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Abstract

Changes in vegetation distribution are underway in Arctic and boreal regions due to climate
warming and associated fire disturbance. These changes have wide ranging downstream
impacts—affecting wildlife habitat, nutrient cycling, climate feedbacks and fire regimes. It is thus
critical to understand where these changes are occurring and what types of vegetation are affected,
and to quantify the magnitude of the changes. In this study, we mapped live aboveground biomass
for five common plant functional types (PFTs; deciduous shrubs, evergreen shrubs, forbs,
graminoids and lichens) within Alaska and northwest Canada, every five years from 1985 to 2020.
We employed a multi-scale approach, scaling from field harvest data and unmanned aerial
vehicle-based biomass predictions to produce wall-to-wall maps based on climatological,
topographic, phenological and Landsat spectral predictors. We found deciduous shrub and
graminoid biomass were predicted best among PFTs. Our time-series analyses show increases in
deciduous (37%) and evergreen shrub (7%) biomass, and decreases in graminoid (14%) and lichen
(13%) biomass over a study area of approximately 500 000 km?. Fire was an important driver of
recent changes in the study area, with the largest changes in biomass associated with historic fire
perimeters. Decreases in lichen and graminoid biomass often corresponded with increasing shrub
biomass. These findings illustrate the driving trends in vegetation change within the Arctic/boreal
region. Understanding these changes and the impacts they in turn will have on Arctic and boreal
ecosystems will be critical to understanding the trajectory of climate change in the region.

1. Introduction

Arctic and boreal regions are warming over three
times as fast as the rest of the planet [1], lead-
ing to significant changes in vegetation community
composition and structure [2, 3]. These changes
include expansion of deciduous shrubs and increases
in plant productivity in Arctic and alpine tundra
[4-11]. Although less common, localized decreases
in productivity have been observed and linked with
winter warming and disturbances including extreme
climatic events [8, 12—15]. In boreal regions, warm-
ing has increased vegetation productivity and tree
recruitment along the forest-tundra ecotone, while
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also increasing tree mortality from drought and
wildfires [16—22]. Such changes trigger cascading
effects [7, 23] that impact surface albedo [24, 25], car-
bon and nitrogen cycling [26-29], snow cover and
water balance [25], fire regimes [30], wildlife for-
age and habitat [31, 32], and permafrost dynamics
[27, 33-36]. Consequently, monitoring changes in
vegetation is crucial for understanding and managing
climate change impacts in the Arctic-boreal Zone
(ABZ). Changes in vegetation during recent decades
have been monitored across the ABZ using satel-
lite remote sensing, revealing widespread greening
[8, 37-39] and localized browning [8, 14] in Arctic
and alpine tundra. In boreal regions, greening has
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been observed primarily along the forest-tundra eco-
tone, whereas browning has been observed primar-
ily along the warmest margins [21]. Studies mon-
itoring greening and browning predominantly rely
on the Normalized Difference Vegetation Index
(NDVI) or other metrics of vegetation ‘greenness’
that broadly correlate with vegetation productivity
and aboveground biomass (AGB). However, these
metrics do not discriminate between plant func-
tional types (PFTs) [40], nor account for vegeta-
tion structure. Therefore, there have been increasing
efforts to map land cover types and/or fractional plant
cover [41-45], as well as three dimensional vegetation
structure including AGB [46, 47].

These advancements are important for several
reasons. First, identifying which PFTs are expanding
is important for understanding current and future
vegetation and climate dynamics. For example, shrub
expansion is not limited to deciduous shrubs, but
also includes evergreen shrubs [48]. Discriminating
between deciduous and evergreen shrub expansion
is important because the implications of expansion
are notably different—expansion of shorter stature
evergreen shrubs is less likely to exert a positive feed-
back on climate warming [49]. Furthermore, increas-
ing vegetation cover is not limited to shrubs, but can
also include forbs and graminoids, especially grasses
[4, 5]. Conversely, increases in PFTs such as decidu-
ous shrubs can cause decreases in lichens and other
PFTs [4, 50-53]. Since lichen are critical winter for-
age, this has detrimental impacts on caribou, which
are in decline across much of the ABZ [50, 54]. Down-
stream effects of climate change such as changes in
herbivory [55] and fire regimes [30, 56] also affect
PFTs differentially, which highlights the importance
of precisely mapping where and how PFTs are chan-
ging in a warming ABZ. Moreover, changes in veget-
ation do not occur solely in a two-dimensional plane.
Rather, increased shrub height and density are crit-
ical aspects of shrub expansion [4-6, 57]. The AGB
of individual PFTs has been mapped at local scales
(mapped area 0.25 m>-12.5 km?) using field-based
biomass harvests combined with imagery from air-
craft and/or unmanned aerial vehicles (UAVs). These
efforts typically utilized red-green-blue and multis-
pectral imagery to classify scenes and then relied on
either Structure from Motion or lidar data to create
canopy height models and predict biomass [58—62].
At the regional scale, Landsat satellite imagery has
been used with airborne lidar to map boreal tree AGB
in Canada [63], and with biomass harvest data to
map arctic shrub AGB across the Alaska North Slope
[46]. However, there are no regional biomass maps in
Alaska and northwest Canada that parse biomass by
multiple PFTs.

