Manuscript

Morpholinos do not elicit an innate immune response during early

Xenopus embryogenesis

Kitt D. Paraiso^{1,2}, Ira L. Blitz¹, Jeff J. Zhou¹, Ken W.Y. Cho^{1,2,3,*}

¹ Developmental and Cell Biology, University of California, Irvine

² Center for Complex Biological Systems, University of California, Irvine

³ Lead Contact

*Correspondence: kwcho@uci.edu

SUMMARY

Gentsch et al. (2018) recently reported that a common side effect of translation-blocking morpholino

antisense oligonucleotides is the induction of a set of innate immune response genes

in Xenopus embryos, and that splicing-blocking morpholinos lead to unexpected off-target mis-splicing

events. Here we present an analysis of all publicly available Xenopus RNA-seq data in a reexamination of

effects of translation-blocking morpholinos on the innate immune response. Our analysis does not

support the authors' general conclusion, which was based on a limited number of RNA-seq datasets.

Moreover, the strong induction of an immune response appears to be specific to the tbxt/tbxt2

morpholinos. The more comprehensive study presented here indicates that using morpholinos for

targeted gene knockdowns remains of considerable value for the rapid identification of gene function.

Keywords: translational blocking morpholino, innate immune response, *tbxt*, *brachyury*, loss of function,

reverse genetics, gene knockdown, Xenopus, zebrafish

INTRODUCTION

Morpholino antisense oligonucleotides (MO) have been used widely for nearly two decades in both the *Xenopus* and zebrafish research communities to transiently knockdown the function of targeted genes (Heasman et al., 2000; Nasevicius et al., 2000). The method is relatively inexpensive and quite rapid, as the analysis of morphants can be directly performed in injected F0 embryos. However, use of MOs in zebrafish was suggested to induce unwanted side effects including the induction of cell death in the nervous system and expression of *tp53* transcripts derived from an alternative promoter (Robu et al., 2007), whereas no evidence of such issues has been reported in *Xenopus* or other species. In addition, the appropriateness of MOs as a loss-of-function (LOF) tool has been questioned, because the majority of phenotypes resulting from a subset of MO knockdown experiments in zebrafish were not seen in corresponding genetic LOF mutants (Kok et al., 2015). Others have suggested that these differences could be explained by genetic compensation in LOF mutants (Rossi et al., 2015). The utility of MOs as a genetic tool has been met by opposing views in both *Xenopus* and zebrafish (Blum et al., 2015; Stainier et al., 2015).

In the January 2018 issue of *Developmental Cell*, a report using RNA-seq analysis suggested that a side effect of the use of translation-blocking MOs targeting *tbxt/brachyury* paralogs in *Xenopus tropicalis* embryos caused induction of a significant number of genes involved in the innate immune response, and that injection of splice-blocking MOs led to off-target splicing defects (Gentsch et al., 2018). This study examined a limited set of published RNA-seq datasets from MO-mediated LOF and concluded that the induction of an innate immune response by translation-blocking MOs is a *common* side effect. The earliest time point whereby embryonic cells can induce an innate immune response is unclear. Induction of innate immune response related genes *tp53*, *tp53inp1* and *c3ar1* by MOs in RNA-seq datasets generated as early neurula stage/stage 14 suggest that relevant immune cells might not be required as migrating myeloid progenitor and hemangioblast progenitor cells only appear at stage 14 and stage 18, respectively (Briggs et al., 2018). This study suggested that this immune response is cell intrinsic and can be activated in all embryonic cells; and that this initiates at least as early as neurula stage. We are interested in the function of maternal effect gene products in early stage embryos and these proteins are

synthesized from spliced mRNAs deposited in the egg during oogenesis. Therefore we re-examined whether translation blocking MOs cause induction of innate immune genes, and not whether spliceblocking MOs result in off-target mis-splicing. Because the published genome-wide analysis was based only on a limited number of MO knockdown experiments, we wished to address whether the effects of MOs on an innate immunity response are indeed a common occurrence. Since the previous analysis was restricted to embryos of mid-neurula and later stages, we also wanted to determine whether induction of an innate immune response occurs in the period between the onset of zygotic transcription and neurula stages. The question is fundamentally important, as both the Xenopus and zebrafish research communities have used MOs to uncover the function of many genes. Contrary to Gentsch et al., our analysis of 54 publicly available Xenopus MO knockdown datasets with their corresponding control datasets demonstrates that cohorts of Xenopus innate immune response genes are not commonly activated by translation-blocking MOs, but we did find infrequent activation of a few genes reported. Based on currently available transcriptomic datasets, we suggest that the strong effects observed by Gentsch et al. are confined to the use of tbxt/tbxt2 (formerly known as t/brachyury and t2/brachyury2), and that the use of translation-blocking MOs remains a useful approach to uncovering the biological function of genes during early Xenopus embryogenesis.

RESULTS

Strong induction of *tp53*, *tp53inp1*, and *c3ar1* genes is confined to the injection of *tbxt/tbxt2* MO oligonucleotides

To validate the results by Gentsch et al. (2018) we first searched for all current publicly available *X. tropicalis* and *X. laevis* RNA-seq datasets in the NCBI Sequence Read Archive (SRA), the European Nucleotide Archive (ENA), and the DNA Databank of Japan Sequence Read Archive (DRA) for data involving MO knockdown experiments. We found 16 projects comprised of 48 *X. laevis* and 91 *X. tropicalis* RNA-seq datasets (Table S1). All 16 projects used MOs except for the Gazdag et al. (2016)

datasets, which used alternative stabilized antisense oligonucleotides. Among the 16, 10 projects (Kwon et al., 2014; Chiu et al., 2014; Yasuoka et al., 2014; Marlétaz et al., 2015; Dichmann et al., 2015; Nakamura et al., 2016; Campbell et al., 2016; Noiret et al., 2016; Ding et al., 2017; Gentsch et al., 2018) contained experiments where the GeneTools standard control or experimental MO injected sample could be compared with a non-MO injected control (i.e., uninjected or water injected). We used only the datasets that had these controls for our analysis. The extent of our analysis includes morphant sequencing datasets ranging from stage 9 through stage 36, encompassing those experiments analyzed by Gentsch et al. from stage 14 through stage 36. A majority of the sequencing datasets we analyzed overlapped with stages analyzed by Gentsch et al. during neurula (N = 18), early tailbud (N = 14) and late tailbud (N = 6). We extended the analysis to early embryogenesis by including datasets from blastula (N = 2) and gastrula (N = 14) stages.

Among the innate immune response genes induced by MOs, the expression of *tp53inp1*, *tp53*, and *c3ar1* were those most extensively studied in Gentsch et al., and therefore we sought to reproduce their results in our initial analyses by examining the expression of each of these genes in the newly collected MO knockdown data (Figure S1). Gentsch et al. reported that these three genes were induced not only following an injection of a *tbxt/tbxt2* quadruple MO cocktail (Figure 1A), but also after control MO injection, although the inductions were weaker than in the *tbxt/tbxt2* MO injections. To further validate these results, we performed our own microinjections of the standard control MO into *X. tropicalis* embryos in biological replicates. Contrary to their findings, RT-qPCR shows that *tp53* and *tp53inp1* are generally not induced across all biological replicates, regardless of developmental stage (Figure 1B). *c3ar1* induction, on the other hand appears consistent with the published findings.

We then examined the expression of these genes among all other available *X. tropicalis* and *X. laevis* datasets and found that the inductions of *tp53inp1* and *tp53* were clearly weaker than in the expression data reported by Gentsch et al., i.e., mean inductions < 1.5-fold. For *c3ar1*, the mean induction was < 2-fold (Figure 1C, D). Because we aligned the reads to the version 9 *X. tropicalis* genome assembly using Bowtie2 and RSEM while the published study aligned to the version 7 assembly using STAR, we also

examined the possibility that discrepancies between conclusions might have arisen based on the use of different bioinformatics analysis protocols. The fold changes reported in Gentsch et al. were comparable to those in our experiments, with the exception of *X. laevis c3ar1.L* (the *c3ar1* homeologous gene copy found on the long chromosome subset of the allotetraploid *X. laevis* genome). This difference with *c3ar1.L* was likely due to its low expression levels in the *exosc9* MO experiment, resulting in high variance in fold change quantitation (Table S2). Overall, our experiments and meta-analysis of public RNA-seq datasets suggest that there is no induction of *tp53* and *tp53inp1*, while the induction of *c3ar1* is variable.

A cohort of innate immune response genes are not commonly activated by morpholino oligonucleotides

As we find little evidence of an innate immune response by assaying for the expression of *tp53inp1*, *tp53*, and *c3ar1*, we wondered whether we could detect this biological process from the transcriptomic datasets by looking at a larger cohort of genes. Because a list of the innate immune response genes in *Xenopus* was not available in the Gentsch et al. paper, we performed differential expression analysis using the same software and parameters as used in their study. We compared available RNA-seq datasets from *tbxtltbxt2* morphants and *tbxt^{-/-};tbxt2^{-/-}* mutant embryos and identified 1,154 genes that were specifically activated in the morphants compared to their respective controls. Among these genes, Gene Ontology (GO) analysis identified three innate immune response-related terms: 'innate immune response' (GO:0045087), 'regulation of innate immune response' (GO:0045088), and 'positive regulation of innate immune response' (GO:0045089). We combined the genes corresponding to these three GO terms and generated two gene lists (one for *X. tropicalis* and the other for *X. laevis*, Table S3), and used these lists for subsequent analyses. The 77 *X. tropicalis* and 120 *X. laevis* lists are comprised of genes involved in various subsystems of the innate immune response including complement system genes such as *c1r*, *c1s*, *c3*, *c4a*, and *c9*; the signaling molecule *nfkb1* (which regulates cytokine production); and interferon regulatory transcription factor genes such as *irf1*, *irf7*, and *irf9*.

