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Abstract Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial
substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers
of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical
and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial
contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost
zone of the western Canadian Arctic: unglaciated uplands, ice-rich moraine, and organic-rich lowlands and till
plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across
ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous
watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In
lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon
(50%) and efflux of biotic CO, (25%) dominated. In watersheds affected by thaw-induced mass wasting,
erosion of ice-rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of
magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by
thaw-induced wasting was, on average, equivalent to 6%—16% of estimated net ecosystem exchange (NEE). In
watersheds affected by thaw-induced wasting, fluvial carbon export approached 60% of NEE. Because future
intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across
diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon
balance.

Plain Language Summary Freshwaters are a main component of the global carbon cycle and
climate. Yet, their role in climate change is uncertain in permafrost regions, where thaw is releasing large
amounts of carbon and enabling production of climate-warming greenhouse gases. To reduce uncertainty, we
measured stream chemistry and carbon fluxes across four ecoregions including a global hotspot of permafrost
thaw in the western Canadian Arctic. Comparing across ecoregions, lowlands were strong sources of biological
carbon dioxide and methane to the atmosphere; mountain rivers ferried products from chemical rock weathering
downstream; and streams affected by permafrost thaw-induced wasting transported large amounts of particulate
carbon. Typical of northern ecosystems, carbon fluxes in non-thaw-affected streams were equivalent to 6%—16%
of carbon uptake by terrestrial vegetation. However, in watersheds affected by thaw-induced wasting, carbon
fluxes were up to 100 times higher and approached 60% of vegetation carbon uptake. Together, these findings
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reveal that thermokarst-susceptible terrains are poised to emerge as a significant component of the Arctic
ecosystem carbon balance and global climate feedbacks, due to hydrologic carbon fluxes that will intensify as
permafrost thaw accelerates.

1. Introduction

At northern high latitudes, permafrost thaw and intensifying hydrologic cycles are strengthening
terrestrial-freshwater linkages (Vonk et al., 2019) and the aquatic component of ecosystem carbon cycling and
climate feedbacks (Plaza et al., 2019; Turetsky et al., 2020). The intensification of these processes across north-
ern watersheds is reflected by multi-decadal increases in riverine solute fluxes and the propagation of thawed
permafrost substrate across watershed scales (Drake, Tank, et al., 2018; Kokelj et al., 2021; Toohey et al., 2016;
Zolkos et al., 2018). Reactivation of thawed permafrost substrate into modern biogeochemical cycles manifests
as perturbation to local and regional carbon cycling. For instance, on the Peel Plateau in the Northwest Territo-
ries of Canada, thaw-driven mass wasting of ice- and mineral-rich glacigenic deposits in fluvial network head-
waters (Kokelj et al., 2013) increases particulate organic carbon (POC) export by orders of magnitude (Shakil
et al., 2020) and enables production of dissolved inorganic carbon (DIC = Z[CO,, HCO;, CO%‘]) via chemical
weathering of carbonate-bearing tills (Zolkos & Tank, 2020). In comparison, thaw of relatively biolabile perma-
frost organic carbon in previously unglaciated terrains (Strauss et al., 2017) can fuel relatively high rates of micro-
bial oxidation of dissolved organic carbon (DOC) and increase carbon dioxide (CO,) loss within fluvial network
headwaters (Drake, Guillemette, et al., 2018). Variation in landscape conditions (e.g., topography, hydrology,
and geology) across the northern permafrost zone are hypothesized to underlie thaw effects on aquatic carbon
cycling (Tank et al., 2020), yet few studies have assessed physiographic controls on aquatic carbon cycling within
thaw-susceptible terrains.

At the landscape scale, vertical exchange of fluvial CO, and methane (CH,) with the atmosphere (henceforth,
“efflux”) and lateral downstream fluxes of DIC, DOC, and particulate carbon (PC) represent carbon losses from
watersheds that are counterbalanced by vegetation photosynthesis. The degree to which ecosystem carbon uptake
via photosynthesis offsets aquatic and terrestrial carbon losses determines the net ecosystem carbon balance
(NECB), which broadly describes whether landscapes are carbon sources or sinks (Chapin et al., 2006). From a
watershed perspective, the ecosystem carbon balance is comprised of net terrestrial carbon uptake as CO, (i.e.,
net ecosystem exchange [NEE], the difference between two large component fluxes, gross primary productivity
[GPP] and ecosystem respiration), and vertical exchange of carbon gases (CO,, CH,, CO, and volatile organic
carbon) between the land and atmosphere, and lateral aquatic export of dissolved and PC (Chapin et al., 2006).
Previous comparisons of aquatic carbon fluxes and NEE in western Siberia (Karlsson et al., 2021), Scandinavia
(Lundin et al., 2016; Wallin et al., 2013), sub-arctic Canada (Hutchins et al., 2020), Alaska (McGuire et al., 2018),
and the Qinghai-Tibet Plateau (Song et al., 2020) indicate that aquatic carbon fluxes in northern environments
are generally equivalent to 10%—20% of NEE, but vary regionally. In remote northern regions, where field-based
measurements of NEE can be sparse (Pallandt et al., 2022), estimates of ecosystem carbon balance are supported
by measurements of aquatic carbon fluxes combined with modeled estimates of NEE informed by remotely
sensed ecosystem properties (Kimball et al., 2018). Using this approach in the Ob’ river basin in western Sibe-
ria, where low terrain relief and carbon accumulation over millennia have promoted development of vast peat
wetlands, Karlsson et al. (2021) found that aquatic carbon efflux was almost 10 times larger than lateral export
to the Arctic Ocean and was equivalent to 35%—50% of the net terrestrial carbon uptake. Across Sweden and
Alaska, aquatic carbon efflux is similar in magnitude to lateral carbon fluxes (Humborg et al., 2010; Stackpoole
et al., 2017). Observations on the species comprising aquatic carbon fluxes, physiographic controls on aquatic
carbon fluxes, and estimates of aquatic contributions to NECB remain sparse for arctic Canada, where continental
glaciation shaped the evolution of high-latitude ecosystems.

In this study, we measure fluvial chemistry across diverse permafrost terrains to understand how geology and
landscape evolution since the last glacial maximum (LGM) have shaped modern-day variation in carbon sources,
fluxes, and ecosystem carbon balance. We focus on the western Canadian Arctic, where variation in geology,
topography, hydrology, and glacial history have driven four adjacent ecoregions to evolve along different trajecto-
ries (Figure 1). These four ecoregions cover nearly 84,000 km? of the northern Yukon Territory and western North-
west Territories (Ecosystem Classification Group, 2009, 2010; Kokelj, Tunnicliffe, et al., 2017; Smith et al., 2004)
and include: (a) the previously unglaciated Richardson Mountains; (b) the ice-rich and thermokarst-susceptible
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Figure 1. Map of sampling sites within each region (upper panel) aligned with cross-section of terrain characteristics of

the four study regions (middle panel) depicted in photos (lower panel): (a) Richardson Mountains, (b) Peel Plateau, (c)
Mackenzie Lowlands, and (d) Travaillant Uplands. In upper panel, site numbers are shown within or adjacent to symbols,
and letters and arrows correspond to approximate locations and directions of photos in lower panel. Image of Mackenzie
Lowlands from Google Earth. Laurentide Ice Sheet western limit from the literature (Duk-Rodkin & Hughes, 1992a, 1992b).
Base map from ESRI ArcGIS Online.