We mapped live AGB of non-tree PFTs (AGBpgr)
within Alaska and northwest Canada from 1985
to 2020 using biomass harvest, UAV, and Land-
sat satellite datasets. Individual PFTs included
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deciduous shrubs, evergreen shrubs, forbs, gramin-
oids, and lichens. This effort focused on non-forested
vegetation communities, but the study area included
boreal regions. In areas where trees were present, our
maps represent understory biomass only. We bridged
the spatial gap between field data and satellite imagery
using UAV based biomass maps [43, 64, 65]. Specific-
ally, we:

(a) Compared accuracy of AGBprr modeled using
satellite predictor data when trained using field
vs. UAV based estimates of AGBpgr.

(b) Assessed spatial variation in AGBpgr across the
region.

(c) Evaluated changes in AGBppr from 1985 to 2020.

(d) Examined how fires influenced changes in
AGBpgr in recent decades.

2. Methods

2.1. Study area

We mapped AGBppr across approximately
500000 km? in Alaska and northwest Canada, cor-
responding to the extended ranges of the Porcupine
and Fortymile caribou herds (figure 1). These cari-
bou herds are culturally, ecologically and economic-
ally important across our study area. Since AGBpgr
determines wildlife habitat and forage, mapping
AGBppr across this area provides valuable insight for
wildlife management. Vegetation communities in this
region range from boreal forest to dense shrublands
to wet tundra and lichen barrens (table S1).

2.2. Field and UAV data collection and aggregation
During the summers of 2018 and 2019, we collec-
ted field data at 44 sites across the study area (table
S1, figure 1). These sites capture the range in non-
forest vegetation community types that occur across
the region. At each site, we harvested live AGB at five
0.25 m? quadrats placed at 20 m intervals along a
100 m transect oriented parallel to the topographic
contour. Harvested biomass was sorted into PFTs
(deciduous shrub, evergreen shrub, forb, graminoid,
lichen), oven-dried to a constant weight, and weighed
with a precision of 0.0001 g. We also collected UAV
imagery at each of the 44 sites. This UAV imagery
was subsequently used to locally map AGBpgr. This
mapping was done by modeling pixel-wise AGBppr
from pixel-wise volume, derived from Structure from
Motion based canopy height models. For additional
details on field data and UAV-based mapping see
Orndahl et al [66].

We created two training/validation datasets, one
aggregated directly from field biomass harvest data
(‘field-based data, n = 266) and one aggregated
from UAV-based AGBppr maps (‘UAV-based data;
n = 427), to assess how model performance varied
based on differences in scale from training data to
final map resolution. For both datasets, observations
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Figure 1. Map of field site locations (n = 44, red points), as well as validation site locations (n = 49, yellow points). The study

area is outlined in orange.

were 30 m pixels with biomass predictions derived
from either field or UAV data (figures S1 and S2).
Data aggregation details are provided in supplement-
ary text 1.

2.3. Landsat spectral predictors and environmental
predictors

We processed remotely sensed predictors in Google
Earth Engine (GEE) [67]. To produce time series
data, we analyzed all available Landsat 4/5/7/8 Col-
lection 1 Tier 1 surface reflectance data from April
Ist to September 30th for 1984-2020. Imagery was
masked to exclude clouds, cloud shadows, snow, sur-
face water, and gaps using the quality flags provided
by CEMASK [68]. We also masked pixels with Nor-
malized Differenced Snow Index (NDSI) >0.1 to
remove some water bodies and subpixel snow. We
normalized Landsat 8 reflectance and NDVI to Land-
sat 7 following [69], and Landsat 4 and 5 NDVI to
Landsat 7 [37].

After quality-screening the Landsat imagery, we
generated seasonal spectral predictors using the
Continuous Change Detection and Classification
(CCDC) algorithm [70]. First, we applied the CCDC
algorithm to model the reflectance bands, thermal
band, and NDVI (table S2). Using these model fits, we
generated annual synthetic reflectance values for spe-
cific seasonal percentiles. Seasonal percentiles were
defined as percentiles of the snow-free season. For
example, summer was represented by the day of year
corresponding to the 50th percentile of snow-free
days (table S3). The other indices listed in table S2

were calculated from the synthetic reflectance estim-
ates. We also calculated the daily rate of change
for each season, and the overall mean, median and
amplitude (maximum minus minimum) for each
band/index. This resulted in 320 seasonal spectral
predictors, listed in table S3. The CCDC model-
ing process filled gaps caused by clouds or other
interference including Landsat 7 Scan Line Corrector
gaps, and produced a continuous time series for each
pixel, except for temporal gaps between time seg-
ment breaks. Temporal gaps were filled by iterat-
ively assigning spectral data from the closest avail-
able year. We supplemented spectral predictors with
a suite of environmental predictors related to climate,
topography, permafrost, and vegetation (table S3).
These procedures for Landsat data pre-processing
and derivation of seasonal spectral predictors follow
recent advances in vegetation mapping [45, 70, 71].