We then determined whether any of the other publicly available RNA-seq datasets involving MO experiments showed activation of the genes from our combined list for *Xenopus* innate immune response discussed above. These innate immunity genes are generally not activated in either the *X. tropicalis* or *X. laevis* datasets when a 1.5-fold expression level difference is used as a cutoff value (Figure 2A,B). While a few datasets showed statistically significant activation, that was not a consistent occurrence among biological replicates. On the contrary, and as expected, the majority of the *tbxt/tbxt2* datasets did show an up-regulation of the cohort of innate immunity genes in stage 26 and stage 34 embryos (Figure 2C). The standard control MO injection at stage 34 displayed a weak up-regulation that, while the median was < 1.5 fold, was nevertheless statistically significant (Figure 2C). We conclude that gene cohort analysis using the GO-identified genes does not detect statistically significant induction of innate immune response genes resulting from the injection of MOs.

The analysis we performed thus far might not provide a complete view of the induction of innate immune response genes. Large cohort analysis can carry a risk of minimizing the contributions of specific genes in the analysis pipeline. Additionally, the innate immune genes induced in tbxt/tbxt2 morphants might be inductions specific to this MO cocktail, but might not reveal a set of innate immune genes that are induced by other MOs. Therefore, we employed two additional analyses. First, because Robert and Ohta (2009) had provided an annotated list of innate immune response genes conserved between mammals and Xenopus, we worked from that list to identify corresponding gene models in the X. tropicalis v9.0 and X. laevis v9.2 genome assemblies by means of both gene name matching and BLAST alignments. That analysis identified a set of 53 X. tropicalis gene models and 81 X. laevis gene models. The lists included categories such as leukocyte receptors, signaling molecules, cytokines, cytotoxic killing genes, antibacterial peptides, and the complement system (Table S3). When these lists were compared with the set of genes from the previous GO-identified cohort, only 13/53 of X. tropicalis and 15/81 X. laevis gene models overlapped. Therefore, using the Robert and Ohta gene collection expands our analysis beyond the list derived from GO annotations. We then determined whether any of the innate immunity genes from the Robert and Ohta were induced in the available MO-injected datasets. We did not detect significant activation (p-value of < 0.01) of innate immunity genes with the exception of four samples (Figure 3A,B).

The literature-identified cohort of innate immune response genes was again seen to be most activated by the *tbxt/tbxt2* MO cocktail at stage 34, and less strongly at stage 26 (Figure 3C).

In a second analysis, we examined the list of differentially expressed genes from each of the available datasets to determine whether different subsets of innate immunity genes were significantly induced by different MOs. Analysis was performed on all datasets containing at least two replicates to obtain lists of genes that are differentially expressed in individual MO-injected samples relative to uninjected (or water injected) sibling embryos. We applied the same cutoff criteria described by Gentsch et al. (2018) of 1.5-fold change with an adjusted p-value of ≤ 0.1, to create these gene lists. GO enrichment analysis was then performed on each gene list. GO terms related to innate immune response are significantly enriched in the *tbxt/tbxt2* MO dataset at stage 34, but less significantly at stage 26 (Figure S2). The control MO from Gentsch et al. showed some enrichment of GO terms related to innate immune response at stage 34, but not at stage 26. When we performed similar differential expression analyses with all the other available datasets we were unable to detect any enrichment of GO terms related to innate immune response (Figures S3, S4). Taking these observations together with other analyses, we conclude that innate immune response induction is not a common feature of a MO-injected transcriptome. The robust induction of the innate immune seems to be specific to the *tbxt/tbxt2* MO. We did not observe the excessive induction of an immune response by control MO prior to stage 34 (Figure 2A, 2C, 3A, 3C).

tbxt/tbxt2 MOs are unusual in inducing a subset of innate immune response genes

GO term enrichment analysis did not reveal innate immune induction, with the exception of the *tbxt/tbxt2* MOs and control MOs (but only at stage 34). Therefore, we next examined whether individual genes other than *tp53inp1*, *tp53*, and *c3ar1* were consistently activated by MO injection. If MO injections generally induce innate immune responses, then a key set of innate immunity genes should be up-regulated across embryos injected with different MOs. We combined the GO-identified innate immune genes with those identified by Robert and Ohta (Table S3) and searched for genes meeting the following two criteria: a t-test p-value < 0.01, and a fold change up-regulation > 1.5. Among all the *X. tropicalis* datasets, five genes

(rab7b, riok3, irg1, ripk2, and c1s) in the GO-identified cohort and four genes (il1, c1q, c1s, and c5) in the Robert and Ohta cohort were up-regulated (Figure 4A,B). However, if the tbxt/tbxt2 MO datasets are removed from the analysis, none of these genes are upregulated in a statistically significant manner. These results indicate a strong contribution from the tbxt/tbxt2 datasets to the outcome. As this effect is not seen in other MO injection experiments, we suggest that the strong upregulation of select innate immune response genes is not a general phenomenon related to MO injection, but rather is a peculiarity associated with tbxt/tbxt2 datasets (Figure 1).

A similar analysis was performed for the five *X. laevis* MO datasets using the combined gene lists from the GO-identified genes and those identified by Robert and Ohta (Tables S3). Among these, activation of only two genes, *ptafr.L* (platelet activating factor receptor), *socs3.L* and *socs3.S* (suppressor of cytokine signaling 3), were statistically significant (Figure 4C,D). Neither of these were found in the analysis of the *X. tropicalis* datasets above. At present, the role of *Xenopus ptafr.L* in innate immunity is not well understood. Much of what is known about the *socs3* gene concerns its role during regeneration following wounding wherein *socs3* is induced after epithelial (Kuliyev et al., 2005) and retinal ganglion optic nerve (Whitworth et al., 2017) wounding, as well as in spinal cord (Lee-Liu et al., 2014) and limb (Grow et al., 2006) regeneration models. Thus, a common set of genes does not appear to be upregulated between *X. tropicalis* and *X. laevis* as part of an immune response.

DISCUSSION

The combined use of MOs and RNA-seq has become a powerful tool in assaying genome-wide functions of developmental genes. Particularly, as we are interested in establishing gene regulatory networks in the early embryo using these technologies, the findings by Gentsch et al. (2018) whereby MOs can induce innate immune response from early embryos, has been a cause of concern in the analysis of transcriptomic datasets. However, when we examined publically available RNA-seq datasets generated from multiple labs including our own, we find no compelling evidence that MOs cause an innate immune

response prior to late tailbud stages/stage 34. The only strong effects we identified appear to be particular to the *tbxt/tbxt2* quadruple MO experiments. Interestingly, Gentsch et al. have suggested that the induction of an immune response could be dependent on the GC content of MOs as stronger induction of innate immune response genes was detected with MOs having higher GC content. However, we note that our analysis using *foxh1* and *gsc* MOs having relatively high GC content, 60% and 56%, respectively, did not induce immune response genes during gastrula stages (compared to the standard control MO GC content of 32%). Therefore, we believe that MOs still remain a powerful knockdown tool with proper controls in assaying for gene function, especially combined with the use of RNA sequencing methods.

Stage dependence of an immune response

Because later stage samples from the standard control MO and *tbxt/tbxt2* MOs by Gentsch et al. showed induction (Figure 2A,C), this finding suggests that there is stage dependence in eliciting an immune response. Consistent with this finding, the standard control MO experiments by Marlétaz et al. (2015), Nakamura et al. (2016), and Yasuoka et al. (2015) which were performed at stage 14 or earlier, did not show a strong induction of innate immune response genes. Most of the available *Xenopus* datasets we analyzed had been generated on or prior to stage 14 except for three from *X. laevis*. But when we analyzed these three later-stage *X. laevis* datasets, one from stage 20 (*rfx2* MO) and two from stage 26 (*ptbp1* and *exosc9* MOs), none of the three showed any statistically significant induction of innate immune response genes (Figure 2C).

The lack of innate immune response in early embryonic stages is consistent with the biology of the early immune system in *Xenopus* embryos. Functional primitive myeloid cells are reported to be first detected during early tailbud stages (stage 26) (Costa et al., 2008). In addition, recent single cell RNA-seq datasets (Briggs et al., 2018) have shown that the initial appearance of migrating myeloid progenitor and hemangioblast progenitor cells occurs during neurulation, at stages 14 and 18, respectively. At present, it is unclear as to whether these progenitor cells are competent to perform immune-related functions during these stages. We note that our analysis largely considers the effects of MOs on embryos at neurula or

earlier stages due to the scarcity of transcriptomic datasets in later stages. Therefore, the induction of an innate immune response and the mechanism thereof during these later stages is still unknown.

Explaining the discrepancy

How then can we explain the discrepancy between our conclusions and that of Gentsch et al.? As shown here, the *tbxt/tbxt2* MO cocktail's effects are an outlier when compared to other MOs. While some MOs can up-regulate a small number of genes related to an innate immune response, a larger scale genomewide effect seen with the *tbxt/tbxt2* MOs is not seen in these other experiments.

