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Abstract—Passive remote sensing is a crucial technology for
climate studies and Earth science. National Aeronautics and Space
Administration’s soil moisture active passive (SMAP) is a remote
sensing observatory that uses passive microwave radiometer mea-
surements to estimate soil moisture and detect the freeze or thaw
state. Despite operating in the protected band of the radio spectrum
(1400-1427 MHz), the radiometer’s measurements are nonethe-
less tainted by radio frequency interference (RFI). An increasing
number of radio frequency transmissions such as those from air
surveillance radars, 5G wireless communications, and unmanned
aerial vehicles are contributing to RFI through either out-of-band
emissions or operating in-band illegally. Physical modeling to detect
RFI globally might prove to be challenging as RFI can be generated
from single as well as multiple sources and these can be divided as
pulsed or continuous wave RFL. In this study, a deep learning (DL)
based RFI detection method is proposed with a novel convolutional
neural network framework that can detect different types of RFIon
a global scale. This is a data-driven approach where the detection
framework learns directly from the SMAP data products to make
a decision whether a certain footprint is RFI contaminated or
not. SMAAP’s level 1 A data products containing antenna counts
of different raw moments along with Stokes parameters are used
in this study to produce spectrograms and level 1B data products
containing the quality flags are used to dynamically label those
spectrograms. This study’s robust DL framework provided the
highest accuracy with the raw moments of horizontal polarization
(99.99% ) to detect RFI globally.

Index Terms—Deep learning (DL), radio frequency interference
(RFI), remote sensing, soil moisture active passive (SMAP).

1. INTRODUCTION

ADIO frequency interference (RFI) has become an impor-

tant issue for both active and passive remote sensing. To re-
motely assess the features of the Earth’s surface and atmosphere,
passive microwave remote sensing makes use of natural thermal
emissions [1]. Because of its sensitivity to a specific attribute
of interest and less attenuation by the intervening atmosphere
between the source of emission and the sensor, the microwave
section of the electromagnetic spectrum is frequently well suited
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for this purpose. However, the microwave region’s relative in-
sensitivity to atmospheric phenomena makes it a particularly
appealing spectral range for wireless communication and radars.
This increasing demand from communications has the potential
to lead to RFI that increases the noise floor which deteriorates
the performance and products of remote sensing systems. The
allotted spectrum for microwave remote sensing instruments can
fall victim to interference from neighboring wireless systems,
including the deployment of 5G accompanied by unsanctioned
communication devices.

The growing demand for bandwidth in commercial applica-
tions necessitates the development of coexistence techniques
between passive radiometry and future wireless infrastructure.
To study such problem, we initiated the development of a unique
physical testbed for collecting remote sensing datasets with
ground truth in the presence of communication signals [2]. As
a part of such effort, we chose the National Aeronautics and
Space Administration’s soil moisture active passive (SMAP)
satellite mission to develop initial learning-based RFI detection
models. Once the testbed is complete, it will enable training,
optimization, and benchmarking of such models, possibly for
mitigation. While this article focuses on the development of
learning models for SMAP RFI detection, the findings of this
article will be evaluated in the testbed and updated for other
real-world scenarios in the future.

SMAP is designed to measure brightness temperature, operat-
ing within the protected portion of L-band, i.e., 1400-1427 MHz,
to estimate soil moisture and detect the freeze or thaw state
in global scale [3]. However, the SMAP measurements can be
jeopardized by the corrupted RFI signals [4]. SMAP uses an
on-board processing unit to gather information to identify RFI
and mitigate the corrupted measurements accordingly [5]. Mul-
tiple different RFI detection algorithms are utilized, depending
on which domain the interference has been eradicated such as
polarization, time, frequency, code, and space. These include
time domain or pulse detection, cross-frequency detection, kur-
tosis detection, and polarization detection [6]. RFI experienced
by SMAP could be pulsed or continuous wave (CW) [7]. While
pulse [8] and kurtosis [9] detection algorithms [10] are sensitive
to pulsed RFI, cross-frequency detection works best on CW
RFI[11]. SMAP has nine different types of detection algorithms
that are combined with a logical “OR™ operation to label a pixel
whether it is RFI contaminated [12], [13]. All the above-stated
detection schemes depend on a hypothesis that involves priory
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assumptions on RFI characteristics and designed handcrafted
features and algorithms specific to different RFI types.