glacial tills of the Peel Plateau; (c) the organic-rich till plains of the Mackenzie Lowlands; and (d) the rolling till
plains of the Travaillant Uplands. This transect of glacial history and topography-driven variation in hydrology
and organic carbon accumulation (Table 1) provides an ideal setting to determine how variation in permafrost
landscape type gives rise to regional patterns in modern-day fluvial chemistry, carbon cycling, and ecosystem
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Table 1
Physiographic Conditions of the Study Regions
Parameter Units Richardson Mountains Peel Plateau Mackenzie Lowlands Travaillant Uplands
Ecoregion characteristics and meteorological conditions
Ecoregion correlation - British-Richardson Mountains Tundra Cordillera high Arctic Red Plain high Travaillant Upland high
subarctic ecoregion subarctic ecoregion subarctic ecoregion
Ecoregion area km? 26,690 7,828 22,907 26,389
Elevation masl 450-900 100-750 25-350 50-450
MSAT °C 11.8 12.8 14.5 13.2
TSP mm 74 238 - 112
Watershed characteristics
Slope ° 14.8 (2.1) 57(1.4) 0.8 (0.1) 1.2 (0.2)
Elevation m 815 (35) 503 (68) 88 (12) 156 (14)
Area km? 28 (16) 6 (5) 62 (24) 102 (74)
Carbonate % 60 (18) 0 0 0
Silicate % 40 (18) 100 (0) 100 (0) 100 (0)
Colluvial % 93 (3) 40 (18) 0.4 (0.4) 0.2 (0.2)
Fluvial % 6(3) 0 0 0
Moraine % 0 60 (18) 60 (9) 92 (4)
Organic % 1(1) 0 39 (9) 7(4)
Lakes/ponds % 0 0.2 (0.1) 18 (7) 7()
SOC kgC m~2 16.3 (3.9) 21.4(0.2) 70.5 (2.1) 29.8 (5.2)
GPP gCm=2d! 3.3(0.2) 5.5(0.2) 5.7(0.3) 5.8(0.2)
NEE gCm=2d-! —0.65 (0.02) —0.70 (0.03) —0.82 (0.02) —0.60 (0.09)

Note. Ecoregion correlations and areas from the literature (Ecosystem Classification Group, 2009, 2010; Smith et al., 2004). MSAT = mean summer (June—August)
air temperature. TSP = total summer precipitation. Elevation, Slope, and Area = mean watershed elevation, slope, and area. Carbonate and Silicate = distribution of
carbonate and silicate bedrock, respectively (sum = ~100) (Norris, 1985). Colluvial, Fluvial, Moraine, Organic = distribution of surficial geology deposits (sum = ~100)
(Coté et al., 2013; Lipovsky & Bond, 2014). Distribution of lakes and ponds from Natural Resources Canada (https://open.canada.ca). SOC = soil organic carbon
content from 0 to 100 cm (Hugelius et al., 2013). GPP = gross primary productivity (Running et al., 2015). NEE = net ecosystem exchange (Kimball et al., 2018).

carbon balance, and dictates potential trajectories of future change. We tested three hypotheses. First, that stream
water chemistry and carbon species would show systematic variation reflective of the divergent physiographic
conditions among the four ecoregions. Second, that total fluvial carbon yields (i.e., flux divided by watershed
area) would be highest in unglaciated uplands, where greater terrain relief, streamflow, and exposed bedrock
enhances weathering and lateral inorganic carbon fluxes. Third, that lateral fluxes would be larger relative to
NEE on the ice-rich till Peel Plateau, in particular where recent acceleration in hillslope thermokarst activity is
known to mobilize carbon into fluvial networks. We sampled the outlets of 33 watersheds (0.1-610 km?) across
these four regions (Figure 1) from June through August 2016 and combined measurements of stream chemistry,
CO, and CH, efflux, and hydrology with geospatial landscape characteristics and modeled estimates of growing
season NEE derived from remotely sensed data. Our findings reveal how physiography shapes variation in bioge-
ochemical cycling and fluvial contributions to ecosystem carbon balance.

2. Methods
2.1. Study Regions

Across the circumpolar North, a range of physiographic conditions (e.g., geology, glacial history, and hydrology)
together with Holocene climate change have given rise to regional variation in ecosystems, the composition of
soils and permafrost, and hydrology. This is exemplified in the western Canadian Arctic, where we focus on
four adjacent ecoregions that span a transect of continental glaciation (Figure 1). In contrast to ecosystems west
of the Richardson Mountains, the three previously glaciated terrains located to the east, within the Mackenzie
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River delta region, represent variation in topography, permafrost ground ice and soil conditions, and mass wast-
ing intensity. This gives rise to large regional differences in the distribution of organic soils and thaw-driven
mobilization of permafrost substrate into contemporary biogeochemical cycles (Hugelius et al., 2014; Kokelj,
Tunnicliffe, et al., 2017).

The previously unglaciated Richardson Mountains (ecoregion 1) demarcates the western limit of the former
Laurentide Ice Sheet (LIS) during the LGM (Clark et al., 2009; Ehlers et al., 2011) and was shaped by mass wast-
ing, colluviation, and weathering of shale, carbonate, and sandstone bedrock outcrops through the Pleistocene
(Norris, 1985; Smith et al., 2004). Mountain peaks reach 1,600 masl and upper slopes are veneered by mostly
unvegetated colluvium, which transitions into tussock- and shrub-tundra on pediment surfaces at lower eleva-
tions, with stands of white spruce in sheltered valleys of larger rivers. Thaw-driven landslides are not common in
the Richardson Mountains, where watersheds are dominated by exposed bedrock and colluvium. Regional obser-
vations of icings indicate potential contributions from groundwater to fluvial networks in mountainous terrains
west of the LIS limit (Crites et al., 2020). A structural and topographic depression separates uplifted shales in the
northern Richardson Mountain watersheds (sites RM-6 to RM-8) from folded and exposed limestone and sand-
stone in the southern watersheds (RM-1 to RM-5) (Norris, 1985; Smith et al., 2004) (Figure 1).

Western headwaters of the Peel Plateau (ecoregion 2) region are sparsely vegetated mountain slopes which
consist mainly of colluvium from exposed marine shale and sandstone bedrock (Duk-Rodkin & Hughes, 1992b;
Norris, 1985) and transition into tussock- and shrub-tundra on the plateau and open spruce forest at lower eleva-
tions (Kokelj, Tunnicliffe, et al., 2017). The plateau is a fluvially incised hillslope plateau within a glacial margin
depositional environment hosting ice-rich landslide-susceptible tills that are mantled by deposits hosting modern
organic carbon (Kokelj, Tunnicliffe, et al., 2017). Expansion of the LIS eroded regional Mesozoic and Paleozoic
shales, sandstones, and limestones, and its retreat ~18 kybp (Lacelle et al., 2013) emplaced carbonate, sulfide,
and silicate bearing tills on the Peel Plateau (Zolkos & Tank, 2020) via burial and preservation of basal glacier
ice and development of segregated ground ice (Kokelj, Tunnicliffe, et al., 2017). The modern-day Peel Plateau
contains ice-rich hummocky moraine, glaciofluvial, glaciolacustrine, and colluvial deposits with permafrost up
to 50 m in thickness (Kokelj, Tunnicliffe, et al., 2017). Rapid warming and intensifying precipitation are accel-
erating thaw-induced mass wasting in the form of retrogressive thaw slump (RTS) thermokarst features along
the Peel Plateau and in glacial margins elsewhere across northwestern Canada (Kokelj, Lantz, et al., 2017; Segal
et al., 2016). Valleys in fluvial network headwaters promote development of RTS hillslope thermokarst features
(Segal et al., 2016) and associated downslope wasting of tens to millions of cubic meters of thawed sediments
(van der Sluijs et al., 2018). These sediments now exceed the transport capacity of streams by orders of magnitude
and are altering geochemical fluxes and ecosystem function across watershed scales (Kokelj et al., 2021). RTS
activity covers only a small areal proportion of watersheds, yet propagates a sediment- and solute-rich slurry
containing thawed permafrost substrate that is dominated by particulates and cascades across watershed scales
via fluvial processes (Broder et al., 2021; Kokelj et al., 2013; Malone et al., 2013; Shakil et al., 2020; Zolkos
et al., 2020).

In the Mackenzie Lowlands (ecoregion 3) and Travaillant Uplands (ecoregion 4), and in permafrost peatlands
elsewhere across western Canada, relatively large stores of organic carbon are increasingly susceptible to thaw
(Hugelius et al., 2020). The geology of the Mackenzie Lowlands and Travaillant Uplands is similar: both regions
contain LIS-derived tills of variable thicknesses atop Devonian and Cretaceous age sandstone and shale bedrock
(Norris, 1985). Organic carbon-rich Holocene permafrost peatlands are widespread in the low-relief, poorly
drained Mackenzie Lowlands (Burn & Kokelj, 2009), where streams connect thousands of small thermokarst
lakes and ponds (Duk-Rodkin & Hughes, 1992a, 1992b) among black spruce-dominated forest, and willow fens
(Ecosystem Classification Group, 2009). In the Travaillant Uplands, lake-fed streams have developed across
an elevational gradient and flow through relatively organic-rich peatlands (Duk-Rodkin & Hughes, 1992a) and
across hummocky plains and open spruce forest (Ecosystem Classification Group, 2009; Norris, 1985).