2.4. Modeling

We modeled AGBpgr as a function of the predict-
ors in table S3. Because our predictor set was large,
we employed a multi-stage approach to reduce the
pool of available predictors before model fitting. First,
we excluded predictors for which the standard devi-
ation across our training data was less than 50%
of the standard deviation across the full study area,
as a model trained on this data would be subject
to extrapolation when applied over the full study
area. Then, we removed highly correlated predictors
using hierarchical clustering across a range of distance
thresholds. This produced a list of predictor subsets,
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Figure 2. Flow chart showing the modeling strategy for predicting plant functional type biomass from initial model fitting (green
box), to Monte Carlo uncertainty propagation (blue box), to final map products (orange box). The process shown here is repeated

separately for each plant functional type.

each with a different number of predictors. More
details are provided in supplementary text 2.

Using the reduced predictor sets and AGBpgr
as the response variable, we fit linear mixed effects
models with LASSO regularization [72] using the
glmmlLasso package [73-75] in R v4.0.2 [76]. Site
was included as a random effect, and the response
variable was transformed to reduce heteroskedasti-
city and non-normality of the residuals. We tested
both log and square root transformations and cor-
rected predictions using Duan’s smearing estimate
[77]. During the model fitting process, the LASSO
regularization scheme used by the glmmULasso pack-
age shrunk predictors based on their importance to
the model. Some predictors were shrunk to zero and
eliminated from the model.

We built a separate glmmLasso model for each
PFT and used nested cross-validation to perform
model selection and assess model performance. An
outer leave-one-site-out cross-validation was used
to assess model accuracy. An inner 10-fold cross-
validation, grouped by site, was used to select the
model parameter A (supplementary text 3), which
controls how heavily predictors are penalized dur-
ing the LASSO regularization (figure 2, green box).
The metric used to assess model accuracy within the
outer cross-validation was the root-mean-squared-
error (RMSE) of predictions compared to a held-out
test group.

We performed this modeling process for each pre-
dictor subset and evaluated model performance as it
related to number of predictors. This allowed us to
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select, for each PFT, a predictor set that maximized
the number of predictors while minimizing model
fit and convergence issues. For each PFT, we selec-
ted the predictor subset and response variable trans-
formation that produced the best fitting model and
used these parameters to fit a final model on the full
dataset. To select the final model, we used a compos-
ite metric that averaged the absolute value of normal-
ized root-mean-squared-error (nNRMSE), the absolute
value of normalized mean-bias-error (nMBE) and
one minus the correlation between the observed and
predicted AGBppr values.

During final model fitting, we propagated uncer-
tainty using Monte Carlo simulations (n = 100).
We randomly permuted field-based and UAV-based
estimates of AGBppr to capture uncertainty in
sampling variability (field-based) and the model
used to create UAV-based estimates (UAV-based). We
also sampled each dataset with replacement to cap-
ture parameter uncertainty within the final model fit
(figure 2, blue box) [78, 79]. We aimed to follow best
practice guidelines for biomass product validation
[80]. Further details about error propagation are
provided in supplementary text 4.

To assess predictor importance, we standardized
the coefficients (supplementary text 5) and averaged
them across all 100 model fits. Predictors with higher
average standardized coefficient values were deemed
more important.

2.5. Mapping and validation

We created maps of AGBpgr for eight years over a 35
year time series: 1985, 1990, 1995, 2000, 2005, 2010,
2015 and 2020. Using the model coefficients from
each of the 100 Monte Carlo simulations, we pre-
dicted AGBppr across the study area for each time
step. For each time step, the result was 100 AGBpgr
estimates for every pixel. We considered the best
estimate to be the 50th percentile (median) and also
derived a 95% confidence interval (CI) based on the
2.5th and 97.5th percentiles (figure 2, orange box).

To reduce overestimation for log transformed
models the input predictors were clamped to the min-
imum/maximum value found in the training data
—/4+ 10%. Additionally, AGBppr was recorded as
zero if: (a) the PFT was predicted as zero cover by
Macander et al, 2022 [45], or (b) the land cover type
was predicted as ‘barren’ by Wang et al [41].

To assess how training data source impacted mod-
eling we compared the distribution of field-based
and UAV-based data, produced final maps using both
data sources, and compared them separately during
validation.