Why are *c3ar1*, *socs3* and *ptafr*, genes associated with innate immune responses, up-regulated in some MO experiments? Of these three genes, when examining *X. tropicalis* RNA-seq datasets, only *c3ar1* is found to be up-regulated (after *tbxt/tbxt2* datasets are excluded from analysis), albeit in inconsistent manner. Interestingly, *c3ar1* expression is upregulated by MOs targeting mesodermally-active transcription factors during gastrula stages (e.g., Cdx1, Cdx2, Cdx4, Gsc), but not regulators of epidermal development during tailbud stages (e.g., Ptbp1, Rfx2, or Exosc9). Perhaps perturbation of TFs in the mesoderm leads to up-regulation of *c3ar1*, which is broadly expressed in this tissue during gastrula stages (McLin et al., 2008). C3ar1 is a chemotactic receptor that, along with its ligand, C3, plays a role in numerous developmental events where morphogenetic movements require chemotaxis. *c3ar1.L* is required for radial intercalation during epiboly and cohesive migration of neural crest cells (Carmona-Fontaine et al., 2011; Szabó et al., 2016). *c3ar1* (and *c3*) is also expressed in the developing eye, otic placodes, and in the presumptive liver of the tailbud embryo (McLin et al., 2008)., Thus, disruption of various processes during early development might result in induction of *c3ar1*, independent of this gene's role in innate immunity.

When analyzing *X. laevis* (Figure 4C-E), but not *X. tropicalis*, datasets, injection of *ptbp1*, *rfx2*, or *exosc9*MOs leads to up-regulation of both homeologs of *socs3*, and *ptafr.L*, but again only inconsistently. During normal development, *socs3* is expressed at tailbud stages in neural tube, neural crest cells, the dorsal

epidermis, and somites, suggesting a developmental role for this factor in these ecto- and mesodermal derivatives (Yan et al., 2015). This finding is interesting in that *ptbp1*, *rfx2*, and *exosc9* are all involved in normal epidermal development. Phenotypically, *ptbp1* and *exosc9* morphants exhibit blister formation underneath the dorsal fin of tailbud embryos and display disruptions of epidermal layer formation (Noiret et al., 2016). The *rfx2* gene encodes a critical transcription factor involved in regulation of ciliogenesis in the epidermis (Chung et. al, 2014; Kwon et al., 2014). Thus, induction of *socs3.L* after *ptbp1*, *rfx2*, or *exosc9* MO injections is likely the result of perturbations to normal epidermal development. A role for *ptafr* in early *Xenopus* development has not been reported. Thus, while we see infrequent activation of a handful of genes by MO injection, these could be due to developmental regulation, rather than an immune response.

How can the differences in expression of numerous genes (including *c3ar1*) between *tbxt/tbxt2* MO knockdowns and mutants in the Gentsch et al. study be explained? Currently, it is difficult to answer this question decisively, however there are a number of possible explanations. First, it is tempting to speculate that a compensation mechanism, as has been proposed in zebrafish to explain reported discrepancies between some morphants and their mutant counterparts (Rossi et al., 2015), might be operational here. Other alternatives might include the efficacy of the *tbxt/tbxt2* MOs by the tailbud stages where RNA-seq was performed, or how different genetic backgrounds of the mutant and morphant embryos contributes to the observations reported.

Like Gentsch et al., a recent MO experiment in zebrafish (doi: https://doi.org/10.1101/479188) has noted increased expression of a selected group of interferon-stimulated genes, particularly during segmentation stage (equivalent to *Xenopus* tailbud stage). Hence, it remains possible that MOs may induce an immune response during later development, and should be used with proper controls. In addition, as available transcriptomic datasets are largely generated for early embryonic development, neither ours nor Gentsch et al.'s findings are conclusive to determine whether an immune response is induced by MOs specifically during later embryonic development. Based on our extensive analysis, we conclude that MOs do not elicit an innate immune response during early *Xenopus* embryogenesis

ACKNOWLEDGEMENTS

We thank Xenbase for genomic and community resources (http://www.xenbase.org/, RRID: SCR_003280) in addition to their bioinformatic assistance; and the UC Irvine High Performance Computing Cluster (https://hpc.oit.uci.edu/) for their valuable resources and helpful staff. This research was funded by the following grants awarded K.W.Y.C.: NIH R01GM126395 and NSF 1755214. K.D.P. was a recipient of T32-HD60555.

AUTHOR CONTRIBUTIONS

K.D.P., K.W.Y.C., and I.L.B. wrote the manuscript. K.D.P. and J.J.Z. performed bioinformatics analyses. All authors participated in wet bench experiments.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al., 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–9.

Blum, M., De Robertis, E.M., Wallingford, J.B., Niehrs, C., 2015. Morpholinos: Antisense and Sensibility. Dev Cell 35, 145–9.

Briggs, J.A., Weinreb, C., Wagner, D.E., Megason, S., Peshkin, L., Kirschner, M.W., Klein, A.M., 2018. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science 360.

Campbell, E.P., Quigley, I.K., Kintner, C., 2016. Foxn4 promotes gene expression required for the formation of multiple motile cilia. Development 143, 4654–4664.

Carmona-Fontaine, C., Theveneau, E., Tzekou, A., Tada, M., Woods, M., Page, K.M., Parsons, M., Lambris, J.D., Mayor, R., 2011. Complement fragment C3a controls mutual cell attraction during collective cell migration. Dev Cell 21, 1026–37.

Chiu, W.T., Charney, L.R., Blitz, I.L., Fish, M.B., Li, Y., Biesinger, J., Xie, X., Cho, K.W., 2014. Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program. Development 141, 4537–47.

Chomczynski, P., Sacchi, N., 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–9.

Chung, M.I., Kwon, T., Tu, F., Brooks, E.R., Gupta, R., Meyer, M., Baker, J.C., Marcotte, E.M., Wallingford, J.B., 2014. Coordinated genomic control of ciliogenesis and cell movement by RFX2. Elife 3, e01439.

Costa, R.M., Soto, X., Chen, Y., Zorn, A.M., Amaya, E., 2008. spib is required for primitive myeloid development in Xenopus. Blood 112, 2287–96.

Dichmann, D.S., Walentek, P., Harland, R.M., 2015. The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. Cell Rep 10, 527–36.

Ding, Y., Ploper, D., Sosa, E.A., Colozza, G., Moriyama, Y., Benitez, M.D., Zhang, K., Merkurjev, D., De Robertis, E.M., 2017. Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in <i>Xenopus laevis</i>. Proc Natl Acad Sci U S A 114, E3081–E3090.

Gao, L., Zhu, X., Chen, G., Ma, X., Zhang, Y., Khand, A.A., Shi, H., Gu, F., Lin, H., Chen, Y., Zhang, H., He, L., Tao, Q., 2016. A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT. Development 143, 492–503.

Gazdag, E., Jacobi, U.G., van, K.I., Weeks, D.L., Veenstra, G.J., 2016. Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors. Development 143, 1340–50.

Gentsch, G.E., Owens, N.D., Martin, S.R., Piccinelli, P., Faial, T., Trotter, M.W., Gilchrist, M.J., Smith, J.C., 2013. In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. Cell Rep 4, 1185–96.

Gentsch, G.E., Spruce, T., Monteiro, R.S., Owens, N.D.L., Martin, S.R., Smith, J.C., 2018. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Dev Cell 44, 597–610.e10.

Grow, M., Neff, A.W., Mescher, A.L., King, M.W., 2006. Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev Dyn 235, 2667–85.

Heasman, J., Kofron, M., Wylie, C., 2000. Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222, 124–34.

- Hellsten, U., Harland, R.M., Gilchrist, M.J., Hendrix, D., Jurka, J., Kapitonov, V., Ovcharenko, I., Putnam, N.H., Shu, S., Taher, L., et al., 2010. The genome of the Western clawed frog Xenopus tropicalis. Science 328, 633–6.
- Karimi, K., Fortriede, J.D., Lotay, V.S., Burns, K.A., Wang, D.Z., Fisher, M.E., Pells, T.J., James-Zorn, C., Wang, Y., Ponferrada, V.G., et al., 2018. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res 46, D861–D868.
- Khokha, M.K., Chung, C., Bustamante, E.L., Gaw, L.W., Trott, K.A., Yeh, J., Lim, N., Lin, J.C., Taverner, N., Amaya, E., et al., 2002. Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn 225, 499–510.
- Kok, F.O., Shin, M., Ni, C.W., Gupta, A., Grosse, A.S., van, I.A., Kirchmaier, B.C., Peterson-Maduro, J., Kourkoulis, G., Male, I., et al., 2015. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32, 97–108.
- Kuliyev, E., Doherty, J.R., Mead, P.E., 2005. Expression of Xenopus suppressor of cytokine signaling 3 (xSOCS3) is induced by epithelial wounding. Dev Dyn 233, 1123–30.
- Kwon, T., Chung, M.I., Gupta, R., Baker, J.C., Wallingford, J.B., Marcotte, E.M., 2014. Identifying direct targets of transcription factor Rfx2 that coordinate ciliogenesis and cell movement. Genom Data 2, 192–194.
- Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359. doi:10.1038/nmeth.1923
- Lee-Liu, D., Moreno, M., Almonacid, L.I., Tapia, V.S., Muñoz, R., von, M.J., Gaete, M., Melo, F., Larraín, J., 2014. Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis reveals extensive differences between regenerative and non-regenerative stages. Neural Dev 9, 12.
- Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. doi:10.1186/1471-2105-12-323
- Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. doi:10.1101/002832
- Marlétaz, F., Maeso, I., Faas, L., Isaacs, H.V., Holland, P.W., 2015. Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution. BMC Biol 13, 56.
- McLin, V.A., Hu, C.H., Shah, R., Jamrich, M., 2008. Expression of complement components coincides with early patterning and organogenesis in Xenopus laevis. Int J Dev Biol 52, 1123–33.
- Nakamura, Y., de, P.A.E., Veenstra, G.J., Hoppler, S., 2016. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β -catenin recruitment to cis-regulatory modules. Development 143, 1914–25.
- Nasevicius, A., Ekker, S.C., 2000. Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26, 216–20
- Nieuwkoop, P.D., Faber, J., 1958. Normal Table of Xenopus Laevis (Daudin). Copeia 1958, 65. doi:10.2307/1439568
- Noiret, M., Mottier, S., Angrand, G., Gautier-Courteille, C., Lerivray, H., Viet, J., Paillard, L., Mereau, A., Hardy, S., Audic, Y., 2016. Ptbp1 and Exosc9 knockdowns trigger skin stability defects through different pathways. Dev Biol 409, 489–501.
- Ogino, H., McConnell, W.B., Grainger, R.M., 2006. High-throughput transgenesis in Xenopus using I-Scel meganuclease. Nat Protoc 1, 1703–10.

