achieved in
the past using optical systems but such systems are not easily
scalable and require accurate tracking and pointing for each
node connection [34]–[36]. We have previously shown that
spectrally-sparse waveforms can achieve near-optimal ranging
accuracy, and can be designed to support simultaneous ranging
between multiple nodes, while using a microwave link that
does not require accurate pointing and tracking [37]. This
method of phase adjustment through localization for open-
loop arrays presents a much more general approach than that of
closed-loop systems, enabling applicability to situations where
array gain is necessary to initialize the link and to sensing
applications where coherent feedback is not available.

The received signal in the far field from an array of N
arbitrarily placed transmitting nodes can be represented by

sr(t) =
N∑

n=1

hnAn(t− δt(n))ej[2π(f+δf(n))t+ϕs,n−ϕc,n+δϕ(n)]

(1)
where hn is the complex valued coefficient representing the
propagation channel between the destination and the nth
node, which includes multipath impacts and antenna phase
differences, An is the signal amplitude of the nth signal,
δt(n) represents the timing error, f is the nominal center
frequency, δf(n) is the frequency error, ϕs,n is the phase
shift, ϕc,n is the correction applied to the phase shift which
can be obtained through nodes localization, and δϕ(n) is the
instantaneous frequency and phase errors which is the result
of multiple factors. Of the many factors that impact distributed
beamforming performance, the ability to accurately estimate
the necessary internode phase to achieve coherent summation
of the transmitted signals to a desired angle is among the most
fundamental. A number of prior works have focused on time
alignment and frequency transfer, as noted above; here, we
focus on the ability to estimate the necessary phase between
nodes to achieve coherent beamforming from measurements
of the internode range. This represents a fundamental co-
ordination aspect that is necessary for open-loop distributed
beamforming. In coordination with other approaches for time
and frequency synchronization, the work herein represents a
foundation for open-loop distributed beamforming systems. In
presence of beamforming phase errors derived from estimating
the internode range, the received signal model (1) can be
reduced to

sr(t) = C
N∑

n=1

ej(2πft+ϕs,n+ϕn) (2)

where C =
∑N

n=1 hnAn(t), and ϕs,n is the delay imparted at
node n by the node separation, given by

ϕs,n = 2πf dn

λ cos θ, (3)

λ = c
f is the wavelength with c the speed of light; and ϕn is

the phase correction with errors given by

ϕn =
2π

λ
(dn + δdn) cos θn (4)

where δdn is error in localization, θn is the error in beam-
steering angle. Here we consider the most challenging case
in terms of ranging errors with end-fire beamforming, where
θn = 0 and thus ϕn = 2π

λ (dn + δdn).
A perfectly aligned system would produce an ideal signal

given by

si(t) = C
N∑

n=1

ej(2πft−
2π
λ dn). (5)

To evaluate the effects of localization errors on the power of
the beamformed signal, the power of the signal with errors (2)
is evaluated relative to that of the ideal signal (5) by

Gc =
|srs∗r |
|sis∗i |

(6)
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Fig. 1. Probability of obtaining coherent gain above 90% (P (GC ≥ 0.9)) for
various array sizes versus standard deviation of internode range error for the
special case of end-fire configuration. As array becomes large, the threshold
for P (GC ≥ 0.9) = 1 approaches λ/20.

Fig. 2. Distributed antenna array topology using a primary-secondary ranging
approach.

The standard deviation of the error term σd was varied and the
probability of exceeding a particular threshold P (GC ≥ X),
where 0 ≤ X ≤ 1, was determined through 100,000 Monte-
Carlo simulations. In this work we consider the coherent gain
to be greater than 90% of that of the ideal array (X = 0.9). We
previously showed that as the array size increases, obtaining
P (GC ≥ X) requires ranging errors of λ/15 or less for
arbitrary steering angles [16], [33]. For the more stringent
end-fire case, this requirement is closer to λ/20, as shown in
Fig. 1, where the result of 10,000 Monte Carlo simulations is
shown for P (GC ≥ 0.9). For microwave and millimeter-wave
beamforming frequencies, this requirement leads to ranging
accuracies on the order of mm.