We first validated our models using leave-one-
site-out cross-validation. Then, final map products
were compared to an existing map of shrub AGB
[46] and independent harvest datasets from within
[47] (n = 11) and outside [81, 82] (n = 30-38,

KM Orndahl et al

depending on the PFT) our study area (‘external
validation’, table S4). Based on results from model
validation, we determined which training dataset
(i.e. field or UAV) was best suited to predict each PFT.
To make this determination, we compared actual vs
predicted values and used a composite metric that
averaged the absolute value of nRMSE, the abso-
lute value of nMBE and one minus the R? (table 1).
In cases where one training dataset was not definit-
ively better than the other, we visually inspected the
maps to make the final determination. We then pro-
duced a final regional map for each PFT using the
best model.

2.6. Assessing AGBppr distribution and change
over time

To explore the spatial distribution of AGBpgr across
the study area, we aggregated our AGBppr predic-
tions by land cover type [41] for the year 2010. This
allowed us to summarize AGBpgpr within commonly
used categorical land cover classifications. To explore
how AGBpgr changed over time, we used our 35 year
time series, with eight time steps, to chart trends
in AGBppr across the study area. We also examined
impacts of wildfires on AGBppr by tracking changes in
AGBppr within burned areas. We delineated burned
areas using fire polygons from the Alaska Interagency
Coordination Center [83] and the Canadian National
Fire Database [84] and excluded fires <200 hectares in
size.

3. Results

3.1. Model/map validation, impact of training data
source, and feature importance

The distribution of training data was similar between
field-based and UAV-based datasets (figure S4). Both
datasets exhibited right skewed distributions for all
PFTs. Because of the way the data were collected and
aggregated, the field-based dataset had a lower num-
ber of observations (supplementary text 1)

Based on cross-validation, external validation and
visual inspection of the final map products, we found
forb and lichen AGBppr were predicted slightly bet-
ter by field-based models, whereas deciduous shrub,
evergreen shrub and graminoid AGBppr were pre-
dicted slightly better by UAV-based models (figures
S5 and S6, table 1). However, deciduous shrubs were
the only PFT for which one model type (UAV-based)
performed better than the other across all metrics
(table 1). Final maps were produced using the best
available model (figure 3).

To compare mapping results between PFTs, we
normalized RMSE (nRMSE) and MBE (nMBE) using
the mean of the observed data and compared nRMSE,
nMBE and R? values amongst PFTS. Considering all
accuracy metrics, we found model predictions were
best for deciduous shrubs and graminoids, and worst
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Table 1. Validation results for plant functional type aboveground biomass predictions. Cross-validation indicates results from the
leave-one-group-out validation done as part of the modeling process. External validation indicates comparisons of predicted values to
an independent dataset of field biomass harvest data. RMSE and MBE are in units of grams per meter squared. RMSE and nMBE are
unitless. RMSE indicates the magnitude of the average error. nNRMSE normalizes this average error based on the sample mean. MBE
indicates the direction of the error i.e. underprediction (negative values) vs. overprediction (positive values). nMBE normalizes MBE
based on the sample mean. R? indicates the proportion of variance in the dependent variable (aboveground biomass) explained by the
predictors in the regression model. Composite metric was calculated by averaging the absolute value of nRMSE, the absolute value of

nMBE and one minus the R? (table 1).

Plant functional type RMSE (gm™2) nRMSE MBE (g m~?) nMBE R? Composite metric
Deciduous shrubs
Cross-validation
Field-based 178.4 1.2 —26.1 —0.2 0.14 0.75
UAV-based 161.3 1.0 —17.1 —0.1 0.41 0.56
External validation
Field-based 1049.3 1.9 264.4 0.5 0.23 1.06
UAV-based 1015.0 1.8 —282.3 —0.5 0.31 1.00
Evergreen shrubs
Cross-validation
Field-based 56.3 0.7 —9.1 —0.1 0.10 0.57
UAV-based 63.8 0.7 —7.5 —0.1 0.07 0.58
External validation
Field-based 109.9 1.0 —60.1 —0.5 0.11 0.80
UAV-based 100.9 0.9 —46.1 —04 0.15 0.72
Forbs
Cross-validation
Field-based 8.1 14 —0.7 —0.1 0.05 0.82
UAV-based 9.8 1.5 —1.2 —0.2 0.17 0.84
External validation
Field-based 15.1 1.3 —8.4 —0.7 0.17 0.94
UAV-based 14.7 1.3 —6.8 —0.6 0.08 0.94
Graminoids
Cross-validation
Field-based 12.8 0.8 —1.6 —0.1 0.57 0.44
UAV-based 19.5 1.1 —2.2 —0.1 0.40 0.60
External validation
Field-based 23.0 0.8 —9.5 —0.3 0.44 0.55
UAV-based 20.6 0.7 0.4 0.0 0.49 0.40
Lichens
Cross-validation
Field-based 116.1 1.3 —10.1 —0.1 0.13 0.76
UAV-based 81.9 1.6 —10.6 —0.2 0.19 0.87
External validation
Field-based 129.1 1.5 —32.0 —0.4 0.10 0.93
UAV-based 128.0 1.5 —17.4 —0.2 0.10 0.87

for forbs and lichens (figures 4 and S7, table 1).
Bias was generally negative, indicating a tendency for
underprediction (table 1). Our estimates of shrub
AGB were on average 109.8 [95% CI: 61.8, 147.4]
g m 2 lower than estimates from Berner et al 2018
across the eastern portion of the Alaska North Slope,
but we estimated higher shrub AGB in some areas
with dense shrubs (figure S8).