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Robert, J., Ohta, Y., 2009. Comparative and developmental study of the immune system in Xenopus. Dev Dyn 238, 1249–70.

Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., Ekker, S.C., 2007. p53 activation by knockdown technologies. PLoS Genet 3, e78.

Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Hölper, S., Krüger, M., Stainier, D.Y., 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–3.

Session, A.M., Uno, Y., Kwon, T., Chapman, J.A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M., et al., 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336–343.

Skariah, G., Perry, K.J., Drnevich, J., Henry, J.J., Ceman, S., 2018. RNA helicase Mov10 is essential for gastrulation and central nervous system development. Dev Dyn 247, 660–671.

Stainier, D.Y., Kontarakis, Z., Rossi, A., 2015. Making sense of anti-sense data. Dev Cell 32, 7–8.

Szabó, A., Cobo, I., Omara, S., McLachlan, S., Keller, R., Mayor, R., 2016. The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development. Dev Cell 37, 213–25.

Tandon, P., Miteva, Y.V., Kuchenbrod, L.M., Cristea, I.M., Conlon, F.L., 2013. Tcf21 regulates the specification and maturation of proepicardial cells. Development 140, 2409–21.

The Gene Ontology Consortium, 2017. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45. D331–D338.

Tripathi, S., Pohl, M.O., Zhou, Y., Rodriguez-Frandsen, A., Wang, G., Stein, D.A., Moulton, H.M., DeJesus, P., Che, J., Mulder, L.C., et al., 2015. Meta- and Orthogonal Integration of Influenza OMICs Data Defines a Role for UBR4 in Virus Budding. Cell Host Microbe 18, 723–35.

Whitworth, G.B., Misaghi, B.C., Rosenthal, D.M., Mills, E.A., Heinen, D.J., Watson, A.H., Ives, C.W., Ali, S.H., Bezold, K., Marsh-Armstrong, N., Watson, F.L., 2017. Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Dev Biol 426, 360–373.

Wills, A.E., Baker, J.C., 2015. E2a is necessary for Smad2/3-dependent transcription and the direct repression of lefty during gastrulation. Dev Cell 32, 345–57.

Yan, B., Neilson, K.M., Ranganathan, R., Maynard, T., Streit, A., Moody, S.A., 2015. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. Dev Dyn 244, 181–210.

Yasuoka, Y., Suzuki, Y., Takahashi, S., Someya, H., Sudou, N., Haramoto, Y., Cho, K.W., Asashima, M., Sugano, S., Taira, M., 2014. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. Nat Commun 5, 4322.

FIGURE TITLES AND LEGENDS

Figure 1 Expression of innate immune response genes in X. tropicalis and X. laevis RNA-seq datasets.

(A) Fold change in induction caused by the tbxt/tbxt2 MOs and the control MOs. (B) Fold change caused by control MO in biological replicates at stages 10 and 36 using RT-qPCR. (C,D) Fold change induction of innate immune response genes in X. tropicalis (C) and X. laevis (D) datasets.

Figure 2 Expression of GO-identified innate immune response genes in X. tropicalis and X. laevis RNA-seq datasets. Fold change expression of innate immune response genes across 29 datasets in X. tropicalis (A), 13 datasets in X. laevis (B), and in 12 the tbxt/t2 MO datasets (C). Gray region indicates fold change of < 1.5x. Green asterisk (*) indicates a T-test p-value of < 0.01.

Figure 3 Expression of literature-identified innate immune response genes in X. tropicalis and X. laevis RNA-seq datasets. Fold change expression of innate immune response genes across 29 datasets in X. tropicalis (A), 13 datasets in X. laevis (B), and in 12 the tbxt/t2 MO datasets (C). Gray region indicates fold change of < 1.5x. Green asterisk (*) indicates a T-test p-value of < 0.01.

Figure 4 Specific induction of innate immune response genes. Fold change expression of genes which were identified to be significantly activated in the *X. tropicalis* datasets in both the GO-identified (A) and the literature-identified (B) cohort of genes. Fold change expression of *X. laevis* genes *ptafr.L*/gene13059 (C), *socs3.L*/gene3766 (D) and *socs3.S*/gene50103, which were identified to be significantly activated. We used the criteria p-value < 0.01 and fold change > 1.5 to define significant.

STAR METHODS

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ken W.Y. Cho (kwcho@uci.edu).

Experimental model and subject details

Xenopus tropicalis adults were obtained either from NASCO (University of Virginia stock) or raised in the laboratory; and were maintained in agreement with the University of California, Irvine Institutional Animal Care Use Committee (IACUC). X. tropicalis females were injected with 10 units of Chorulon HCG (Merck and Co.) 1-3 nights prior to embryo collection, and 100 units of HCG on the day of embryo collection. Eggs were collected in dishes coated with 0.1% BSA in 1/9x MMR. Sperm suspension in 0.1% BSA in 1/9x MMR was obtained from sacrificed adult X. tropicalis males and the eggs were in vitro fertilized with sperm suspension (Ogino et al., 2006). The embryos were dejellied with 3% cysteine in 1/9x MMR pH 7.8 for 10 minutes after fertilization, and were then ready for manipulation. Embryos were staged using the Nieukwoop-Faber developmental table (Nieuwkoop and Faber, 1958; Khokha et al., 2002).

Method Details

Standard control MO microinjection

The standard control MO (5'-CCTCTTACCTCAGTTACAATTTATA-3') was obtained from GeneTools, LLC. *X. tropicalis* embryos were injected with 20 ng of the standard control MO at 1-2 cells stage. RNA is harvested from whole embryos at either stage 10 or stage 36 based on the NF developmental table using

previously described methods (Chomczynski et al., 1987). RNA samples were reverse transcribed, and gene expression was assayed with qPCR using the Roche Lightcycler 480 II and the Roche SYBR green I master with the default SYBR green protocol. Fold change in gene expression between uninjected and control MO injected was calculated using the $\Delta\Delta$ Cp approach.

Identification of cohorts of innate immune response genes using Gene Ontology

The RNA-seq datasets from Gentsch et al. (2018) were obtained from NCBI GEO using the accession number GSE96655. The reads were aligned to the *X. tropicalis* genome v9.0 (Hellsten et al., 2010; Karimi et al., 2018) using Bowtie2 v2.2.7 (Langmead and Salzberg, 2012) and RSEM v1.2.12 (Li and Dewey, 2011). Differential expression was performed using DEseq2 (Love et al., 2014) using the cutoffs of > 1.5 fold change and < 10% FDR. The control MO and tbxt/tbxt2 MO RNA-seq experiments were compared to their respective sibling uninjected controls; while the *tbxt/~;tbxt2-/~* mutant RNA-seq experiments were compared to their respective wild type controls. From this analysis, we identified the list of genes that are upregulated in the control MO or the tbxt/tbxt2 MOs, that are not upregulated in the *tbxt/~;tbxt2-/~* mutants. Gene Ontology analysis was performed using the Gene Ontology Consortium online tool (Ashburner et al., 2000; The Gene Ontology Consortium, 2017) and obtained three GO terms related to innate immune response. From these three terms, we obtained a list of genes in our differential expression analysis that are associated either one of the three GO terms.

Identification of cohorts of innate immune response genes from Robert and Ohta

Xenopus genes that are associated with innate immunity were identified from Robert and Ohta (2009). We then searched for their corresponding gene models in the *X. tropicalis* genome v9.0 (Hellsten et al., 2010; Karimi et al., 2018) and the *X. laevis* genome v9.2 (Session et al., 2016; Karimi et al., 2018).