In this article, we propose that deep learning (DL) can be an
attractive alternative for RFI detection by learning directly from
the data. Instead of combining multiple approaches, a single
learning-based approach is demonstrated that could provide a
generalized RFI detection globally. DL has become very in-
strumental in various classification and recognition problems in
computer vision [14], [15]. Recently DL has also been utilized in
RFI detection and mitigation and shown to outperform classical
approaches. In [16], a DL approach is introduced to detect
RFI in C-band Sentinel-1 synthetic aperture radar data. This
approach utilized convolutional neural network (CNN) on RGB
images generated from Sentinel-1 to detect RFI over the Telaviv
region. Another study [17], where CNN is used in simulated
time, order radio data that are acquired from a radio telescope
to identify and mitigate RFL. RFI detection with DL for SMAP
has been introduced in [18] where pretrained CNN models from
camera images are trained and validated on 5014 spectrogram
images. Spectrogram images were labeled using information
from the SMAP ground processing unit and RFI quiet parts of
the globe, which is validated with single cross-validation (CV)
technique. Developed spectrograms were tested over Europe
and the Middle East orbit utilizing only antenna powers that
can be referred as the second raw moment from the horizontal
polarization channel.

The proposed architecture includes both convolutional and FC
layers and works on antenna counts of multiple raw moments in
horizontal polarization (H-pol) and vertical polarization (V-pol)
along with Stokes parameter observations directly. A supervised
learning framework is developed, where utilized raw inputs from
SMAP’s level 1 A data are dynamically labeled using SMAP
level 1B data product’s quality flag eliminating the need for
manual labeling. Instead of depending on different algorithms
for detecting different types of RFI, the single DL framework
proposed in this study has been shown to detect different types
of RFI successfully on a global scale. The evaluations of the
proposed approach using spatial and time-based CV approaches
show that the proposed DL approach has a high level of gener-
alization performance. The main contributions of the proposed
approach can be summarized as follows.

1) A dedicated DL architecture with CNN and FC neural
network layers is proposed that can utilize antenna counts
of multiple raw moments in H-pol and V-pol along with
Stokes parameters.

2) A step-by-step approach to create input spectrograms by
taking advantage of SMAP’s level 1 A data and dynami-
cally labeling them with level 1B data products.

3) Over 50 million footprints are observed globally to prepare
training and testing spectrograms, where the DL-based
framework achieves the highest 99.99% accuracy in RFI
detection with H-pol antenna counts. This helps in devel-
oping a generalized and robust RFI detection algorithm.

4) The proposed DL architecture is assessed under four dif-
ferent train/test scenarios that include spatial and time-
based techniques, which help in understanding the perfor-
mance of RFI detection under various scenarios.
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The rest of this article is organized as follows. Details of
the utilized SMAP data, dataset preparation, data statistics, and
example spectrograms are discussed in Section IL. Section III
details the preprocessing of data, the proposed DL architecture,
training of the DL architecture, and evaluation metrics of DL
models. Results and discussions are provided in Section IV.
Finally, the conclusion is drawn in Section V.

II. DATASET

SMAP’s level 1A [19] and level 1B [20] data products are
used in this study to effectively create a DL-based RFI detection
framework. These are open-source data products available for
scientists and researchers all over the world. SMAP’s coverage
started on 31 March 2015 and it is still providing valuable
measurements globally. The instantaneous area of the earth that
is covered by the SMAP radiometer, which is known as the
footprint, is 36 x 47 km and SMAP takes two to three days to
perform a global coverage.

A. SMAP Level 1 A Data

Level 1 A data product contains antenna counts in both
full band and sub-band levels [12]. These antenna counts are
provided as first-, second-, third-, and fourth-order statistical
raw moments. The first raw moment (M) acts as the mean of
the received signal. The second raw moment (M3) is related to
the variance of the signal. Consecutively, the third raw moment
(M3) gives an impression of skewness, and the fourth raw
moment (My) is related to kurtosis. All of these moments are
available in both in-phase (I) and quadrature channels (Q) of
H-pol and V-pol. The jth-order raw moment is given as

1L
M=% X] (1)
i=1

where X is the ith raw voltage value and NV is the total number
of samples. Each sub-band raw moment data M; in SMAP’s
level 1 A data product is stored using a four-dimensional array
of size 779 x 1928 x 16 x 4, which is depicted in Fig. 1. The
first dimension demonstrates the antenna scans, while the second
dimension represents the number of science data packets con-
taining 1.2 ms of information in the antenna radiometric state.
The third dimension represents the 16 frequency subchannels,
which cover 1.5 MHz each and together form the total SMAP
radiometer band of 1400-1427 MHz [21]. The fourth dimension
stores in-phase (I) and quadrature (Q) components of V-pol and
H-pol channels. SMAP level 1 A data products also include
third Stokes (3S) and fourth Stokes (4S) parameters, which are
complex correlations between the raw moments of H-pol and
V-pol signals. Details about Stokes antenna parameters are given
in [22]. Stokes parameters are given in three-dimensional arrays
of size 779 x 1928 x 16, which are divided into antenna scan,
science data packets, and sub-bands, respectively. Level 1 A data
products are used to create the input dataset for the developed
DL architecture.
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B. SMAP Level 1B Data