Predictor importance varied by PFT. For decidu-
ous shrubs, cover was the most important pre-
dictor (8 = 0.59). The best evergreen shrub pre-
dictors were autumn Normalized Burn Ratio (NBR,
B = 21.16) and Enhanced Vegetation Index (EVI,
B = 6.97), likely because they differentiate evergreen
shrubs from plants that lose their leaves in autumn.
For forbs, SWIR amplitude was most important

6

(B = 7.87), possibly because forbs (especially hor-
setails) are bright green early in summer but are
absent or inconspicuous in spring and senesce com-
pletely in autumn. Graminoid cover was the top
predictor of graminoid biomass (8 = 18.81). For
lichens, predictors that captured invariance in sea-
sonal lichen color (green CC change from spring to
early summer, § = —26.34) or differences in sea-
sonal lichen visibility (NBR change from late sum-
mer to autumn, § = 28.22), were most import-
ant. This is likely because, unlike vascular plants,
lichens do not change color from spring to sum-
mer, and lichen visibility increases in autumn as leaf
drop reduces the amount of overtopping by shrubs. A
full predictor importance comparison is provided in
figure S9.
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Figure 3. Final biomass maps and relative uncertainty for the year 2020. For each plant functional type, the best available model
was used to create the final map. The final predictions are the median (50th percentile) of all 100 Monte Carlo iterations. Relative
uncertainty is calculated as uncertainty (97.5th percentile—2.5th percentile) divided by prediction (50th percentile) and is

unitless.

3.2. AGBppy distribution and change over time

We estimated plant AGB (excluding trees and mosses)
totaled 178.1 [110.6, 289.0] Tg across the study area
in 2020, with an average AGB density of 354.5 [214.4,
560.4] g m~2 (table 2). Most biomass was con-
tained in Woodland (26%) and Tall Shrub (24%)
land cover types, and biomass density was highest
in Tall Shrubs (table S5). Deciduous shrubs accoun-
ted for 67% of regional non-tree/moss AGB (table 2)
and constituted the majority of non-tree/moss AGB
within most land cover types (figure S10). Decidu-
ous shrub AGB density was highest in Tall Shrubs
(701.3 g m~2); evergreen AGB density was highest in
Bogs (122.3 g m™2); forb AGB density was highest
in Littoral areas (7.3 g m~?); graminoid AGB dens-
ity was highest in Herbaceous types (27.6 g m~2) and
Tussock Tundra (25.2 gm™?); and lichen AGB density
was highest in Open Shrubs (104.0 g m~2) (figure 5).

Total plant AGB (excluding trees and mosses)
increased 31.1 Tg (31%) from 1985 to 2020, while
AGB density increased 60.3 g m~2 (21%). Decidu-
ous shrub AGB increased 32.0 Tg (37%) over the 35
year period, considerably more than any other PFT.
Evergreen shrub and forb AGB increased 2.2 Tg (7%)
and 0.2 Tg (15%), respectively. Conversely, lichen and
graminoid AGB decreased 2.7 Tg (13%) and 0.7 Tg
(15%) (table 2, figures 6 and S11).

Fires strongly influenced trends in AGBpgr across
the study area. Deciduous shrub, evergreen shrub
and lichen AGB decreased, on average, 51%, 69%
and 79% the year after fire, whereas graminoid
and forb AGB increased, on average, 80% and
174% (figures 7 and S12). The largest changes in
AGBppr over the study period were often located
in historic fire perimeters (figure S13). Deciduous
and evergreen shrub AGB increased the most in
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Figure 4. Independent validation results from best available models. For each plant functional type, the best model results are
shown. Field-based models are used for forbs and lichens, UAV-based models are used for deciduous shrubs, evergreen shrubs
and graminoids. Model predictions were compared to independent field biomass harvest data. Shapes denote the region the
validation data comes from. Data from the Yukon North Slope (circles) fell within the study area. Data from the Alaska North
Slope (squares) and Seward Peninsula (triangles) were outside the study area, but within similar ecosystems/vegetation
community types. Biomass harvest data were compared to predictions from the biomass mapping year closest to field data
collection (max difference = 2 years, mean difference = 1.1 years). Harvested area covered, at most, 0.06% of total site area and
was therefore not expected to have a detectable influence on the Landsat spectral signal in the event that the harvest occurred
before the mapping year. Solid lines depict best-fit regression models, while dotted lines depict 1:1 relationships.