2.2. Stream Sampling

We sampled streams at 33 sites along a 300 km transect accessed by the Dempster Highway from near Rock River,
Yukon Territory, to near Inuvik in the Northwest Territories (Figure 1). Streams in most regions spanned Strahler
orders 1-5 and were chosen to reflect the varied environmental conditions within and among regions. Sites were
visited three times each from June to August 2016 (Table S1 in Supporting Information S1). During each site
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visit, water temperature, specific conductance, dissolved oxygen, and pH were measured using a pre-calibrated
YSI Professional-Plus water quality meter, and samples were collected to determine concentrations of DIC, DOC,
CO,, and CH,,. Samples for dissolved CO, and CH, concentrations were collected following the headspace equili-
bration method (Hesslein et al., 1991). We also sampled for cations (Ca**, Mg?*, Na*, and K*) and anions (SOi’
and CI) to constrain sources of mineral weathering; chromophoric dissolved organic matter, to characterize
organic matter (specific UV absorbance at 254 nm [SUVA,,,, ] and spectral slope ratio [Sg]); and for dissolved iron
(dFe), to correct SUVA,;, measurements. To further constrain the carbon balance, we collected total suspended
solids in a subset of streams to determine total PC concentrations. This subset was also sampled for total dissolved
nitrogen (TDN) and dissolved inorganic nitrogen (DIN = £[NH,*, NO3, NO;]) to characterize inorganic nutrient
status among regions, and stable isotopes of DIC (§!*C-DIC) and DOC (§'3C-DOC) to constrain dissolved carbon
sources. At each site at the end of the summer, we sampled streams for stable water isotopes (5'¥0-H,O and
8?H-H,0). During each site visit, we measured stream velocity (Lurry & Kolbe, 2000) and cross-sectional area
(Gordon et al., 2004) to calculate discharge. Laboratory analyses of geochemical constituents followed standard
methodologies. Full methods on water sample collection and analysis, QA/QC, and details about instrument
manufacturers are provided in Supporting Information S1.

The efflux (J) of CO, (pmol m~2 s~!) was measured in triplicate using an EGM-4 (PP Systems) connected to a
stationary streamlined transparent chamber (Crawford et al., 2013). Discrete CH, samples were collected every
5 min for a single 20-min period from a port in the Bev-a-line tubing, stored, and later analyzed in the same
fashion as dissolved CH, samples to determine J;;, (nmol m=* s~") (Methods S2 in Supporting Information S1).
Measurements were made at each site at the beginning and end of the summer, and J,, and J;, were calculated
as J = PHAC/RTAt X ¢ (Duc et al., 2013), where P is atmospheric pressure (atm); H is flux chamber height
(m); AC is the change in headspace gas (ppmv); R is the ideal gas constant (82.0562 mL atm K~ mol™"); T is
air temperature (°K); At is measurement duration (s); and ¢ converts from mol to pmol (CO,) or nmol (CH,).
CO, and CH, efflux data were quality-checked and 11 measurements of CH, efflux were omitted, owing to poor
linearity due to variability in the data (n = 6) and CH, loss from the chamber (n = 5) (Table S2 in Supporting
Information S1). Gas transfer velocities (k, m d=") of CO, and CH, were calculated for comparison to other stud-
ies, using J and the concentrations of dissolved gas (mol m~?) in the stream (c,,,,.,) and in equilibrium with the
atmosphere (c ) (Cole & Caraco, 2001). Excess carbon gas, calculated as a proportion (¢, C,)- Was used to
evaluate whether stream gas concentrations were oversaturated (c,,.., > 1, indicating gas loss to the atmosphere),
undersaturated (c,, ., <1), or in equilibrium (c = 1) with the atmosphere (Striegl et al., 2012). Additional
details on gas efflux measurements are provided in Supporting Information S1.

excess

2.3. Fluvial Carbon Fluxes and Yields

Lateral constituent fluxes were calculated as the product of constituent concentration and instantaneous stream
discharge. To estimate CO, and CH, efflux at the watershed scale, we summed the product of J, or J, and
fluvial surface area for each stream order in each watershed (Campeau et al., 2014; Zolkos et al., 2019). Fluvial
surface area in each watershed, estimated as the product of mean stream width from field measurements and
total stream length for each stream order (Methods S3 in Supporting Information S1). To constrain the effects of
varying Jq,, Joy and stream width on upscaled efflux, we report the mean and range of upscaled fluvial J,
and J,. These estimates do not capture fine-scale heterogeneity in aquatic gas efflux within individual stream
reaches (e.g., Crawford et al., 2017), yet our sampling across stream orders attempts to capture variability in gas
concentrations across scales (e.g., Hutchins et al., 2021) and allows for a first estimate of watershed-scale CO,
and CH,, efflux in western Arctic Canada. To assess how the types of carbon comprising fluvial fluxes varied
among sites and regions, we calculated fluxes of individual carbon species relative to the total carbon flux at each
site, henceforth termed proportional flux: p = species flux/total flux, where total flux equals the sum of efflux
(Jcop and Jy,,) and lateral fluxes of DIC, DOC, PIC, and POC.

To control for potential effects of watershed area on discharge and constituent concentration, constituent fluxes
and stream discharge were normalized to watershed area to estimate daily constituent yields (umol m=2 d=1)
and water yield (runoff; mm d~'). The relationship between carbon yield and runoff is useful for comparing
watershed carbon sources and export, and reflects the degree to which carbon export may be limited by availa-
bilities of carbon versus water (e.g., Striegl et al., 2005). The fluvial fluxes and yields that we estimate represent
carbon export during the summer growing season. Varied environmental conditions during the year would likely
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impart seasonal variability if we had extended our observations beyond the summertime. We focus on spatial
instead of temporal variability in our data due to low sampling frequency (n <3 per site) (Table S1 in Supporting
Information S1).

2.4. Net Ecosystem Exchange and Fluvial Contributions to Ecosystem Carbon Balance

To assess the relative magnitudes of summertime fluvial and terrestrial carbon fluxes among the study regions,
we compared our estimates of total fluvial carbon flux for each watershed with collocated estimates of mean
NEE from June through August 2016. For this, we used the NASA Soil Moisture Active Passive Level 4 product
(SPLACMDL) (Kimball et al., 2018), which provides global gridded (9 km) daily estimates of NEE (CO,) using
a satellite data-based terrestrial carbon flux model informed by satellite measurements of ecosystem properties
including soil moisture, land cover, and vegetation, and the NASA Goddard Earth Observing System Model,
version five (GEOS-5) land model assimilation system. For comparison with fluvial carbon fluxes in our study
regions, we converted NEE estimates for each watershed to kgC d~!, first subtracting the surface area covered
by freshwaters (streams, lakes/ponds) from the total watershed area to obtain terrestrial area. To determine rela-
tive contributions of fluvial and terrestrial carbon fluxes to ecosystem carbon balance, we normalized our daily
estimates of lateral fluxes (Z[DIC, DOC, PIC, and POC]) and total efflux (Z[Jq,, Joyu]) to NEE. Additional
information is available in Supporting Information S1.

2.5. Geospatial Analyses

We used ArcHydro tools in ArcGIS 10.5 software to delineate watersheds from the Canadian Digital Eleva-
tion Model, which we reconditioned using satellite imagery-adjusted stream vectors from the Natural Resources
Canada National Hydro Network (NHN; https://open.canada.ca). To constrain the varied potential landscape
controls on carbon cycling and balance, we used published geospatial data to characterize the distributions of
surficial and bedrock geology (Coté et al., 2013; Lipovsky & Bond, 2014; Norris, 1985), lakes and ponds (NHN),
soil organic carbon content (SOC) in the upper 1 m of soil (Hugelius et al., 2013), and vegetation GPP (Running
et al., 2015). Mean summer air temperature (°C) and total summer precipitation (mm) of the study regions were
calculated from daily data collected by Environment and Climate Change Canada meteorological stations in
Inuvik, Fort McPherson, and Rock River (http://climate.weather.gc.ca/), and a Government of Northwest Territo-
ries meteorological station located on the Peel Plateau. Full methods for deriving watershed topography, geology,
and estimates of vegetation productivity can be found in Supporting Information S1.