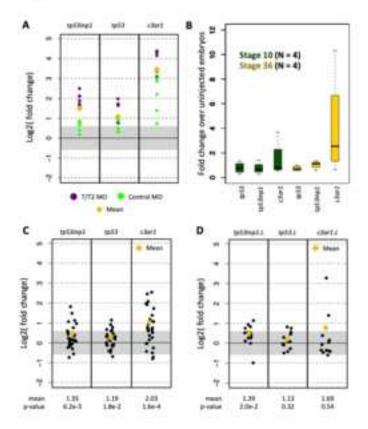
Meta-analysis of published RNA-seq datasets using MOs

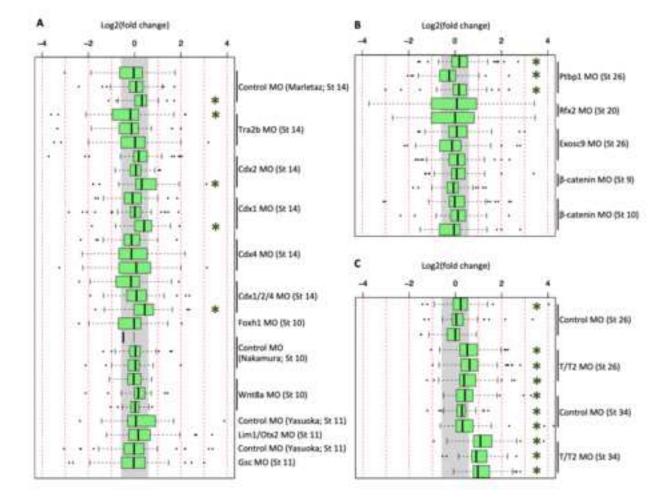
We searched for RNA-seq datasets that involved the use of knockdown technologies in X. tropicalis and X. laevis in the NCBI Sequence Read Archive (SRA), the European Nucleotide Archive (ENA), and the DNA Databank of Japan Sequence Read Archive (DRA). We obtained datasets from 16 projects (Table S1) (Tandon et al., 2013; Gentsch et al., 2013; Kwon et al., 2014; Chiu et al., 2014; Yasuoka et al., 2014; Marlétaz et al., 2015; Dichmann et al., 2015; Wills et al., 2015; Nakamura et al., 2016; Campbell et al., 2016; Gazdag et al., 2016; Gao et al., 2016; Noiret et al., 2016; Ding et al., 2017; Gentsch et al., 2018; Skariah et al., 2018). We aligned the reads to the appropriate the X. tropicalis genome v9.0 (Hellsten et al., 2010; Karimi et al., 2018) or the X. laevis genome v9.2 (Session et al., 2016; Karimi et al., 2018) using Bowtie2 v2.2.7 (Langmead and Salzberg, 2012) and RSEM v1.2.12 (Li and Dewey, 2011) to obtain the expression pattern in transcripts per million (TPM) or normalized read counts. Data figures were generated using the functions boxplot, plot and barplot; and statistical significance of fold changes was tested using the function t.test in R v3.1.0, all using the expression in TPM (R Core Team, 2014). For Gene Ontology analysis, we first performed differential expression using DEseg2 (Love et al., 2014) using the cutoffs of > 1.5 fold change and < 10% FDR. Metascape (Tripathi et al, 2015) was used to perform Gene Ontology analysis and visualize enrichment results, with default parameters whereby significant GO terms were identified with a minimum overlap of 3, p-value > 0.01, and a minimum enrichment of 1.5. Datasets that did not yield any GO terms due to low number of differentially expressed genes were not reported.

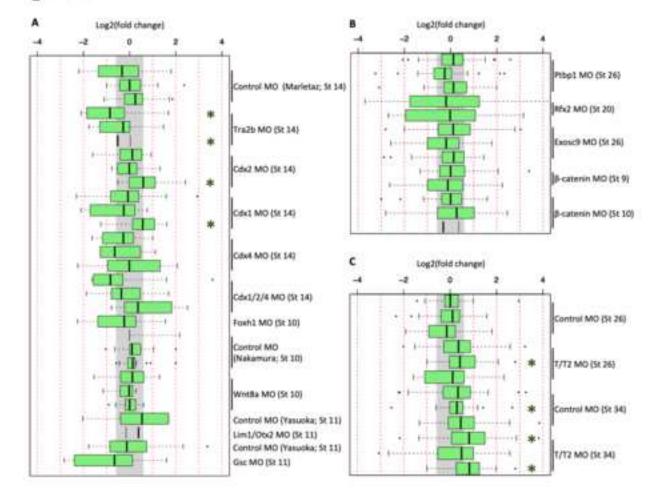
Quantification and statistical analysis

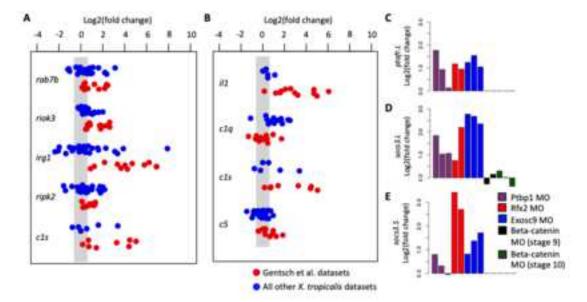
Data quantification and statistical analysis are described in the method details.

SUPPLEMENTAL INFORMATION


Table S3 (Related to Figure 3,4) List of innate immune response genes identified by gene ontology or through literature by the work of Robert and Ohta.


Key Resources Table


REAGENT or RESOURCE	SOURCE	IDENTIFIER	
Critical Commercial Assays			
mMessage mMachine Sp6 Transcription Kit	Thermo Fisher Scientific	Cat#AM1340	
Deposited Data		1	
Wnt8a morpholino and control RNA-seq	Nakamura et al., 2016	GEO: GSE72657	
Foxh1 morpholino and control RNA-seq	Chiu et al., 2014	GEO: GSE53654	
E2a morpholino and control RNA-seq	Wills et al., 2015	GEO: GSE56169	
Lim/Otx2 morpholino, Gsc morpholinos and control RNA-seq	Yasuoka et al., 2014	DRA: DRA000516, DRA000517, DRA000518, DRA001093, DRA001094, DRA001095	
Mov10 morpholino and control RNA-seq	Skariah et al., 2018	GEO: GSE86382	
Beta-catenin morpholino and control RNA-seq	Ding et al., 2017	GEO: GSE93195	
Tbp/Tlf/Tbp2 morpholino, Gcn5 antisense DNA and control RNA-seq	Gazdag et al., 2015	GEO: GSE76995	
Ascl1 morpholino and control RNA-seq	Gao et al., 2016	GEO: GSE76915	
Rfx2 morpholino and control RNA-seq	Kwon et al., 2014	GEO: GSE50593	
Tcf21 morpholino and control RNA-seq	Tandon et al., 2013	GEO: GSE45786	
Cdx1, Cdx2, Cdx4 and Cdx1/2/4 morpholinos, and control RNA-seq	Marlétaz et al., 2015	GEO: GSE71006	
Tbxt/Tbxt2 morpholino and control RNA-seq	Gentsch et al., 2013	GEO: GSE48663	
Foxn4 morpholino and control RNA-seq	Campbell et al., 2016	GEO: GSE89271	
Ptbp1 morpholino, Exosc9 morpholino and control RNA-seq	Noiret et al., 2016	GEO: PRJEB8711	
Tra2b morpholino and control RNA-seq	Dichmann et al., 2015	GEO: PRJNA266550	
Tbxt/Tbxt2 morpholino and control RNA-seq	Gentsch et al., 2018	GEO: GSE96655	
X. tropicalis genome version 9.0	Hellsten et al., 2010; Karimi et al., 2018	RRID:SCR_003280; URL:http://www.xen base.org/	


X. laevis genome v9.2	Session et al., 2016; Karimi et al., 2018	RRID:SCR_003280; URL:http://www.xen base.org/	
Experimental Models: Organisms/Strains	l		
X. tropicalis, out-bred Nigerian	University of Virginia, NASCO	URL:https://www.en asco.com/	
Oligonucleotides			
X. tropicalis smn2 RT primer forward: AAATTCCCAGGACCAAAAGG	Integrated DNA Technologies	N/A	
X. tropicalis smn2 RT primer reverse: ACACGTGTCGCCTACTCTCC	Integrated DNA Technologies	N/A	
X. tropicalis tp53 RT primer forward: CCCTCAACTGAGGATTACGC	Integrated DNA Technologies	N/A	
X. tropicalis tp53 RT primer reverse: CTTGTTGAGGTCGGTGGAGT	Integrated DNA Technologies	N/A	
X. tropicalis tp53inp1 RT primer forward: CCCAGCCCTGATAGAACAGA	Integrated DNA Technologies	N/A	
X. tropicalis tp53inp1 RT primer reverse: TTTCATTCGAGCAGCAAGAG	Integrated DNA Technologies	N/A	
X. tropicalis c3ar1 RT primer forward: CAATATCAGGAATGGGACGAA	Integrated DNA Technologies	N/A	
X. tropicalis c3ar1 RT primer reverse: TTCACTTCCGGTAACGTGCT	Integrated DNA Technologies	N/A	
Standard control morpholino: 5'-CCTCTTACCTCAGTTACAATTTATA-3'	GeneTools	N/A	
Software and Algorithms			
RSEM v.1.2.12	Li and Dewey, 2011	RRID:SCR_013027; URL:http://deweylab. biostat.wisc.edu/rse m/	
Bowtie 2 v2.2.7	Langmead and Salzberg, 2012	RRID:SCR_016368; URL:http://bowtie- bio.sourceforge.net/ bowtie2/index.shtml	
DEseq2	Love et al., 2014	RRID:SCR_016533; URL:https://github.co m/PF2-pasteur- fr/SARTools	

R v3.1.0	R Core Team, 2014	RRID:SCR_001905; URL:http://www.r- project.org/
Metascape	Tripathi et al., 2015	RRID:SCR_016620; URL:http://metascap e.org/gp/index.html#/ main/step1
Gene Ontology	Ashburner et al., 2000; The Gene Ontology Consortium, 2017	RRID:SCR_002143; URL:http://www.gen eontology.org/