Table 2. Total plant functional type biomass (Tg) and average plant functional type biomass density (g m~2) across the study area in
1985 and 2020, as well as the change (A) between these periods. Brackets indicate the lower and upper 95% confidence interval (CI)
from the Monte Carlo iterations.

Plant Average biomass density (g m™?%) Total biomass (Tg)

functional

type 1985 2020 A %A 1985 2020 A %A

Deciduous shrubs 167.6 229.7 62.1 37.1 86.4 118.4 32.0 37.0
CI [102.3,281.9] [138.3,388.6] [52.8, 145.4] [71.3,200.4]
% of total 58.8% 66.5%

Forbs 2.8 3.2 0.4 143 14 1.6 0.2 14.3
CI [1.2,7.6] [1.4,8.8] [0.6, 3.9] [0.7, 4.6]
% of total 1.0% 0.9%

Evergreen shrubs  65.6 70.0 44 6.7 33.8 36.0 2.2 6.5
CI [50.9, 80.8] [54.1, 86.2] [26.3, 41.7] [27.9, 45.0]
% of total 23.0% 20.2%

Lichens 39.5 34.4 —5.1 —129 204 17.7 —-2.7 —13.2
CI [18.4,75.3] [15.8, 64.3] [9.5, 38.9] [8.1,33.2]
% of total 13.9% 10.0%

Graminoids 9.3 8.2 —1.1 —11.8 49 4.2 —0.7 —14.3
CI [5.6, 13.5] [4.9, 11.5] [2.9,7.0] [2.5,5.9]
% of total 3.4% 2.4%

Total 285.1 3454 60.3 21.2 147.0 178.1 31.1 21.2

[178.4,214.4] [214.4,560.4] [92.0,236.8]  [110.6,289.0]
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older (21-30 year old) fire perimeters (175%, 36%),
whereas forbs and graminoid AGB increased the most
in newer (<10 year old) fire perimeters (246%, 63%).
Lichen AGB decreased for all fire ages, by 22% on
average (figure S13).

4. Discussion

4.1. Map accuracy and uncertainty

Field and UAV-based biomass data distributions were
similar, lending confidence the UAV data accur-
ately captured in situ conditions. Field-based data
were measured directly through harvest, and thus
more accurately represent on-the-ground conditions.
Field data were also required to calibrate the UAV-
based models. However, field data were only col-
lected at five 0.25 m? quadrats per site and thus
provide sparse spatial coverage relative to the spa-
tial resolution of the Landsat sensors (900 m?). This
scale mismatch becomes more problematic as site
heterogeneity increases [85]. Conversely, UAV-based
data provide high spatial resolution biomass estim-
ates across the full extent of each site, and can thus be
directly aggregated to match Landsat’s spatial resolu-
tion rather than extrapolated from a few small quad-
rats. However, UAV-based data are subject to addi-
tional sources of error, as uncertainty is introduced

during the modeling process [66, 80]. We found field
and UAV-based data performed similarly, with field-
based models performing slightly better for forbs and
lichens, and UAV-based models performing slightly
better for deciduous shrubs, evergreen shrubs and
graminoids (see table 1 for accuracy assessment res-
ults). UAV-based modeling added a layer of complex-
ity, thus it is important to discern whether the added
complexity improves modeling results [64, 80]. We
found deciduous shrubs were the only PFT for which
UAV-based modeling produced consistently better
results (see table 1 for accuracy assessment results).
Deciduous shrubs were likely modeled best by UAV-
based data because they often occur in the canopy
and have more vertical structure than other PFTs
besides trees. UAV AGBpgr predictions were produced
using Structure from Motion technology, which can-
not penetrate vegetation canopies [66]. UAV-based
biomass estimation of shrubs might therefore be
improved with canopy-penetrating lidar technology
that can produce more reliable mapping of the
ground surface [64].

Independent evaluation of biomass maps is
difficult due to a lack of biomass harvest datasets
partitioned by PFT. To independently validate our
results, we therefore relied on some data collected
outside our study area [81, 82]. We found graminoids
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Figure 6. Change in plant functional type aboveground biomass between 1985 and 2020 across the study area. The bottom right
panel shows historic fire perimeters, colored by decade. The white outline shows the study area.

were predicted best, comparing well during cross-
validation and external validation. Deciduous shrubs
performed well during cross-validation, but less well
during external validation. This is likely because our
data set had limited observations where shrub AGB
was high. For example, we had only one observa-
tion with deciduous shrub AGB > 4000 g m~2. Our
model therefore tended to underpredict deciduous
shrub biomass as compared to external validation
data.