2.6. Statistics

Statistics were performed using R software v.3.4.4 (R Core Team, 2018). To test for variation in hydrochemical
and environmental variables during the summer sampling period (Table S1 in Supporting Information S1), we
used the analysis of variance (ANOVA) function aov in the R software package stats. We included the interaction
between sampling period and region as the independent variable, to account for environmental variability among
regions while testing for temporal variation in dependent variables. We used redundancy analysis (RDA) to
characterize environmental controls on carbon cycling across our study regions. Dependent variables in the RDA
included measurements of gas efflux (J,, and J,) and carbon yields (DIC, PIC, DOC, and POC). Explana-
tory (environmental) variables included water quality and chemistry (water temperature, specific conductance,
dissolved oxygen, pH, d-excess, and TDN yield) and landscape conditions (terrain slope, GPP, SOC 0-100 cm),
percent distribution of surficial geology units (carbonate, colluvial, moraine, and organic), and lake coverage.
The RDA used mean summertime values from the 18 of 33 sites for which all carbon species were measured.
Prior to performing the RDA, values were log or square root transformed to achieve normality. To simplify the
RDA, we performed automated stepwise model selection using the ordistep function from the R package vegan
(Oksanen et al., 2018). To determine potential contributions from pluvial events to variation in stream chemistry
and constituent export (Beel et al., 2021; Kokelj et al., 2015), we tested correlations between rainfall, stream
chemistry, and total carbon export. Using data from the meteorological station nearest each region (Figure 1), we
calculated total rainfall at 0, 12, 24, 48, 72, and 96 hr prior to sample collection at each site to test for immediate
and delayed effects from rainfall on stream flow and constituent transport. Unless noted, values for individual
sites are reported as summertime mean + standard error, values for study regions (n = 4) are reported as the
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means of individual sites + standard error, and values across all sites (z = 33) as mean + one standard deviation
(1o). Additional information is available in Supporting Information S1.

3. Results
3.1. Physiographic and Meteorological Conditions Underlying Regional Ecosystem Variation

Physiographic and meteorological characteristics varied considerably among study regions (Table 1). These varied
conditions in part underlie regional variation in hydrology. Runoff was highest on the Peel Plateau (4.5 mm d~!),
where total summertime precipitation was highest (238 mm), intermediate in the Richardson Mountains (2.6 mm
d=1), and lowest in the low-relief Mackenzie Lowlands and Travaillant Uplands (both ~0.5 mm d=!). In the
Mackenzie Lowlands and Travaillant Uplands, where lakes and ponds covered 7%—18% of the study watersheds
(Table S3 in Supporting Information S1), lower d-excess values represented deviation from the global meteoric
water line and stronger effects from evaporation on regional hydrology (Table S3 in Supporting Information S1).

3.2. Stream Water Quality and Chemistry

Specific conductance was higher in streams in the previously unglaciated Richardson Mountains (mean = 225
uS ecm~!) than those in the ice-rich moraine Peel Plateau (149 uS cm™'), poorly drained Mackenzie Lowlands (95
uS cm™1), and rolling till plains of the Travaillant Uplands (82 pS cm~"). Temperatures were lower and dissolved
oxygen levels higher in streams of the Richardson Mountains (5.6°C, 11.0 mg L) and Peel Plateau (7.1°C,
11.1 mg L") than in those of the Travaillant Uplands (11.6°C, 8.6 mg L") and Mackenzie Lowlands (13.0°C,
9.9 mg L~"). On average, pH was lower on the Peel Plateau (5.31) than in the other regions (6.65-6.86) (Table 2).
Weathering ions plotted using a Piper diagram showed that all streams were characterized by Ca**-Mg?* type
waters, with varying contributions from H,CO, versus sulfuric acid (H,SO,) driven carbonate weathering
(Figure 2).

DOC was the primary carbon species in the Mackenzie Lowlands (1,900 uM) and Travaillant Uplands (1,510 pM),
where organic surficial deposits were abundant (Table S3 in Supporting Information S1), and SOC and GPP were
higher (Table 1). Across sites, DOC concentrations were strongly anticorrelated with mean watershed elevation
(p5; < 0.001, R? = 0.79). DIC concentrations in streams of the Richardson Mountains (1,816 pM) were two to
six times higher than in the other regions and comprised primarily of HCO; (1,730 pM). Because pH among all
sites was circumneutral to acidic, CO%‘ was a minor component of DIC (£0.3%). Concentrations of POC were
relatively low for most regions (24-99 pM) except the Peel Plateau (2,483 pM), where the highest POC concen-
trations were observed in with streams affected by hillslope RTS activity. Our analysis of 36 total PC samples
from the Peel Plateau allowed for an estimate of a mean PIC:POC ratio of 0.15. We acknowledge that this ratio
developed using suspended solids from Peel Plateau streams may vary in other regions due to, for instance,
particulate composition. However, use of these ratios enables first-order estimates of total carbon and the carbon
balance in a region where this has not been previously examined (Methods S4 in Supporting Information S1).
Total dissolved and PC concentrations (X[DIC, PIC, DOC, and POC]) were highest and most variable in streams
of the Peel Plateau (4,400 uM) (Table 2). Excluding RTS-affected streams, however, mean concentrations were
slightly lower on the Peel Plateau (1,360 pM) (Table S4 in Supporting Information S1) than in the other regions
(1,770-4,210 pM).

Across all study sites, 83 C-DIC (—13.0%¢c + 4.4%0) showed relatively greater variation than §'*C-DOC
(—=27.3%0 % 0.3%0), S (0.85 + 0.05), and SUVA,, (3.77 + 0.58 L mgC~! m~), and thus provided more utility
in discerning carbon sources and cycling. The span of §'3C-DIC values occurred across a large pH gradient, with
paired values reflective of fractionation more strongly coupled to biotic production and atmospheric exchange
of CO, at lower pH, and increasing contributions from primarily H,CO, and/or H,SO, carbonate weathering
at higher pH (Figure 3). On the Peel Plateau, §'3C-DIC was generally lower in non-RTS affected headwaters
(PP-7 = —23.4%0) than in larger RTS-affected watersheds (PP-8 = —5.9%o). In the high pH streams of the
Richardson Mountains, relatively constrained §'*C-DIC values (—8.3%o¢ to —11.7%¢) aligned with DIC sourced
primarily from carbonate weathering, whereas lower values in the Mackenzie Lowlands (—9.5%¢ to —17.5%0)
and Travaillant Uplands (—6.1%o to —18.4%o¢) were indicative of biotic CO, comprising a larger portion of DIC
(Figure 3). Stronger biotic CO, production in the Mackenzie Lowlands was also evidenced by pCO, and pCH,
that were, on average, more than 30% higher than in the other regions (Table 2).
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;Z:::j 2Qualiry, Chemistry, and Carbon Fluxes in Streams of the Western Canadian Arctic
Travaillant
Parameter Units Richardson Mountains Peel Plateau Mackenzie Lowlands Uplands
Water quality and chemistry
Temperature °C 5.6 (0.6) 7.1(0.7) 13.0 (0.6) 11.6 (0.6)
Sp. conductance uS cm™! 255 (51) 149 (76) 95 (13) 82 (7)
Dissolved oxygen mg L~! 11.0 (0.3) 11.1 (0.4) 8.6 (0.7) 9.9 (0.7)
pH pH units 6.86 (0.4) 5.31(0.4) 6.68 (0.2) 6.65 (0.2)
DOC pM 325 (75) 1,051 (198) 1,899 (303) 1,507 (104)
DIC pM 1,816 (456) 298 (102) 776 (85) 578 (39)
POC pM 24 (8) 2,483 (1,654) 56 (16) 99 (62)
PIC pM 4 (1) 382 (255) 9(2) 15 (10)
TC M 3,268 (174) 4,389 (1,973) 2,948 (383) 2,171 (244)
pCO, patm 1,300 (202) 1,537 (326) 2,700 (681) 1,592 (381)
pCH, patm 102 (55) 309 (93) 341 (56) 243 (97)
CO, excess - 3.5(0.3) 4.1(0.5) 6.7 (1.1) 3.3(0.5)
CH, excess - 106 (73) 178 (52) 216 (35) 135 (55)
TDN pM 18.4 (1.4) 29.4 (5.1) 52.4(5.8) 37.0 (4.4)
DIN pM 6.2 (1.7) 6.9 (3.3) 1.3(0.2) 2.8(1.2)
NH; pM 0.1 (0.02) 42(1.2) 0.9 (0.1) 2.2(0.8)
NO; pM 6.1(1.3) 1.8 (0.6) 0.3 (0.2) 0.7 (0.2)
8'13C-DIC %o VPDB -9.8 (0.9) —14.8 (2.4) —13.4(1.4) —13.7(1.9)
313C-DOC %o VPDB —27.3 (0.0) —27.1(0.1) —27.5(0.1) —27.4 (0.0)
d-excess - 7.0 (0.3) 8.7 (0.1) —1.3(1.6) 1.4 (1.7)
Water and carbon fluxes
DOC flux mmol s~! 104 (55) 139 (105) 463 (180) 695 (445)
DIC flux mmol s~! 1,219 (735) 100 (98) 296 (167) 289 (189)
POC flux mmol s~! 7.7 (3.1) 1,127 (908) 18.3 (6.2) 52 (40)
PIC flux mmol s~! 1.2 (0.5) 174 (131) 2.8 (1.0) 8.0 (6.2)
TC flux mmol s~! 1,070 (630) 1,643 (1,544) 1,037 (620) 1,321 (881)
DOC yield pmol m~2 d-! 949 (327) 4,812 (1,672) 1,040 (355) 754 (123)
DIC yield pmol m=2d-! 3,453 (865) 984 (186) 408 (105) 275 (39)
POC yield pmol m=2d-! 38 (9) 5,801 (3,515) 379 43 (22)
PIC yield pmol m~2 d~! 5.9 (1.5) 893 (541) 5.7(1.4) 6.6 (3.4)
TC yield pmol m=2d-! 5,777 (1,465) 12,715 (4,178) 2,068 (636) 1,188 (187)
Jaan pmol m=2 s~! 4.3 (0.6) 3.7(1.0) 5.6 (0.8) 42(1.4)
Jena nmol m~2s~! 324 (18.2) 46.0 (14.4) 24.7 (4.3) 19.0 (4.4)
koo md-! 7.8 (0.9) 5.6 (0.7) 6.0 (0.9) 6.5 (1.1)
Vs md-! 172 (151) 15.1 (5.3) 8.7 (2.7) 9.9 (2.3)
0 m?s~! 0.52 (0.31) 0.16 (0.10) 0.33 (0.16) 0.53 (0.35)
Runoff mm d-! 2.6 (0.5) 4.5(0.9) 0.5 (0.1) 0.5 (0.1)