Gene model	Gene name
gene15351	nfkb1.L
gene10186	pik3r6.L
gene7986	pvrl2.L
gene19980	ctss.L
gene3766	socs3.L
gene12561	itgb2.L
gene12906	bcl10.L
gene14289	tnip1.L
gene1887	traf3.L
gene6792	rab7b.L
gene6985	card9.L
gene13981	birc2.L
gene4022	pycard.L
gene3857	dusp10.L
gene34767	f2rl1.L
gene16366	rasgrp1.L
gene17512	nfkbil1.L
gene14916	arg1.L
gene4777	map3k1.L
gene15951	irg1.L
gene35579	myd88.L
gene869	tank.L
gene36795	pparg.L
gene14348	erap1.L
gene628	nfkbia.L
gene18799	tnip2.L
gene675	btk.L
gene11771	tlr6.L
gene17966	cyba.L
gene19674	tlr3.L
gene16124	tlr5.L
gene13715	pglyrp1.L
gene20243	pglyrp1.L
gene11542	irf7.L
gene10151	irf1.L
gene15477	c9.L
gene19547	ip6k2.L
gene3786	ip6k2.L
gene48070	c1r.L
gene8310	irf2.L

gene13044	tyk2.L
gene14743	irf9.L
gene8680	slc11a1.L
gene7102	cybb.L
gene12109	c8a.L
gene15071	nub1.L
gene17826	cyp27b1.L
gene9822	c19orf66.L
gene35075	mst1r.L
gene4818	sla.L
gene16894	naip.L
gene7917	c4a.L
gene3122	gata3.L
gene12258	arg2.L
gene44369	wrnip1.L
gene15075	frk.L
gene7154	c3.L
gene13059	ptafr.L
gene13060	prkd1.L
gene984	trim25.L
gene20414	ncf1.L
gene1938	rel.L
gene64	c1s.L
gene36938	riok3
gene2619	parp14
gene29442	parp14.4.L
gene3184	parp14.3.L
gene1264	c6.1.L
gene18437	c6.2.L
gene50987	tdgf1.1.L
gene38479	tdgf1.2.L
gene18794	tdgf1.3.L
gene17261	nfkb1.S
gene1777	pik3r6.S
gene13720	ctss.S
gene12561	itgb2.S
gene17528	bcl10.S
gene6754	tnip1.S
gene2131	rab7b.S
gene11710	birc2.S
gene13042	pycard.S

gene14188	dusp10.S
gene13597	f2rl1.S
gene9663	riok3.S
gene15694	map3k1.S
gene15114	myd88.S
gene12235	ripk2.S
gene8047	tank.S
gene1845	pparg.S
gene9048	nfkbia.S
gene19247	cyba.S
gene20243	pglyrp1.S
gene19547	ip6k2.S
gene3786	ip6k2.S
gene2193	irf2.S
gene14856	irf9.S
gene8695	c19orf66.S
2044	

mst1r.S gene3041 gene9271 sla.S gene10835 gata3.S gene19574 arg2.S ptafr.S gene6293 prkd1.S gene20110 trim25.S gene18583 gene19077 ncf1.S rel.S gene306

gene41734 LOC100505446

gene50103 socs3

gene50087 LOC108699773 gene47397 LOC108699715 gene44685 LOC108708981 gene50828 LOC108706540 LOC108705282 gene44444 LOC733361 gene49402 gene37271 MGC82544 gene38090 LOC108709871 gene15611 LOC108708888 LOC108702504 gene47396 LOC108717930 gene35740 tdgf1.2.S

gene696

Gene model Gene name Xetrov90001179m.g nfkb1 Xetrov90027543m.g pik3r6 Xetrov90019154m.g pvrl2 Xetrov90022153m.g ctss Xetrov90025199m.g socs3 Xetrov90024025m.g itgb2 Xetrov90010832m.g bcl10 Xetrov90007140m.g tnip1 Xetrov90021405m.g traf3 Xetrov90005097m.g rab7b Xetrov90005362m.g card9 Xetrov90006849m.g birc2 Xetrov90006496m.g pycard Xetrov90021723m.g rasgrp1 Xetrov90016698m.g riok3 Xetrov90013593m.g arg1 Xetrov90003563m.g map3k1 Xetrov90020359m.g irg1 Xetrov90027455m.g myd88 Xetrov90016990m.g ripk2 Xetrov90000488m.g otop1 Xetrov90024350m.g tank Xetrov90019411m.g gbp5 Xetrov90003486m.g erap1 Xetrov90021696m.g nfkbia Xetrov90000374m.g tnip2 Xetrov90020155m.g btk Xetrov90000575m.g tlr6 Xetrov90011608m.g cyba Xetrov90000728m.g tlr3 Xetrov90020695m.g pglyrp1 Xetrov90011089m.g irf7 Xetrov90007536m.g irf1 Xetrov90003636m.g c9 Xetrov90012761m.g ip6k2 Xetrov90017367m.g c1r Xetrov90000753m.g irf2 Xetrov90009682m.g tyk2 Xetrov90002400m.g irf9

Xetrov90024484m.g slc11a1

- Xetrov90005799m.g cybb
- Xetrov90011741m.g c8a
- Xetrov90015566m.g nub1
- Xetrov90006359m.g cyp27b1
- Xetrov90009660m.g c19orf66
- Xetrov90012562m.g mst1r
- Xetrov90004596m.g nos2
- Xetrov90003397m.g naip
- Xetrov90020892m.g c4a
- Xetrov90008376m.g gata3
- Xetrov90004716m.g arg2
- Xetrov90016162m.g wrnip1
- Xetrov90014034m.g frk
- Xetrov90009874m.g c3
- Xetrov90004854m.g ptafr
- Xetrov90021744m.g prkd1
- Xetrov90027625m.g trim25
- Xetrov90005656m.g ncf1
- Xetrov90013323m.g rel
- Xetrov90017249m.g bai1
- Xetrov90017366m.g c1s
- Xetrov90011143m.g dusp10.2
- Xetrov90013037m.g dusp10.1
- Xetrov90003354m.g f2rl1-like
- Xetrov90020848m.g nfkbil1-like
- V : 00005040
- Xetrov90026248m.g pparg-like.1
- Xetrov90028832m.g pparg-like.2
- Xetrov90013018m.g tlr5-like.1
- Xetrov90013019m.g tlr5-like.2
- Xetrov90024574m.g parp14.1
- Xetrov90024580m.g parp14.2
- Aetrovouzaodin.g parpiz
- Xetrov90003623m.g c6.2
- Xetrov90017181m.g sla-like
- Xetrov90024719m.g tbkbp1-like
- Xetrov90002353m.g tdgf1.3
- Xetrov90002354m.g tdgf1.2
- Xetrov90002355m.g tdgf1.1

Туре	Human Gene	Gene
Cytokines	IL-1β	interleukin 1 beta
Cytokines	LTα	lymphotoxin alpha
	LTβ	lymphotoxin beta
	TNFα	tumor necrosis factor alpha
	IL-6	interleukin 6
	IFNα	interferon alpha
Cytotoxic klling	iNOS	inducible nitric oxide synthase
Cytotoxic kiiiig	granzymes	granzymes
	granzymes	granzymes
	granzymes	granzymes
	PRF1	perforin 1
Anti-bacterial peptide	Magainin	magainins
The second of th	Xenopsin	xenopsin
	Caerulein	caerulein
Complement	CFB	complement factor B
•	MASP-1	MBL-associated serine protease
	MASP-2	MBL-associated serine protease 2
	C1q	complement component 1, q subcomponent
	C1q	complement component 1, q subcomponent
	C1q	complement component 1, q subcomponent
	C1q	complement component 1, q subcomponent
	C1q	complement component 1, q subcomponent
	C1q	complement component 1, q subcomponent
	C1r	complement component 1, r subcomponent
	C1s	complement component 1, s subcomponent
	C2	complement component 2
	C3	complement component 3
	C4a	complement component 4a
	C5	complement component 5
	C6	complement component 6
	C6	complement component 6
	C7	complement component 7
	C8a	complement component c8 alpha chain
	C8b	complement component c8 beta chain
	C8g	complement component c8 gamma chain
	C9	complement component 9
Signaling Molecules	NFKB1	nuclear factor kappa B subunit 1
	NFKB2	nuclear factor kappa B subunit 2
	MYD88	myeloid differentiation primary response 88
	HCST	hematopoietic cell signal transducer

TVDODD	TVDO protoin turosino kinoso hinding protoin
TYROBP TNFα	TYRO protein tyrosine kinase binding protein
	tumor necrosis factor alpha interleukin 6
IL-6	
NCR3	natural cytotoxicity triggering receptor 3
KIRs	killer cell immunoglobulin-like receptor
TLR1	toll like receptor 1
TLR2	toll like receptor 2
TLR3	toll like receptor 3
TLR4	toll like receptor 4
TLR5	toll like receptor 5
TLR5	toll like receptor 5
TLR6	toll like receptor 6
TLR7	toll like receptor 7
TLR8	toll like receptor 8
TLR9	toll like receptor 9
FCRL2	fc receptor like 2
FCRL3	fc receptor like 3
FCRL4	fc receptor like 4
FCRL5	fc receptor like 5
CLEC2D	c-type lectin domain family 2 member 3
CLEC3A	c-type lectin domain family 3 member a
CLEC3B	c-type lectin domain family 3 member b
CLEC4E	c-type lectin domain family 4 member e
CLEC4G	c-type lectin domain family 4 member g
CLEC4M	c-type lectin domain family 4 member m
CLEC10A	c-type lectin domain family 10 member a
CLEC11A	c-type lectin domain family 11 member a
CLEC14A	c-type lectin domain family 14 member a
CLEC16A	c-type lectin domain family 16 member a
CLEC19A	c-type lectin domain family 19 member a
SIGLEC1	sialic acid binding Ig like lectin 1
SIGLEC15	sialic acid binding Ig like lectin 15
3.011013	Siane acid billamily in like lectil 13