III. RANGE ESTIMATION WAVEFORM

The array design in this work is based on a primary-
secondary internode ranging architecture. A diagram of this
type of array design can be seen in Fig. 2. Because the
relative ranges between nodes is of importance, each node
in the array must perform a ranging measurement between
another node such that the array forms a connected graph.

Each node can then implement a beamforming operation in a
pair-wise manner [16]. After estimating the baseline d between
the nodes, the phase at the node performing the measurement
is updated by

ϕs = 2πf d
λ cos θ, (7)

In this work, we demonstrate coordination in a linear array; ex-
tensibility to general array layouts further requires estimation
of the angle of each secondary node to the primary. Angle-of-
arrival (AOA) methods have been explored in literature [38],
the most notable of which are MUSIC [39] and ESPRIT [40].
We focus exclusively on the ranging challenge in this work,
however additional error terms that arise from angle estimation
along with beamforming to arbitrary directions can be included
in a total error budget [16].

To address the internode ranging (i.e. the term d in (7)), we
previously investigated the use of spectrally-sparse waveforms
for high-accuracy ranging, showing that a two-tone waveform
obtains near-optimal ranging accuracy [41], [42]. Addressing
the ambiguity challenges with a simple two-tone waveform, we
previously investigated scalability approaches by developing
a two-tone stepped-frequency waveform (TTSFW) [37], how-
ever it was found that the range estimates from direct matched-
filtering of the ranging waveform varied upon relatively fast
movement of the nodes with a magnitude too great for
reliable beamforming. This work expands on prior work by
implementing a Kalman filter to improve the robustness of the
range measurement, and demonstrating the ability to maintain
a steered beam when the nodes are moved.

The TTSFW waveform consists of a two-tone waveform
that is pulse-modulated, with a change in carrier frequency in
each successive pulse. The baseband waveform can be written
as

s(t) =
1

N

N−1∑
n=0

rect
(
t− nTr

T

)(
ej2πf1t + ej2πf2t

)
ej2πnδft

(8)
where f1 is the lower of the two tones per pulse, f2 is the upper
tone, δf is the frequency step, N is the number of pulses, T
is the waveform duration, and Tr is the active portion of the
pulse (i.e. T multiplied by the duty cycle). The frequency step
can be given by

δf =
BW

2N − 1
(9)

where BW is the total waveform bandwidth. The upper fre-
quency in each two-tone pulse is then given by f2 = f1+∆f
where

∆f = Nδf (10)

The waveform is generated such that N ! is greater than or
equal to the number unique connections between the primary
and all secondary nodes in the array. This ensures that every
secondary node has a unique pulse signature, which allows
for simultaneous measurements utilizing the same bandwidth
with minimal interference. This baseband waveform is then
upconverted to a carrier frequency fc, which is in general
different from the beamforming carrier frequency f .

In the case of a two-node array, consisting of a primary
node and a single secondary node, only a single pulse N = 1
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is required since only a single unique connection is made.
Fig. 3 shows an example implementation of this waveform in
the time and frequency domains. For this case the baseband
waveform had a duration of 1 ms with a 50% duty cycle
and frequencies f1 = 500 kHz and f2 = 11.5 MHz, which
matches the bandwidth that has been demonstrated to obtain
high ranging accuracy [37].