Note. Values are regional mean + standard error during the summertime study period. See Table S4 in Supporting

Information S1 for mean + standard error for each site. TC = total carbon (Z[IC, OC]).
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Figure 2. Piper diagram showing stream geochemistry as proportions of ion equivalent concentrations for the four study
regions: Richardson Mountains (previously unglaciated), Peel Plateau (ice-rich tills), Mackenzie Lowlands (organic-rich),
and Travaillant Uplands (rolling till plains). CACW = H,COj, carbonate weathering, SACW = H,SO, carbonate weathering,
CASW = H,COjs silicate weathering, SASW = H,SO, silicate weathering, and SSD = sulfate salt (gypsum) dissolution. End
members determined from equations in the text. Site numbers shown within symbols of upper diamond plot.

TDN was lowest in the Richardson Mountains (18 pM), intermediate on the Peel Plateau (29 pM) and in the
Travaillant Uplands (37 pM), and highest in the Mackenzie Lowlands (52 pM) and, on average, comprised of
85% DON. Similar to DOC, SOC, and GPP, TDN was anticorrelated with mean watershed elevation (p ¢ < 0.001,
R?=0.85). DIN was highest on the Peel Plateau (6.9 pM) and in the Richardson Mountains (6.2 pM), and lower
in the Travaillant Uplands (2.8 pM) and Mackenzie Lowlands (1.3 pM). DIN was primarily NH,* except in the
Richardson Mountains, where DIN was primarily NO;™ (Table 2).

3.3. Fluvial Carbon Fluxes in Total and by Species

Lateral fluvial carbon fluxes (X[DIC, PIC, DOC, and POC]) were largest and most variable on the Peel Plateau
(1,643 + 1,544 mmol s~'), and smallest and least variable in the Mackenzie Lowlands (1,037 + 620 mmol s~!)
(Table 2). The ANOVA revealed no temporal variation in constituent concentrations or lateral fluxes during
the summer sampling period (Table S5 in Supporting Information S1). Excess CO, (range = 3.3-6.7) and CH,
(106-216) substantially greater than one indicated CO, and CH, efflux to the atmosphere, which was corrob-
orated and quantified by direct measurements (Table 2, Table S4 in Supporting Information S1). Broadly, CO,
efflux trended opposite elevation and relief. Mean J,, was highest in the low-relief, organic-rich Mackenzie
Lowlands (5.6 pmol m~2 s~!) and lowest on the Peel Plateau (3.7 pmol m~2 s~1). Rates of CO, transfer were, on
average, higher in the Richardson Mountains (k.q, = 7.8 m d~!) than in the other regions (5.6-6.4). Juy, was
higher and more variable in the relatively high-velocity streams on the Peel Plateau (46.0 nmol m~2 s~!) and Rich-
ardson Mountains (32.4 nmol m~2 s~!), where kg, was also high and variable (mean for both regions = 93.6 m
d~") (Table 2).

The proportional fluxes of individual carbon species (p) illustrate how the types of carbon comprising total
fluvial carbon flux (lateral plus efflux) varied among regions. Mean proportional fluxes were generally highest
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Figure 3. Composition of stable dissolved inorganic carbon isotopes
(8'3C-DIC) versus pH among the four study regions: Richardson Mountains
(previously unglaciated), Peel Plateau (ice-rich tills), Mackenzie Lowlands
(organic-rich), and Travaillant Uplands (rolling till plains). Mean values are
shown with error bars representing range. In some cases, error bars are smaller
than the symbol (n = 2 for most points). Curvilinear reference lines depict
theoretical end-members for equilibrium reactions with atmospheric and
biogenic CO,. Gray areas span theoretical end-member values for kinetically
controlled mineral weathering reactions. SACW = H,SO, carbonate
weathering; CACW = H,CO, carbonate weathering; CASW = H,CO; silicate
weathering. Site numbers shown within symbols. The vertical lines assists in
visually distinguishing the pH at which <10% of DIC is comprised of CO,
and thus kinetic reactions (weathering end-members) are inferred to have
greater effects on stable isotope values than equilibrium reactions. §'*C-DIC
values are reflective of isotope fractionation more strongly coupled to biotic
production and atmospheric exchange of CO, at lower pH, and increasing
contributions from primarily H,CO, and/or H,SO, carbonate weathering at
higher pH.

for DOC (DOC, = 0.11-0.51), DIC (0.10-0.74), and Jq, (0.10-0.29)
(Figure 4a, Table S6 in Supporting Information S1). In the colluviated Rich-
ardson Mountains, DIC comprised the largest proportion of total carbon flux
(0.74), whereas carbon fluxes on the Peel Plateau were mostly DOC (0.46)
and POC (0.29). On the Peel Plateau, lateral fluxes of POC in RTS-affected
streams were roughly 10 times larger than in pristine streams and comprised
66%—69% of the total fluvial carbon flux. DOC was the largest flux compo-
nent in the organic-rich Mackenzie Lowlands (0.48) and Travaillant Uplands
(0.51), followed by J, (~0.26) and DIC (~0.20). These proportional fluxes
together with daily lateral fluvial carbon yields reinforced patterns in carbon
cycling coupled to physiographic variation across study regions. In the Rich-
ardson Mountains, lateral yields across sites were moderate (5,800 pmol
m~2 d~!') and almost entirely comprised of DIC (66%) and DOC (13%).
DIC yields were lower relative to runoff where silicate lithologies predom-
inated (RM-6-8, PP-1-7), and higher where carbonate bedrock (RM-1-5)
and RTS-activity (PP-8) were widespread (Figure 4b). On average, lateral
yields for two RTS-affected watersheds (PP-2 and PP-8) on the Peel Plateau
(20,300 pmol m~2 d~') were more than five times higher than at all other
sites (Table S4 in Supporting Information S1). This was primarily due to
POC release, yet among all sites there were no clear trends between POC
yield and runoff because disturbance effects overwhelmed other sources
of between-catchment conditions (Figure 4d). In the Mackenzie Lowlands
and Travaillant Uplands, organic carbon comprised more than 75% of the
lateral yields. The relationship between dissolved carbon yields and runoff
was similar for these two regions. Specific conductance, but not total carbon
export, showed moderate albeit significant correlation with prior rainfall
at several intervals for sites in the Richardson Mountains and Travaillant
Uplands (Figures S1 and S2 in Supporting Information S1).