Leukocyte Receptors

X laevis model (L)	X laevis name (L)	X laevis model (S)	X laevis name (S)	X tropicalis model
gene10732	il1b.L	gene745	il1b.S	Xetrov90009085m.g
gene18637	lta.L	N.P	N.P	N.P
gene10254	ltb.L	gene18683	ltb.S	Xetrov90020854m.g
gene48371	tnf.L	gene20508	tnf.S	Xetrov90020852m.g
gene5271	il6.L	gene28856	il6.S	Xetrov90016026m.g
N.P.	N.P.	N.P.	N.P.	N.P.
N.P.	N.P.	N.P.	N.P.	N.P.
gene13908	gzma.L	gene11722	gzma.S	Xetrov90003585m.g
N.P.	N.P.	gene10266	gzmh.S	Xetrov90001595m.g
gene13819	gzmak.L	gene7013	gzmak.S	N.P.
gene18509	prf1.L	gene19389	prf1.S	Xetrov90026954m.g
gene50646	magainins.L	N.P.	N.P.	N.P.
gene6411	levi.L	gene12990	levi.S	N.P.
gene49089	xt6l.L	N.P.	N.P.	Xetrov90016259m.g
gene19548	cfb.L	gene386	cfb.S	Xetrov90020868m.g
gene39392	LOC108696362	gene10165	masp1.S	Xetrov90014451m.g
N.P.	N.P.	gene50090	masp2.S	Xetrov90018038m.g
N.P.	N.P.	N.P.	N.P.	Xetrov90024963m.g
N.P.	N.P.	N.P.	N.P.	Xetrov90015726m.g
gene6625	c1ql4.L	gene6382	c1ql4.S	Xetrov90006215m.g
gene11541	c1qa.L	N.P.	N.P.	N.P.
gene14189	c1qb.L	N.P.	N.P.	N.P.
gene34639	c1qc.L	N.P.	N.P.	N.P.
gene48070	c1r.L	N.P.	N.P.	Xetrov90017367m.g
gene64	c1s.L	N.P.	N.P.	Xetrov90017366m.g
gene2484	c2.L	N.P.	N.P.	Xetrov90020872m.g
gene7154	c3.L	N.P.	N.P.	Xetrov90009874m.g
gene7917	c4a.L	N.P.	N.P.	Xetrov90020892m.g
N.P.	N.P.	N.P.	N.P.	Xetrov90026867m.g
gene1264	c6.1.L	N.P.	N.P.	N.P.
gene18437	c6.2.L	N.P.	N.P.	Xetrov90003623m.g
N.P.	N.P.	gene8088	c7.S	Xetrov90003624m.g
gene12109	c8a.L	N.P.	N.P.	Xetrov90011741m.g
gene10350	c8b.L	N.P.	N.P.	Xetrov90011742m.g
N.P.	N.P.	gene37178	LOC108699874	Xetrov90029779m.g
gene15477	c9.L	N.P.	N.P.	Xetrov90003636m.g
gene15351	nfkb1.L	gene17261	nfkb1.S	Xetrov90001179m.g
gene50956	LOC108696243	gene3705	nfkb2.S	Xetrov90018250m.g
gene35579	myd88.L	gene15114	myd88.S	Xetrov90027455m.g
gene13001	hcst.L	gene4458	hcst.S	N.P.

N.P.	N.P.	gene1866	tyrobp.S	Xetrov90028373m.g
gene48371	tnf.L	gene20508	tnf.S	Xetrov90020852m.g
gene5271	il6.L	gene28856	il6.S	Xetrov90016026m.g
gene26686	ncr3.L	N.P.	N.P.	N.P.
N.P.	N.P.	N.P.	N.P.	N.P.
gene19055	tlr1.L	N.P.	N.P.	Xetrov90000574m.g
gene16869	tlr2.L	N.P.	N.P.	Xetrov90000886m.g
gene19674	tlr3.L	N.P.	N.P.	Xetrov90000728m.g
N.P.	N.P.	gene7970	tlr4.S	Xetrov90020057m.g
gene16124	tlr5.L	N.P.	N.P.	Xetrov90013018m.g
N.P.	N.P.	N.P.	N.P.	Xetrov90013019m.g
gene11771	tlr6.L	N.P.	N.P.	Xetrov90000575m.g
gene15377	tlr7.L	N.P.	N.P.	Xetrov90005770m.g
gene34601	LOC108707526	N.P.	N.P.	Xetrov90005769m.g
gene41068	tlr9.L	N.P.	N.P.	Xetrov90012555m.g
gene48000	fcrl2.L	N.P.	N.P.	Xetrov90029500m.g
N.P.	N.P.	N.P.	N.P.	Xetrov90021473m.g
N.P.	N.P.	N.P.	N.P.	N.P.
N.P.	N.P.	gene1134	fcrl5.S	Xetrov90021476m.g
gene37473	LOC108696026	N.P.	N.P.	Xetrov90017426m.g
gene18417	clec3a.L	N.P.	N.P.	Xetrov90011410m.g
gene1779	clec3b.L	gene13795	clec3b.S	Xetrov90016272m.g
N.P	N.P	gene12587	clec4e.S	N.P
gene3893	clec4g.L	N.P.	N.P.	N.P
gene8124	clec4m.L	N.P.	N.P.	N.P
gene8184	clec10a.L	gene732	clec10a.S	Xetrov90029375m.g
gene10534	clec11a.L	N.P.	N.P.	Xetrov90019185m.g
gene22393	clec14a.L	gene11520	clec14a.S	Xetrov90021683m.g
gene13380	clec16a.L	gene19190	clec16a.S	Xetrov90023683m.g
gene50921	LOC108701545	gene47066	LOC108703117	Xetrov90023605m.g
gene17776	siglec1.L	gene11828	siglec1.S	Xetrov90000253m.g
N.P.	N.P.	N.P.	N.P.	Xetrov90003805m.g

X tropicalis name

il1b N.P = not present

N.P

ltb

tnf

LOC100493927

N.P.

N.P.

gzma

gzmh

N.P.

prf1

. N.P.

N.P.

LOC100379536

cfb

LOC101732807

masp2

c1ql1

c1ql3

c1ql4

N.P.

N.P.

N.P.

c1r

c1s

c2

с3

c4a

Xetrov90026867m.g

N.P.