In the case of a three-node array, consisting of a primary
node and two secondary nodes, there are two unique connec-
tions and therefore a multipulse system is required such that
N ≥ 2. We demonstrate here a waveform supporting more
than three nodes, with N = 5 to illustrate the scalability. An
image of the waveform in the time domain and frequency
domain can be seen in Fig. 3. The time duration of the base-
band waveform was 200 µs per pulse with a 50% duty cycle,
frequencies f1 = 500 kHz and f2 = 5.5 MHz, and a step sized
of δf = 1 MHz. To ensure that each connection has a unique
pulse signature, one secondary node begins its waveform with
the pulse containing the lowest frequency pair of tones and
then increases the frequencies by the frequency step, while
the second secondary node begins with the pulse with the
highest frequency pair and then decreases the frequencies by
the frequency step. The pulse labels in Fig. 3(b) given by
Pulse a− b indicate the pulse order relative to the secondary
nodes such that the index a is associated with secondary
node one while b is associated with secondary node two.
This approach to unique pulse-to-pulse signatures per node is
easily extendable: each secondary node is assigned a unique
permutation of the pulse sequence, e.g. δf → 4δf → 2δf →
3δf → 5δf . The secondary node applies its matched filter to
this stepped frequency sequence. The approach thus supports
N ! connections for each primary node. Generally, two-tone
ranging waveforms suffer from high time-sidelobes, leading
to challenges with disambiguation [43]. However, the TTSFW
inherently disambiguates the N nearest sidelobes [37], making
disambiguation a less challenging prospect. In this work, no
additional disambiguation methods were necessary, however,
implementations with fewer pulses may require additional
processing.

A. Ranging Requirements for Open-Loop Distributed Beam-
forming

Inherent uncertainly is present in any system that attempts
to estimate a parameter due to the presence of random noise. A
measure of the lower bound on the variance or stability of an
unbiased estimate of a random variable is given by the Cramer-
Rao Lower Bound (CRLB), which for time delay estimation
is given by [41]

var(τ̂ − τ) ≥ 1

2E
N0

(
ζ2f − µ2

f

) (11)

where E is the signal energy, N0 is the noise power per
unit bandwidth, ζ2f is the second moment of the frequency
spectrum or the mean-squared bandwidth of the waveform,
and µ2

f is the first moment of the frequency spectrum. The
term E/N0 = Tr ×BWn × SNR, where Tr is the non-zero
time duration of a ranging pulse, BWn is the noise bandwidth,

(a)

(b)

Fig. 3. Measured waveform supporting ranging between five nodes: (a) time
domain; (b) frequency domain.

and SNR is the preprocessing signal-to-noise ratio. Since that
the spectrum of the TTSFW is symmetric about the mean, µ2

f

is zero. The time delay variance (11) can be converted to the
two-way range variance by

var(x̂− x) ≥ c2

8E
N0

ζ2f
(12)

where the factor of 4 derives from the two-way propagation
seen by typical radar measurements. Thus, (12) gives a mea-
sure of the minimum amount of positional variability that
can be obtained for a given waveform. For a given SNR, the
achievable variance is directly dependent on the mean-squared
bandwidth, given by [41]

ζ2f =

∫∞
−∞(2πf)2|S(f)|2df∫∞

−∞ |S(f)|2df
(13)

where S(f) is the spectrum content of the waveform. This can
be derived for the TTSFW as [37]

ζ2f = π2

(
BW

2− 1
N

)2

+
(2πBW )2

N(4N2 + 4N + 1)

N−1∑
n=0

n2 (14)

For a given number of pulses N , ζ2f is maximized when
the bandwidth BW is also maximized and thus providing
the minimum variance. This is the driving motivation behind
spectrally sparse waveforms as a method for localization. The
mean-square bandwidth for the two waveforms described in
Section III can be derived as

ζ2f,2 node

∣∣∣
N=1

= π2BW 2 = 1.942× 1015 (15)

ζ2f,3 node

∣∣∣
N=5

=
507π2BW 2

1000
= 6.0547× 1014 (16)
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We evaluate the lower bound on delay estimation for the
two waveforms considering an SNR of 30 dB; this closely
matches the SNR in typical cooperative ranging measurements
in distributed arrays. We note that, unlike a traditional radar
ranging measurement which undergoes propagation losses in
both directions, the cooperative ranging implemented in a
distributed antenna array only suffers losses in one direction,
since the primary node is repeating the signal with gain. Thus,
relatively high SNR values are feasible. The processing gain
resulting from the matched filter process, a method for time
delay estimation, is equivalent to the time-bandwidth product
of NTrBWn, where N is the number of pulses in TTSFW.
Since no additional filtering outside the analog bandwidth
of the system is used, BWn is equal to the sampling rate
25 MHz. If the received signals are processed with a carrier
frequency offset f0, which may be an intermediate frequency
after heterodyne downconversion, the CRLB is modified by
ζ2f → ζ2f + ζ2f0 , where ζ2f0 = (2πf0)