3.4. Multivariate Indicators of Regional Patterns in Carbon Cycling

Simultaneously evaluating carbon yields and geospatial metrics of phys-
iographic conditions refined understanding of the associations between
carbon cycling and regional environmental characteristics. The trimmed

RDA retained significant variables for water quality, nutrients, and landscape factors (Table 3). The ANOVA

revealed no temporal variation in these variables during the summer sampling period, except for GPP (Table S5
in Supporting Information S1), which decreased from June to August. RDA axis one (RDA1) and two (RDA2)
were both significant. Broadly, RDA1 separated carbon export among gaseous, dissolved, and PC species. Most
sites in the lake- and organic-rich Mackenzie Lowlands and rolling till plains of the Travaillant Uplands plotted in
a cluster of negative values along RDA1, and were associated with more organic carbon (SOC), higher vegetation
productivity (GPP), and higher CO, and CH, efflux (Figure 5). On the Peel Plateau, RTS-affected sites two and
eight plotted with high RDA1 values and were associated with PC export. While RDA1 separated among carbon

species, RDA2 was associated with regional differences in terrain relief and carbon accumulation. Along RDA2,

sites in the southern Richardson Mountains were associated with higher DIC yields, specific conductance, and

carbonate coverage, reflecting more intense physical erosion and chemical weathering of carbonate bedrock.

3.5. Fluvial Carbon Fluxes Relative to Net Ecosystem Exchange

Modeled estimates of NEE from SPL4CMDL ranged from —0.60 gC m~2 d~! in the Travaillant Uplands to —0.82
¢C m~2 d~! in the Mackenzie Lowlands (Table 1). Estimated for the entire fluvial network in each watershed,

upscaled fluvial effluxes of CO, and CH, were, on average, equivalent to 2% of NEE and total lateral carbon

fluxes were, on average, 15% of NEE (Figure 6, Table S6 in Supporting Information S1). Considering all carbon

species, total fluvial carbon flux (Z[Jq,, Joya» DIC, DOC, PIC, and POC]) across regions was equivalent to 17%

of NEE (range = 4%-59%). Among regions, total fluvial carbon flux relative to NEE was lowest in the Travaillant
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Figure 4. Carbon fluxes and yields among the four study regions: Richardson Mountains (previously unglaciated),

Peel Plateau (ice-rich tills), Mackenzie Lowlands (organic-rich), and Travaillant Uplands (rolling till plains). (a) Fluxes
(mean + range) of carbon species in each region, shown as a proportion of the total in each region. Yields versus runoff for
(b) dissolved inorganic carbon (DIC), (¢) dissolved organic carbon (DOC), and (d) particulate organic carbon (POC). For
panels (b—d), error bars represent mean + standard error.

Uplands (4%—13%) and Mackenzie Lowlands (5%—15%), where streamflow velocity was lower and GPP was
higher, and higher in the Richardson Mountains (11%-25%). Total fluvial carbon fluxes relative to NEE were
highest and most variable on the Peel Plateau (8%—59%), due to a first-order watershed with relatively high DOC
flux (PP-7) and two RTS-affected watersheds with high lateral carbon fluxes relative to NEE (PP-2 = 52% and
PP-8 = 57%) (Table S6 in Supporting Information S1).

4. Discussion
4.1. Stream Chemistry and Carbon Cycling Are Coupled to Varied Landscape Histories

In the western Canadian Arctic, regional variation in stream water chemistry reveals how geology and climate
history since the LGM have shaped the evolution of landscapes along varied trajectories, giving rise to diverse
contemporary ecosystems and modes of carbon cycling and defining potential trajectories of future change.

The high-relief Richardson Mountain study sites are beyond the westernmost limit of the LIS and are comprised
of ice-poor colluvial slopes and exposed bedrock, resulting in enhanced erosion and chemical weathering. DIC
yields in the Richardson Mountain sites alone were double the summed dissolved and PC yields in the Macken-
zie Lowlands and Travaillant Uplands. Relatively high pH and stream water specific conductance, trends in
major ions (Figure 2), and §'*C-DIC values (Figure 3) indicate that DIC in the southern Richardson Moun-
tains sites derives mainly from carbonate weathering by H,CO,, likely from atmospheric CO, dissolved within
summertime rainfall and from minor contributions of organic acids from GPP within this relatively sparsely
vegetated landscape. Sulfide oxidation and/or sulfate salt dissolution were most strongly indicated in the subset
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Table 3 of watersheds in the Richardson Mountains containing shale lithologies
Summary of the Significance of Landscape Covariates and Axes From the (RM-6 and RM-8). High DIC yields and low DOC yields relative to runoff
Redundancy Analysis (RDA) of Carbon Export, Stream Chemistry, and (Figures 4b and 4c¢) further emphasize relatively stronger contributions from
Landscape Characteristics mineral weathering to carbon cycling in the southern Richardson Mountains
df P F Variance than in the other regions. While climate warming and permafrost thaw may
Covariate not manifest in the Richardson Mountains as thaw-induced mass wasting
as occurring on the ice-rich Peel Plateau, biogeochemical effects may be
pH 1 <0.01 52.1 4.61 . . . .
stark nonetheless: an increase in atmospheric CO, from 355 to 560 ppm is
Carbonate (%) I lit 202 24l predicted to increase CO, drawdown by 50% via enhanced H,CO, carbonate
Dissolved oxygen (%) 1 <0.01 143 127 and silicate weathering in the Richardson Mountains and elsewhere across
Sp. conductance 1 <0.01 14.0 1.24 the Mackenzie River Basin (Beaulieu et al., 2012). This enhanced weather-
oS 1 0.01 77 0.68 ing would contribute to a 18% increase in HCO; export from the Mackenzie
TDN yield 1 0.02 6.4 057 Blver to tl%e coastal Afc.tl.c O(.:ean, whl?h coul(}l he.lp to C(?unte.rbal.alnce futu1.re
A . 0.0 5 0.49 increases in ocean acidification associated with increasing riverine organic
akes/ponds (%) ’ ' ’ carbon export (Tank et al., 2012; Terhaar et al., 2019). This estimate does
SoC 1 0.02 5.3 0.47 not account for thermokarst in watersheds of major tributaries like the Peel,
Organic (%) 1 0.03 4.7 0.42 where intensifying hillslope thermokarst is driving increased carbonate alka-
Slope 1 0.07 33 0.29 linity concentrations and export through fluvial networks (Tank et al., 2016;
GPP 1 0.25 1.5 0.13 Zolkos et al., 2020).
Residual 6 - - 0.53 In contrast to the colluviated Richardson Mountains, intensifying
RDA axis thaw-driven mass wasting of ice-rich moraine deposits on the Peel Plateau
RDAI 1 <0.01 206.0 9.12 enhances chemical weathering of carbonates, and fluvial fluxes of HCO3™
RDA2 1 <001 435 1.93 and Pzi.rtlculates relative to non-RTS affeFted s.treams. Indeed, relatively high
specific conductance and total carbon yields in streams on the Peel Plateau
RDA3 1 0.05 17.6 0.78 . . . .o
were driven by hillslope RTS-affected sites PP-2 and PP-8. Major ions and
LDl I Lk et Les 8'3C-DIC show that fluvial DIC in Peel Plateau streams originates mainly
RDAS 1 0.99 2.0 0.09 from H,SO, carbonate weathering—which is a CO, source over geological
Residual 12 = = 0.53 timescales (Calmels et al., 2007)—with some biotic CO, indicated by rela-

tively depleted 5'*C-DIC values. The signal of H,SO, carbonate weathering

was strongest for site PP-8, which integrates biogeochemical effects of multi-
ple large hillslope RTSs. This aligns with the understanding that growth of RTSs on the Peel Plateau can mobilize
increasingly greater quantities of deeper carbonate- and sulfide-bearing permafrost till to chemical weathering
fronts (Kokelj et al., 2021; Zolkos et al., 2018). Our RDA further reveals that RTS activity shifts fluvial networks
from conveyors of primarily dissolved carbon to PC (sites PP-2 and PP-8 in Figure 5) (Littlefair et al., 2017,
Shakil et al., 2020). RTS-enhanced sediment and PC export on the Peel Plateau, observed in this and other studies
(Kokelj et al., 2013; Shakil et al., 2020), is reflected in the orders of magnitude higher PC yields in RTS-affected
sites PP-2 and PP-8 (Figure 4d).