c6.2

c7

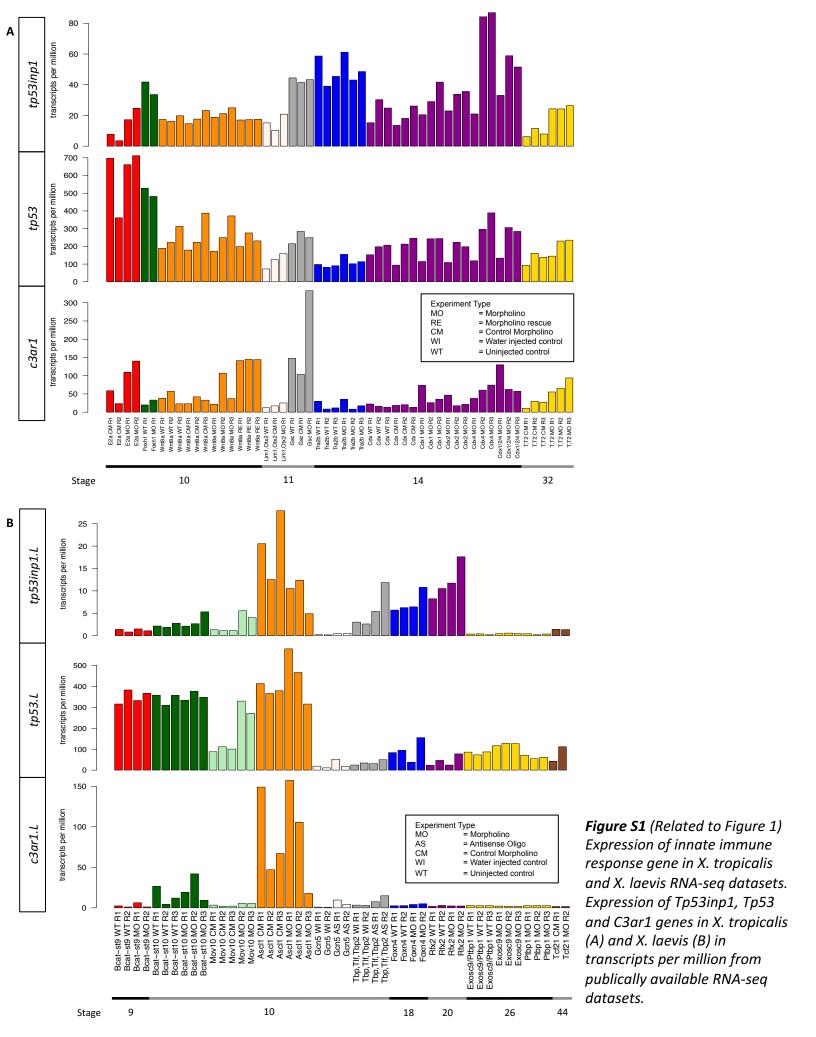
c8a

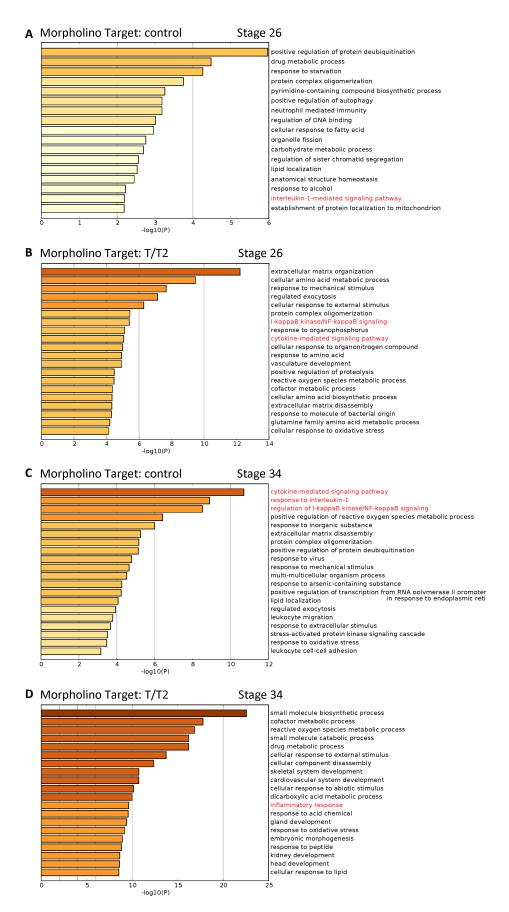
c8b

c8g

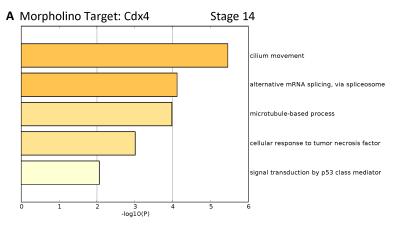
с9

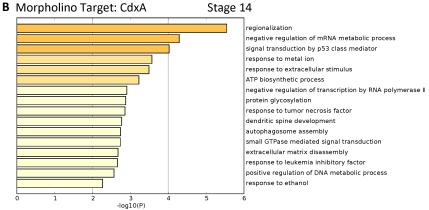
nfkb1

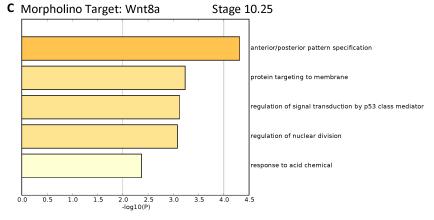

nfkb2

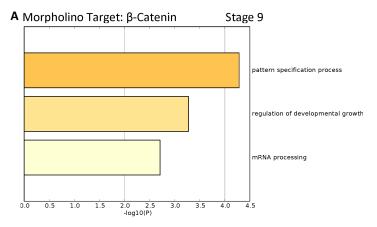

myd88

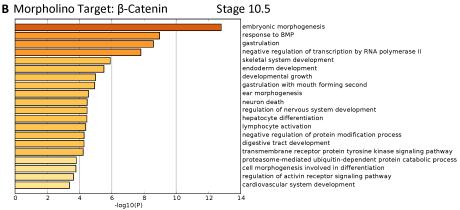
N.P.


LOC100493958 tnf LOC100493927 N.P. N.P. tlr1 tlr2 tlr3 Xetrov90020057m.g tlr5-like.1 tlr5-like.2 tlr6 tlr7 tlr8 tlr9 Xetrov90029500m.g fcrl3 N.P. Xetrov90021476m.g clec2d clec3a clec3b N.P N.P N.P Xetrov90029375m.g clec11a clec14a clec16a clec19a


siglec1 siglec15




Figure S2 (Related to figure 2 and 3) Gene ontology analysis of differentially expressed genes by various morpholinos in Gentsch et al. datasets. Gene ontology analysis of the control MO and T/T2 morpholino at stage 26 (A,B) and stage 34 (A,B). We used the criteria overlap ≥ 3, p-value ≤ 0.01 and enrichment ≥ 1.5 to define significance. Red asterisk (*) indicates innate immunity related GO terms.



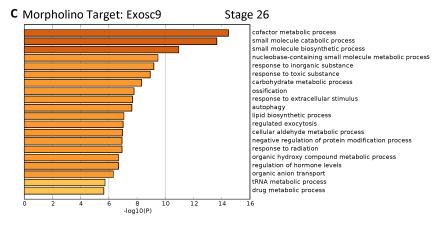




Figure S3 (Related to figure 2 and 3) Gene ontology analysis of differentially expressed genes by various morpholinos in available X. tropicalis datasets. Gene ontology analysis of the Cdx4 MO (A), Cdx1/2/4 MO (B), and Wnt8a MO (C). We used the criteria overlap ≥ 3, p-value ≤ 0.01 and enrichment ≥ 1.5 to define significance.

Figure S4 (Related to figure 2 and 3) Gene ontology analysis of differentially expressed genes by various morpholinos in available Xenopus laevis datasets. Gene ontology analysis of the β -catenin MO at stage 9 and 10 (A,B), Exosc9 MO (C) and Ptbp1 MO (D). We used the criteria overlap \geq 3, p-value \leq 0.01 and enrichment \geq 1.5 to define significance.

Accession	Experimental Morpholino(s)	Control Morpholino	Replicates	Organism	Collection Stage	Collected Tissue	Citation
GSE72657	Wnt8a	Yes	3	X. tropicalis	St 10	Whole embryo	Nakamura et al., 2016
GSE53654	Foxh1	No	1	X. tropicalis	St 10	Whole embryo	Chiu et al., 2014
GSE56169	E2a	Yes	2	X. tropicalis	St 10	Whole embryo	Wills et al., 2015
DRA000516, DRA000517, DRA000518, DRA001093, DRA001094, DRA001095	Lim1+Otx2+Otx5, Gsc	Yes	1	X. tropicalis	St 11	Whole embryo	Yasuoka et al., 2014
GSE86382	Mov10	Yes	2 or 3	X. laevis	St 10	Whole embryo	Skariah et al., 2018
GSE93195	Beta-catenin	No	2 or 3	X. laevis	Stage 9 and 10	Whole embryo	Ding et al., 2017
GSE76995	Tbp + Tlf + Tbp2, Gcn5 (Antisense DNA)	No	2	X. laevis	St 10	Whole embryo	Gazdag et al., 2016
GSE76915	Ascl1	Yes	3	X. laevis	St 10	Whole embryo	Gao et al., 2016
GSE50593	Rfx2	No	2	X. laevis	Stage 20	Isolated ectoderm	Kwon et al., 2014
GSE45786	Tcf21	Yes	1	X. laevis	St 44 - 45	Whole embryo	Tandon et al., 2013
GSE71006	Cdx1, Cdx2, Cdx4, Cdx1/2/4	Yes	3	X. tropicalis	Stage 14	Whole embryo	Marlétaz et al., 2015
GSE48663	Tbxt/Tbxt2	Yes	3	X. tropicalis	Stage 32	Whole embryo	Gentsch et al., 2013
GSE89271	Foxn4	No	2	X. laevis	Stage 18	Isolated ectoderm	Campbell et al., 2016
PRJEB8711	Ptbp1, Exosc9	No	1	X. laevis	Stage 26	Whole embryo	Noiret et al., 2016
PRJNA266550	Tra2b	Yes	3	X. laevis	Stage 14	Whole embryo	Dichmann et al., 2015
GSE96655	Tbxt/Tbxt2	Yes	3	X. tropicalis	Stage 24 and Stage 36	Whole embryo	Gentsch et al., 2018

Table S1 (Related to Figure 1-4) List of RNA-seq datasets that contained a morpholino experiment used in this study.

Tropicalis	Tp53	Binp1	Tp53		C3ar1	
	Reported Measured Reported Measured		Measured	Reported	Measured	
Control MO	0.97	0.84	1.06	0.96	0.97	1.01
Tra2b MO	1.05	1.07	1.37	1.36	1.43	1.22
Cdx2 MO	1.15	1.35	0.84	0.93	1.55	1.57
Cdx1 MO	1.23	1.33	1.06	1.05	2.69	2.5
Cdx4 MO	2.43	2.55	1.38	1.39	3.19	3.64
CdxA MO	2.06	2.06	1.37	1.27	5.27	4.63
Control MO	1.58	1.48	1.62	1.52	4.37	5.37
T/T2 MO	3.92	3.7	2.67	2.37	14.08	14.8
Laevis	nevis Tp53	Tp53inp1.L		53.L	C3a	r1.L
	Reported	Measured	Reported	Measured	Reported	Measured
Ptbp1 MO	0.87	1.15	0.74	0.75	0.79	0.99
Rfx2 MO	1.74	1.54	1.68	1.36	0.9	1.03
Exosc9 MO	1.62	1.6	1.57	1.52	3.59	0.72

Table S2 (Related to Figure 1) Comparison of fold change generated between our analysis and the Gentsch et al. (2018) analysis.