2 in (14), (15), and (16).
The center frequency of the sampled ranging waveform in this
work has an intermediate frequency offset of f0 = f1+f2

2 . For
f1 = 500 kHz and f2 = 11.5 MHz, ζ2f0 = 1.421 × 1015,
theoretically reducing the CRLB by about half. However,
the term ζ2f0 is dependent on the offset frequency of the
sampled received signal, and thus requires higher SNR to
unambiguously estimate with high accuracy. Generally, the
bandwidth factor ζ2f determines the lower bound for moderate
SNR [44].

In the experiments discussed later, we used Tr = 250 µs in
a two-node measurement, thus the processing gain was 38 dB
resulting in a post processing SNR of 68 dB. Using (11), the
bound on the variance of the time delay can be derived as
σ2
τ = 3.059 × 10−23 s2 which can be converted to the two-

way distance standard deviation of σx = 830 µm. The distance
uncertainty sets the maximum operation frequency that can be
achieved by

f ≤ c

20σx
(17)

where σx is the standard deviation of the two way distance
measurement and the factor of 20 derives from the coherent
gain statistical analysis for the end-fire array configuration.
For this case the resulting maximum frequency limit is
f2 node ≤ 18.08 GHz. For experiment conducted using three
nodes, NTr resulting from the summation of all the pulses
was equal to 500 µs, yielding a processing gain of 41 dB
resulting in a post processing SNR of 71 dB. The bound on the
variance of the time delay was thus σ2

τ = 1.974×10−23 s2, and
the distance standard deviation σx = 666 µm. The maximum
operational frequency for the three node is thus derived to be
f3 node ≤ 22.51 GHz.

In practice, these estimated lower bounds are not usually
achievable due to many factors such as discretization-related
errors, interpolation errors, system imperfections, and inter-
ference, among others. Experimental measurements of the
ranging accuracy yielded a distance standard deviation for a
two-node system (one pulse) equal to σx = 950 µm, which
allows a maximum frequency limit of 15.79 GHz. For a three-
node system (two pulses), the measured ranging standard

Fig. 4. Block diagram of the Kalman filter used for range estimation
refinement with moving nodes (values are specified in the main text).

deviation was σx = 850 µm , which allows a maximum
frequency limit of 17.65 GHz.

IV. RANGE ESTIMATION REFINEMENT FOR NODE MOTION

Phase alignment of the operational frequencies to produce
a phase coherent signal at the target destination is done by
estimating the range between the primary node and the corre-
sponding secondary node and applying the appropriate phase
shift. For this experiment, the ranging signals are transmitted
from the secondary node(s) to the primary node where a
repeater captures the signals, amplifies them, and retransmits
them back. The center frequencies of the transmit and receive
of the repeater are separated by 1 GHz. By doing this, the
propagation losses are proportional to 1/R2 rather than 1/R4

which is seen by typical radar measurements. This will also
ensure that the desired signal will dominate any multipath and
most of the crosstalk can be neglected. After the ranging signal
is received, the secondary node estimates the time of flight by
matched filtering the return signal. The peak of the matched
filter is spline interpolated in real-time in LabVIEW with a
thousand points to improve the accuracy.

The matched filter output peak value is tracked using a
1-D Kalman filter. A Kalman filter gives the optimal state
estimation for linear systems in the presence of Gaussian noise
[45]. The model of the filter, shown in Fig. 4, is

x̂n = x̂n−1 +Kn(zn − x̂n−1) (18)

where x̂n is the prediction of the current state, x̂n−1 is the
prediction of the previous state, zn is the measurement at the
current state, and Kn is the current state Kalman gain given
by