Despite striking mobilization of permafrost carbon via hillslope thermokarst, the high rates of CH, efflux for
three sites (PP-4, 5, 6; Table S4 in Supporting Information S1) in low-relief (mean slope = 2.8°) and relatively
organic-rich watersheds (mean DOC = 1,200 pM) on the Peel Plateau highlights variation in carbon cycling even
within the varied regions along our transect. Similar observations on the Peel Plateau and elsewhere indicate that
spatial variability in the accumulation of organics is a primary driver of CH, production and efflux (Crawford
et al., 2017; Zolkos et al., 2019). The negative correlation between pCH, and NO3™ (p,, < 0.001, R?>=0.52), as
well as pCH, and SO,*>~ (p;, < 0.001, R? = 0.68), indicates suppression of methanogenesis across regions, due
to the presence of alternative electron acceptors that microbes use preferentially (Bridgham et al., 2013; Schidel
etal., 2016).

In contrast to the Richardson Mountains and Peel Plateau, the Mackenzie Lowlands and Travaillant Uplands
displayed starkly different aquatic environments and modes of fluvial carbon cycling. Stream temperatures and
dissolved oxygen levels reflected warmer, less oxygenated conditions across these peatland-dominated and rela-
tively lake-rich low-relief landscapes. Ions indicate that carbonate weathering also generated DIC in the Macken-
zie Lowlands, but lower §'*C-DIC values suggest this weathering was more strongly coupled to H,CO, production
from soil organic matter oxidation within the abundant peatlands and plant root respiration (Berner, 1992)
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Figure 5. Ordination plot of redundancy analysis of mean summertime
carbon yields (bold text) and landscape and water chemistry variables
(italicized) among the four study regions: Richardson Mountains (previously
unglaciated), Peel Plateau (ice-rich tills), Mackenzie Lowlands (organic-rich),
and Travaillant Uplands (rolling till plains). Site numbers shown within
points (Figure 1, Table S1 in Supporting Information S1). Peel Plateau sites

2 and 8 were downstream of active retrogressive thaw slump thermokarst
features. DOC = dissolved organic carbon. PC = particulate organic and
inorganic carbon. Jy, and J,, = CO, and CH, efflux. D.O. = dissolved
oxygen. TDN = total dissolved nitrogen yield. Sp. conductance = specific
conductance. GPP = mean watershed gross primary productivity. SOC = mean
watershed soil organic carbon content at 1 m depth. Slope = mean watershed
slope. Carbonate, colluvial, organic, and lakes/ponds = mean watershed
percent coverage of landscape surface types. See units and details in text and
Table 1.

associated with relatively high vegetation productivity (i.e., GPP). Biotic
contributions to the DIC pool were also indicated by high concentrations of
DOC, pCO,, TDN, and SOC, and also by §'*C-DOC values (Table 1) similar
to 8'3C of organic carbon in boreal and tundra soils (e.g., Bird et al., 2002;
Hicks Pries et al., 2013), which together indicate that soil-stream linkages
(e.g., Campeau et al., 2018) drive summertime carbon cycling in the poorly
drained, organic-rich Mackenzie Lowlands. Lower Q and more negative
d-excess values (reflecting greater evaporation) in the Mackenzie Lowlands
are reflective of slower-moving water with longer residence times than in the
high-relief fluvial networks of the Richardson Mountains and on the Peel
Plateau. Longer water residence times in this relatively organic- and lake-rich
wetland terrain likely enhanced carbon degradation, contributing to pCO,
and pCH, supersaturation and a diffusion gradient supportive of the high
aquatic CO, and CH, efflux we observed (e.g., Rocher-Ros et al., 2019).

Similar to the Mackenzie Lowlands, stream chemistry in the relatively lake-
and organic carbon-rich Travaillant Uplands indicated that carbon cycling
was driven by biotic processes. However, compared with the Macken-
zie Lowlands, the lower SOC and low abundance of carbonate lithologies
coupled with low runoff suggest that interactions between terrestrial carbon
and flowing waters are relatively more limited in this terrain, as also reflected
by the lower sum of dissolved plus PC concentrations (Table 1) and yields
(Table S4 in Supporting Information S1). Over millennia, low topographic
gradients within these poorly drained permafrost landscapes has favored
the accumulation of organics, leading to the development of organic- and
nutrient-rich soils and freshwaters that may become a net source of carbon
to the atmosphere as the climate warms at northern high latitudes (Hugelius
et al., 2020).

4.2. Regional Fluvial Carbon Export and Contributions to Ecosystem
Carbon Balance

The distinct ecosystems and associated modes of summertime carbon cycling
that have emerged during the Holocene in the western Canadian Arctic

(Section 4.1) underlie regional variation in aquatic carbon export and contributions to ecosystem carbon balance.
In the Mackenzie Lowlands and Travaillant Uplands, our finding that lateral transport of DOC and biogenic CO,
efflux accounted for most of the fluvial carbon flux supports our hypothesis that carbon export would be domi-
nated by organic species in these relatively low-relief, organic- and lake-rich terrains (Figure 4a). In these regions,
SOC accumulation and microbial oxidation of organic carbon appear to drive carbon cycling and linkages across
the terrestrial aquatic interface (Campeau et al., 2019). Despite this, lower runoff imposed by a shallow terrain
gradient (Figure 1) reduces lateral export in these lowland regions compared with the Peel Plateau, where higher
runoff mobilizes more organic substrate into fluvial networks (Figures 4c and 4d). While rainfall is known to
significantly increase constituent export on the Peel Plateau (Kokelj et al., 2015) and in other permafrost terrains
(Beel et al., 2021), we found no strong or consistent effects on stream chemistry or constituent export from
rainfall prior to our stream sampling, perhaps because our sampling did not target the largest rainfall events
(Figures S1 and S2 in Supporting Information S1). Thus, our estimates of constituent export are likely more
conservative than if we had captured rainfall effects with targeted high-frequency sampling. Increased future
rainfall at northern high latitudes (Bintanja & Andry, 2017) may partly alleviate hydrologic limitations to carbon
export in regions where thaw does not temporarily enhance runoff (Connon et al., 2021), and prompt further
divergence in summertime carbon cycling by enhancing PC export on the Peel Plateau (Kokelj et al., 2015). In
the previously unglaciated, sparsely vegetated Richardson Mountains, lower DOC yields at comparable levels of
runoff reflect source limitation imposed by sparser terrestrial organic carbon stores. Predominance of DIC yields
(mainly as HCO,™) in the Richardson Mountains emphasizes a primarily mineral weathering-driven pathway of
atmospheric CO, uptake, transfer into fluvial networks, and export to downstream environments. From a climate
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0.6+ O C export downstream perspective, DIC export throughout our study regions and the circumpolar
(8] A C efflux to atmosphere north will continue to represent a CO, sink or neutrality where H,COj, rather
05 % than H,SO, drives silicate and carbonate weathering (Zolkos et al., 2018).
L Contributions from fluvial CO, and CH,, efflux to total fluvial carbon fluxes
% 0.4+ in the Travaillant Uplands (26 + 4%, mean + SE) and Mackenzie Lowlands
x (30 + 5%) were larger than in the Richardson Mountains (11 + 5%) and
2 0.3 on the Peel Plateau (13 + 5%). However, we find that CO, and CH, efflux
o P in the western Canadian Arctic accounts for a smaller proportion of total
-2 0.2 fluvial carbon fluxes than in the Yukon River basin (~50%) (Striegl
u_:_ et al., 2007, 2012) and in Sweden (58%) (Humborg et al., 2010). Lakes cover
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Figure 6. The proportion of fluvial carbon flux relative to net ecosystem
exchange (NEE) for sites among the four study regions: Richardson Mountains
(previously unglaciated), Peel Plateau (ice-rich tills), Mackenzie Lowlands
(organic-rich), and Travaillant Uplands (rolling till plains). Values are shown
separately for lateral export (circles) and efflux to the atmosphere (triangles).
Lateral export represents summed dissolved and particulate inorganic and
organic carbon. Efflux to the atmosphere represents summed CO, and CH,
efflux. Efflux was measured at every site in each region, whereas lateral
export presented here is limited by the subset of sites at which particulate
carbon was measured. Error bars for efflux span the estimated range of fluvial
surface area. Error bars for lateral export are smaller than the data points.