Our AGBppr estimates were likely less accur-
ate in more heavily forested areas because (a) our
training/validation site locations were concentrated
in non-forested areas and (b) tree canopy obscures
understory vegetation in satellite imagery. However,
we took steps to facilitate prediction of understory
AGBppr in areas with trees. First, tree cover was
included as a predictor in the AGBppr models. This
enabled prediction of understory AGB by allowing the
model to differentiate AGBppr spectral signals in areas
with and without trees. Second, we used PFT cover
maps [45] to mask our AGBppr maps. Pixels with zero

10

percent cover for a particular PFT were assigned zero
AGB for that PFT. This masked out AGBppy in some
areas with dense tree cover. We acknowledge that des-
pite these efforts, AGBppr predictions in forested areas
are subject to error. Notably, tree biomass might be
erroneously associated with shrubs and/or AGBpgr
might be underestimated where it is obscured by tree
canopy.

Estimating uncertainty in map products is cru-
cial to understanding their accuracy across time
and space, and to facilitate comparison with other
map products. We used a Monte Carlo approach
to propagate major sources of uncertainty through
our modeling process. Ideally, uncertainty estimation
would incorporate error in the reference data includ-
ing the modeling process used to produce UAV-based
AGBppr estimates, while also incorporating error
in the predictor variables, sampling variability, and
uncertainty in the final model building process [80].
We did not include error/uncertainty in the remotely
sensed predictor data due to computational limita-
tions. We also likely underestimated uncertainty in
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biomass is mapped).

UAV modeling, which involved several stages that
each added uncertainty [66]. Uncertainty in scal-
ing from field data to UAV imagery is likely to be
an important source of error, therefore the use of
UAV data as an intermediate modeling step should
be carefully considered in the context of mapping
objectives. It remains challenging to account for
the myriad sources of uncertainty that arise when
modeling regional biomass, especially when incor-
porating field, UAV, satellite, and environmental
datasets.

4.2. Land cover analysis

Deciduous shrubs made up the majority (67%) of
total plant AGB (excluding trees and mosses) across
the study area in 2020. On the Alaska North Slope,
previous research estimated shrubs accounted for
43% of total AGB from 2007 to 2016 [46]. Our
estimate is likely higher because shrub dominance
tends to be higher in areas with warmer summers
[46, 86]. For example, across the Alaska North Slope,
Berner et al 2018 found shrub dominance increased
from about 30% to 50% between areas with the
lowest June temperatures (1.4 °C) and the warmest
June temperatures (11.3 °C). Conversely, graminoids
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made up only a small percentage (2%) of total AGB
across the study area, despite being the second most
common PFT by cover [45]. Deciduous shrub AGB
constituted the majority of total AGB for most land
cover types—even types named for dominance of a
different PFT (e.g. graminoids in Tussock Tundra).
This highlights not only the important role of decidu-
ous shrubs in regional plant communities, but also
the importance of quantifying PFT biomass in addi-
tion to cover [87].

4.3. AGBpgr change over time

Our analysis showed a 31% increase in total AGB
(excluding trees and mosses) from 1985 to 2020.
This is surprisingly consistent with an estimated 32%
increase in total AGB from 1982 to 2010 across North-
ern Alaska derived from AVHRR NDVI [88], despite
vastly different spatial resolutions (30 m vs 12.5 km).
Furthermore, we found increasing AGB was primar-
ily driven by deciduous shrubs (37%). Similarly, there
have been large increases in deciduous shrub cover in
recent decades across Alaska and the Yukon Territory
[45]. These increases are consistent with trends of
warming-induced deciduous shrub expansion across
much of the Low Arctic [4, 5, 89].
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Our study documents large regional increases in
tundra AGB linked primarily to deciduous shrubs,
while also revealing more subtle shifts in the AGB
of other PFTs. We found evergreen shrub and forb
AGB increased to a lesser extent than deciduous
shrubs (7%, 14%), whereas graminoid and lichen
AGB decreased (14%, 13%). Meta-analyses of warm-
ing experiments across the Arctic report a standard-
ized mean difference (unitless) of +11 for decidu-
ous shrubs, 424 for low shrubs, +36 for tall shrubs,
+5 for evergreen shrubs, +5 for graminoids, +1 for
forbs and —17 for lichens [4]. The direction and
magnitude of changes reported by this meta-analysis
were consistent with our results, with the exception
of graminoids, for which we reported a decrease.
Graminoid decreases we documented could be due
to overtopping from expanding shrubs which could
both obscure graminoid cover in satellite imagery and
cause on-the-ground declines via light competition
[45, 53].