Kn =
σ2
n−1

σ2
n−1 + σ2

M

(19)

where σ2
n−1 is the previous state uncertainty and the measure-

ment variance σ2
M = 3×10−5 is determined by measuring the

variance of 1000 peak values. The current state uncertainty is
then updated by

σ2
n = (1−K)σ2

n−1 + σ2
c (20)

where an additional constant uncertainty of σ2
c = 5× 10−6 is

added to model the array dynamics seen in the matched filter
output. This is to model the internode range of the system as
a constant value with a small, random perturbation to account
for both positive and negative radial motions at random time
instances. The experiments in the following section have
induced motion that is proportional to the wavelength of the
1.5 GHz coherent frequency (20 cm), which is roughly 2% of
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the sampling interval of the matched filter at 25 MHz (12 m).
Since this induced motion is very small compared to the
discretization of the matched filter, this acts like a fluctuation
on an otherwise constant value and therefore a 1-D Kalman
filter is sufficient. However, if the motion is much larger
than a fraction of the matched filter sampling rate, resulting
in discontinuities in the matched filter output, the Kalman
filter will diverge. If this is the case other techniques such
as a higher dimensional Kalman filter to measure velocity
and acceleration, such as an extended Kalman filter (EKF)
[46]–[48] to linearize the discontinuities or an unscented
Kalman filter (UKF) [49]–[51], may be needed. The time
delay estimate found from the output of the Kalman filter is
converted to a phase shift of the operational frequency. This
phase shift is then applied to the beamforming carrier signal
on the secondary node. Thus, as the primary and secondary
nodes change their relative positions, the outputs remain phase
locked at the target location.

V. DISTRIBUTED ANTENNA ARRAY AND OPEN-LOOP
DISTRIBUTED BEAMFORMING EXPERIMENTS

The architecture investigated in this work is based on a
single primary node and multiple secondary nodes. As the
objective is to demonstrate the ability to simultaneously mea-
sure internode range between multiple nodes with sufficient
accuracy to support beamforming, we use continuous-wave
transmitted signals, and we lock the reference oscillators via
cable. Wireless frequency alignment can be implemented in
various ways for a fully wireless system [18]–[20]. An image
of the block diagram of the primary and secondary nodes can
be seen in Fig. 5 (a) and (b) respectively. Each node consisted
of two Ettus X310 SDRs, each of which was connected to
one host computer running Windows 7 with 32 GB of RAM
via 10 GB Ethernet cables. The X310 SDRs utilized two
UBX 160 daughterboards which have operational bandwidths
from DC to 6 GHz with an instantaneous bandwidth of up
to 160 MHz. These daughterboards support complex up- and
down-conversion for in-phase and quadrature mixing as well
as internal amplification equivalent to 30 dB and 33.5 dB for
the transmit and receive sides, respectively. A block diagram of
the X310 RF chain can be seen in Fig. 6. The SDRs interfaced
with the host computer using using LabVIEW 2018 where
a maximum sampling rate of 25 MHz was possible which
was limited by the data throughput between LabVIEW and
the SDRs, restricting the maximum achievable instantaneous
single-sideband bandwidth to 12.5 MHz.

One SDR on each node transmitted the signal for distributed
beamforming. The second SDR was used to either implement
ranging to the primary node, or, on the primary node, to
capture and retransmit any incoming ranging signals from the
secondary nodes. Each secondary node transmits a version
of the ranging waveform with a distinct stepped-frequency
pattern. The primary node repeats any incoming signals in
a continuous manner (i.e. no time scheduling was required).
Each secondary node then processes the received signal via
matched filter followed by the Kalman filter refinement step.
The experiments described below yielded SNR values of

Fig. 5. Block diagrams of the nodes used in the experimental system.

Fig. 6. RF chain internal to each of the X310 SDRs. Clk: clock. Tx: transmit.
Rx: receive. U/C: upconverter. D/C: downconverter. PLL: phase locked-loop.
G: gain. NF: noise figure.

approximately 30 dB, which were determined using an eigen-
value decomposition approach [33], [52]. The secondary nodes
then calculate the range, from which the relative phase of the
beamforming carrier frequency was updated based on (7).