7%—18% of the landscape in the Mackenzie Lowlands and Travaillant Uplands
(Table 1). Recent measurements of summertime lacustrine total CH, efflux
(diffusive plus ebullitive) made in the Mackenzie Lowlands were, on aver-
age, 24.7 mgC m~2 d=! (Kuhn et al., 2021). Assuming similar rates of CH,
efflux from lakes in the Mackenzie Lowlands and Travaillant Uplands during
our study period, we estimate that fluvial and lacustrine effluxes would be
32% in the Travaillant Uplands and 48% in the Mackenzie Lowlands. Net
CO, and CH, exchange between lakes and the atmosphere is expected to
vary across the northern permafrost region in response to climate warming
(Bogard et al., 2019; Walter Anthony et al., 2016) and should be included in
future efforts to refine estimates of ecosystem carbon balance.

Our measurements of fluvial carbon flux combined with remote sensing
estimates of NEE show that terrestrial productivity in all watersheds assim-
ilated more carbon during the growing season than was lost via efflux and
lateral fluxes within fluvial networks. During the shoulder seasons and
winter, terrestrial photosynthesis ceases and summertime CO, uptake is
counterbalanced by CO, emissions from ecosystem respiration (Natali

et al., 2019). While not captured by our observations, enhanced terrestrial carbon loss together with aquatic

export outside of the growing-season may result in positive NECB annually. Our estimate that total fluvial carbon

flux (lateral + efflux) was, on average, equivalent to 6%—38% of carbon uptake by terrestrial vegetation encom-
passes estimates for the Yukon River basin (14%) (Striegl et al., 2007, 2012), all of Alaska (16%—17%) (McGuire
et al., 2018; Stackpoole et al., 2017), and all of Sweden (22%) (Humborg et al., 2010). However, we note that
SPLACMDL NEE, and thus the terrestrial component of our carbon balance assessment, does not include CH,

exchange, which is typically a net annual source of carbon from northern high latitude terrestrial ecosystems to
the atmosphere (Kuhn et al., 2021; Natali et al., 2019). For future studies, we also note that SPL4ACMDL estimates
of NEE may be more representative of terrestrial CO, exchange at multi-kilometer spatial scales similar to the

area of the watersheds in this study (mean = 50 km?), as indicated by comparison between mean summertime
NEE from SPLACMDL and NEE observed within relatively small footprints of flux towers in boreal and tundra
environments (Figure S3 and Table S7 in Supporting Information S1). Importantly, as indicated by this first step

toward integrating terrestrial and aquatic carbon fluxes in the western Canadian Arctic presented here, perma-

frost thaw that manifests as hillslope mass wasting may have significant implications for both aquatic ecosystem
function (Chin et al., 2016; Levenstein et al., 2018; Shakil et al., 2021) and ecosystem carbon balance (Song &

Wang, 2021).

4.3. Intensifying Thaw-Induced Mass Wasting Defines New Trajectories of Permafrost Region Ecosystem

Carbon Balance

Regional patterns in fluvial carbon cycling (Section 4.1) and contributions to ecosystem carbon balance

(Section 4.2) observed in this study are primarily controlled by ecosystem conditions coupled to variation in

geology and topography (RDA2 in Figure 5). These trends are skewed by the distribution of ice-rich till deposits,
which are particularly susceptible to climate-driven mass wasting (Kokelj et al., 2021). Although terrains that
may be susceptible to thaw-induced mass wasting like hillslope RTSs represent less than 5% of the northern
permafrost region (Olefeldt et al., 2016), these thaw features propagate and re-sequester terrestrial carbon across
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increasing watershed scales (Kokelj et al., 2021; Shakil et al., 2020). On the Peel Plateau, RTSs cover <1% of the
landscape, but may increase sediment and solute transport by several orders of magnitude (Kokelj et al., 2013;
Malone et al., 2013; Zolkos et al., 2020) and enable up to a seven-fold increase in fluvial carbon flux where they
occur (see also Shakil et al., 2020). Our measurements of fluvial carbon export on the Peel Plateau offer a strik-
ing glimpse of a shifting carbon balance that may come to typify pan-Arctic terrains susceptible to thaw-induced
mass wasting. In watersheds directly affected by hillslope RTS, the magnitude of PC export approached 60%
of net CO, uptake by vegetation (Figure 6 and Table S6 in Supporting Information S1). At a bulk level, POC
mobilized by RTS on the Peel Plateau mainly consists of organic matter that is recalcitrant to biotic transforma-
tion, including petrogenic organic carbon (Broder et al., 2021; Keskitalo et al., 2021; Shakil et al., 2021). While
erosion of POC and its deposition along the freshwater-to-marine continuum is considered to be an effective
mode of carbon sequestration for thousands of years (Goiii et al., 2005; Hilton et al., 2015), the balance between
petrogenic oxidation and burial of biogenic organic carbon is important in determining whether the Mackenzie
River basin is a net source or sink of carbon to the atmosphere (Horan et al., 2019).

Thermokarst also mobilizes elements other than carbon, as indicated by the elevated concentrations of NH, ",

NO;, and SOi’ observed in this study and elsewhere across the northern permafrost zone (Abbott et al., 2015;
Lamhonwah et al., 2017). Complex interactions between carbon and other elemental cycles exist (e.g., Shaver
et al.,, 1992), such as suppression of methanogenesis through the presence of alternate electron acceptors
(Bridgham et al., 2013; Schidel et al., 2016), coupling between methanotrophy and nitrogen availability (e.g.,
Bodelier & Laanbroek, 2004; King, 1997; Liebner & Svenning, 2013), or a general lifting of nutrient limitations
leading to stimulation of microbial growth and decomposition even of recalcitrant carbon (Abbott et al., 2015;
Voigt et al., 2017; Wild et al., 2014). These linkages between carbon and nutrient cycles are not well studied in
Arctic watersheds, but may become increasingly important, especially where intensifying thermokarst activity
strengthens land-freshwater linkages (Kokelj et al., 2021).

As thermokarst activity like hillslope RTSs intensify in northwestern Canada (Segal et al., 2016), sediment trans-
port and deposition within fluvial networks (Keskitalo et al., 2021) will likely emerge as a key process of regional
ecosystem carbon balance. Our results emphasize that this trajectory of ecosystem carbon balance appears to
typify thaw-driven renewal of post-glacial landscape evolution and is therefore likely to emerge in other ice-rich
moraine deposits across the circumpolar north (Kokelj, Lantz, et al., 2017). The degree to which this mobilized
carbon represents a source of CO,—and thus its susceptibility to biogeochemical transformation at a pan-Arctic
scale—will influence the strength of the northern high latitude terrestrial carbon sink (Virkkala et al., 2021; Watts
et al., 2021) and feedbacks to climate change (Turetsky et al., 2020). Future research priorities should include
efforts to: constrain the sources, transformation, and fate of permafrost carbon along the terrestrial-freshwater-ma-
rine continuum, particularly in areas susceptible to thaw-induced mass wasting (Keskitalo et al., 2022; Shakil
et al., 2022), and integrate terrestrial and aquatic carbon fluxes across permafrost terrains which exhibit varied
modes of thaw (e.g., hillslope mass wasting, thermokarst lakes, and active layer deepening), to reduce uncertainty
in northern ecosystem carbon balance and the implications for global climate.

5. Conclusion

In this study, we investigated how geology together with climate and ecosystem history gave rise to regional
variation in present-day fluvial carbon cycling and ecosystem carbon balance in the western Canadian Arctic.
We found significant variability in fluvial chemistry and ecosystem carbon balance coupled to diverse biophys-
ical conditions reflected among unglaciated mountains, ice-rich moraine with thaw-driven mass wasting, and
organic rich lowlands underlain by glacial tills. In the Richardson Mountains and RTS-affected tributaries of
the Peel Plateau, where the exposure of mineral substrate was greatest, mineral weathering was enhanced and
abiotic carbon cycling predominated. In the Mackenzie Lowlands and Travaillant Uplands, where low relief has
enabled the accumulation of organic matter, hydrochemistry revealed that biotic processes dominated carbon
cycling. Across ecoregions, fluvial carbon fluxes in watersheds not affected by thaw-induced wasting were, on
average, equivalent to 6%—16% of NEE, and nearly 60% of NEE in watersheds affected by hillslope RTS activity
due to amplified lateral carbon export. These results demonstrate that northern permafrost terrains susceptible
to thaw-induced mass wasting (Kokelj, Lantz, et al., 2017) may drive emerging trajectories of ecosystem carbon
balance, in which the quantity of thawed permafrost carbon mobilized into fluvial networks may be similar in
magnitude to carbon uptake by terrestrial vegetation (Plaza et al., 2019). Permafrost thaw and strengthening
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