Heterogeneity is inherent in patterns of Arctic
greening and vegetation change. For example, green-
ing can be caused by shifts in relative abundance
of different PFTs, or by more uniform increases
in growth of existing vegetation [2, 10, 15]. The
shrub AGB increases we report likely capture both
of these greening pathways. Within PFTs, species are
likely to respond differently to warming [5, 44, 90].
Our maps aggregate vegetation at the PFT level, but
advances in spectral and spatial resolution of remotely
sensed imagery might facilitate mapping of species
level vegetation change [44, 91]. Disturbances such
as wildfire can cause abrupt and patchy vegetation
change. Finally, landscape and environmental con-
ditions, particularly soil moisture, influence where
vegetation shifts occur [2, 10, 15]. We found the
largest increases in deciduous shrub AGB typically
occurred in wetter areas along riverbanks and in
drainages, as well as within 11-30 year old fire peri-
meters, which is consistent with prior research in
northern Alaska and Canada [10, 92, 93]. Evergreen
shrub AGB similarly increased in intermediate age fire
perimeters, and on the Alaska North Slope, which
aligns with strong trends of greening recorded for
the Alaska coastal plain [94]. Decreases in gramin-
oid, forb and lichen AGB often occurred in areas
with increasing shrub AGB, suggesting these declines
might be driven by competition [53]. Graminoid and
lichen AGB decrease were both widespread across
the study area. However, lichen declines were often
located within fire perimeters, whereas graminoid
declines were less closely tied to fire and were pre-
valent along the Alaska North Slope. Changes in
graminoid and forb AGB were pronounced in the
Yukon Flats, although this should be interpreted with
caution as we did not have training or validation data
in this area.
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4.4. Fire impacts on AGBpgr

Fire had a significant impact on AGBppr distri-
bution and trends. In general, deciduous shrub,
evergreen shrub and lichen biomass decreased the
year following fire whereas graminoid and forb bio-
mass increased. Deciduous shrubs recovered relat-
ively quickly after fire, generally returning to pre-fire
AGB levels 5 years after fire and exceeding pre-fire
conditions as succession continued, in line with over-
all trends of increasing shrub AGB. These trends were
consistent with tundra fire research done in Alaska
that suggests vegetation recovers to pre-fire levels
approximately 3 years after fire [95, 96]. However,
other research suggests recovery periods for decidu-
ous shrubs are generally longer (>10 years) [97, 98].
A longer time-frame for shrub recovery is suggested
by figure S13, where deciduous and evergreen shrub
AGB increase was greatest for intermediate age fires.
Within 11-30 year old fire perimeters, shrub AGB
increase regularly exceeded 100%, demonstrating the
ability of fires to facilitate deciduous shrub and tree
growth [95, 96, 99-102]. Boreal forest fires burn more
severely and take longer to recover. However, they too
seem to promote growth of shrubs and are often char-
acterized by an intermediate stage of deciduous shrub
growth and dominance [99-102].

Lichens experienced the largest relative declines
in AGB post-fire. Lichen AGB decrease within fire
perimeters regularly exceeded 25%, which was nearly
double that experienced across the full study area.
Lichens were also slowest to recover, in several
instances not reaching pre-fire levels, even 30 years
after fire. This is consistent with research document-
ing susceptibility of lichens to combustion, and slow
recovery of lichens after fire [50, 103, 104]. Fire
induced declines in lichen have serious implications
for wildlife as lichen are an important food source for
caribou. Caribou have been known to avoid burned
areas up to 50 years post-fire [50, 105].

We found graminoid and forb AGB increased
after fire, then declined to pre-fire levels as succession
continued. Sedges and grasses are able to re-sprout
from surviving roots and rhizomes, and thus recover
quickly following fire [95, 97, 98, 106]. Gramin-
oids then show increased productivity as they are
released from competition with more slowly regen-
erating shrubs [106]. These factors might explain
why graminoid AGB increased the year after fire.
Forbs also respond positively to fire [102, 107, 108],
and horsetails are known to survive fire due to deep
rhizoids [109].

Within fire perimeters, forb and graminoid AGB
increased in newer fire perimeters, but not those
of intermediate age, likely because these PFTs are
some of the first colonizers of post-fire landscapes
(102,107, 108]. Areas of forb and graminoid decrease
within intermediate age fires were often correlated
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with areas of shrub increase, suggesting these PFTs
were outcompeted as shrub growth accelerated.

5. Conclusion

The maps we present move beyond two-dimensions
and capture the composition and structure of veget-
ation across Alaska and northwest Canada over the
past four decades. Mapping biomass by PFT makes
it possible to characterize spatial and temporal pat-
terns of vegetation change in the Arctic. We report
increases in deciduous and evergreen shrub biomass
that are consistent with greening trends taking place
across much of the Arctic. Conversely, we observed
decreases in lichens and graminoid biomass, which
were often coincident with shrub increase. Fires were
influential in driving spatial and temporal patterns
of AGB. Our maps capture patterns of post-fire suc-
cession consistent with previous research, notably
early succession driven by an increase in graminoids
and forbs, initial decreases in deciduous and ever-
green shrubs, and long-lasting decreases in lichens.
We present an example of a multi-scale modeling
approach that could be applied to other regions, with
appropriate training/validation data inputs. Map-
ping vegetation biomass remains challenging, due
in large part to the difficulty of acquiring biomass
harvest data. As biomass datasets continue to grow,
a centralized database of harmonized AGB would
facilitate future mapping efforts. Advancements in
lidar technology (satellite, airborne and UAV-based)
are also likely to further biomass mapping efforts
as lidar is able to penetrate vegetation canopies
and better reconstruct ground surfaces and canopy
heights.
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