The beamforming signals were transmitted from each node
at a carrier frequency of 1.5 GHz using 1.35-9.5 GHz ultra
wideband log periodic antennas. Transmission of the ranging
signals from the secondary nodes was implemented at a carrier
frequency of 4.25 GHz and after reception at the primary
node, the ranging waveforms were retransmitted at a carrier
frequency of 5.25 GHz, providing frequency diversity to
mitigate the crosstalk and multipath. The beamformed signals
were captured on a Keysight MSO-X 92004A oscilloscope.
The levels of the individual signals were also recorded at each
location by selectively turning on individual transmitters.

We implemented the ranging method in a three-node open-
loop beamforming system. To our knowledge, this was the first
open-loop distributed beamforming demonstration with more
than two transmitting nodes. The array was oriented in an end-
fire configuration, again to demonstrate the most challenging
beamforming case. The setup is shown in the diagram of
Fig. 7(a), where the red colored signals indicate the ranging
signals and the blue signals represent the beamforming signals.
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(a)

(b)

(c)

Fig. 7. (a) Block diagram of the distributed three-node experiment. (b) Image
of the experimental setup in the semi-enclosed arch range. (c) Measured results
showing the beamforming performance with and without performing range-
based phase correction.

Fig. 7(b) shows the experimental system in a semi-anechoic
chamber in the laboratory. The two secondary nodes were
separated by 0.6 m, with first secondary node at a distance
of 1 m from the receiving antenna. The primary node started
at a distance of 1 m from the second secondary node. The two
secondary nodes were stationary, and transmitted signals to the
primary node, which captured, amplified, and retransmitted
back these signals. No time scheduling was used for the two
secondary nodes; the stepped-frequency waveform supported

TABLE I
COMPARISON OF DISTRIBUTED TRANSMIT BEAMFORMING

DEMONSTRATIONS CONSISTING OF N > 2 TRANSMITTING NODES.

Method Frequency BF/Ca Coherent Gainb Ref.
Closed-loop 900 MHz 100%c ≈ 74% [24]
Closed-loop 964 MHz 100%c > 95% [25]

Retrodirective 910 MHz 99.95% > 97% [27]
Retrodirective 915 MHz ≈ 4% > 90% & 97% [29]
Open-Loop 1500 MHz 100%c > 95% This work

aBeamforming duration per cycle.
bAverage value for amplitude coherent gain.
cSeparate band(s) used for synchronization.

simultaneous multinode operation thus no scheduling was
required. The primary node was moved in 2.5 cm increments
for a total range of 20 cm. At each distance, 100 snapshots
containing fifteen cycles of the 1.5 GHz signal were captured.
The resulting 1,500 peak values were again averaged to give
the measured amplitude at each distance.

The measured results of the three-node experiment are
shown in Fig. 7(c). Here the two secondary nodes’ individual
amplitudes were constant since the secondary nodes were sta-
tionary. The uncorrected beamforming measurement showed
a clear null, dropping to 7% of the total achievable amplitude
when the primary node was in a location causing destructive
interference. When the ranging system was utilized, the system
maintained a high-gain beamforming signal, achieving coher-
ent gain consistently above the 90% threshold, with average
coherent gain above 95%.

VI. CONCLUSION

Distributed beamforming in open-loop systems requires
scalable, high-accuracy coordination. Internode range estima-
tion represents one of the fundamental coordination tasks nec-
essary for open-loop beamforming, and is arguably the most
challenging considering the error tolerances for microwave and
millimeter-wave systems. The approach demonstrated in this
work utilizes time of flight estimations whose accuracy was
maximized by a one dimensional Kalman filter to enable real
time dynamic phase adjustments for mobile open-loop beam-
forming arrays. Using this approach, multinode beamforming
on platforms with relative motion was demonstrated without
receiver feedback. This method provides a solution for scal-
able, high-accuracy localization that can support distributed
beamforming between multiple nodes at transmission frequen-
cies relevant for numerous wireless applications. Combined
with wireless frequency synchronization and time alignment,
fully open-loop distributed beamforming will be possible on
future distributed wireless systems.
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