SMAP level 1B data products contain antenna temperatures,
Earth brightness temperature, and quality flags [23], [24]. These
flags contain 16-bit data, where each bit represents a piece of
certain information. A particular bit from the 16-bit information
(bitno. 3) indicates whether a certain footprint in an antenna scan
is RFI contaminated or not. Level 1B quality flags are provided
in categories of V-pol, H-pol, 3S, and 4S. Each category of flags
is a two-dimensional array of size 779 x 241, as depicted in
Fig. 1, representing whether each antenna scan and footprint is
exposed by RFI. Note that each category has its own individual
and different quality flag data. This level 1B data product is used
to label the corresponding category of level 1 A data products
generating labeled datasets for supervised training and testing
of the DL framework.

C. Data Preparation and Labeling

SMAP Level 1 A and 1B data are utilized to prepare the
labeled datasets used in this study, as illustrated in Fig. 1.
Each raw moment in a single level 1 A data file has a shape
of 779 »x 1928 x 16 x 4. For each footprint’s sub-band, eight
radiometer data packets are allotted [25]. So, in each level 1 A
moment file, we have 779 x 241 antenna scans and footprints,
i.e., 1928 = 241 x 8. For each antenna scan and footprint, we
generate 16 x 8 spectrogram images of V-pol and H-pol by tak-
ing the magnitude of in-phase and quadrature of corresponding
H-pol and V-pol channels. Hence, a single-level 1 A file for a
particular raw moment can generate 779 x 241 different spec-
trograms for each of the H-pol and V-pol channels. First, four
raw moment data are provided in SMAP level 1 A data products.

Time

Tllustration of data products used for model development and labeling for RFI detection.

For each polarization, we combine the spectrogram images of
each moment (1-4) as a new image channel creating a tensor of
16 > 8 x 4 that will be input to the DL framework, as detailed
in the next section. This process generates separate moment
spectrogram tensors for each polarization as well as for each
antenna scan and footprint. Using the Level 1B data flags, we
label each spectrogram tensor as RFI contaminated or not. Third
and fourth Stokes parameters are converted into spectrograms
similarly, creating single channel 16 x 8 size images. They are
labeled using their corresponding quality flag level 1B data. Both
level 1 A and level 1B data products are coherent in terms of time,
antenna scan, and footprints. By utilizing this homogeneity, each
constructed input type is dynamically labeled with the SMAP
quality flags.

This process generates a total of four different datasets:
four-channel moment spectrogram tensors for H-pol and V-pol,
and single-channel spectrograms for third Stokes and fourth
Stokes parameters. Since RFI labels for different types of
data are provided differently by SMAP, each dataset has its
own individual and different RFI label. A particular data file
from SMAP can generate as many as 187 739 footprints, i.e.,
187,739 = 779 x 241, and multiple files are utilized to gather
samples related to RFI-contaminated and RFI-free footprints,
which is discussed in the following section. SMAP quality
flags are considered as the ground truth for this study, which
might have its own false alarm rate. Moreover, there can be
instances of missed detection with SMAP algorithms [26].
Considering the challenges associated with verifying these
large datasets, this study utilizes SMAP level 1 A antenna
counts and level 1B quality flags as training and testing
samples.
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TABLEI
DaTA STATISTICS OF RFI AND NO-RFI FOOTPRINTS

Antenna Counts Observed RFI Observed No-RFI . Common Common
‘ Year ‘ Domain Footprints Footprints RFL:No-RFI (%) RFI No-RFI
Vertical 189,562 19,687,569 0.9629
Horizontal 198,285 19,651,326 1.0090
gl Third Stokes 70,379 19,813,780 0.3552 2 LR
Fourth Stokes 65,064 19,818,515 0.3283
Vertical 163,471 19,627,873 0.8329
2018 Horizontal 166,335 19,531,635 0.8516 16,681 19,426,877
Third Stokes 57,371 19,740,307 0.2906
Fourth Stokes 51,910 19,745,250 0.2629
Vertical 160,144 19,675,312 0.8139
Horizontal 164,453 19,537,851 0.8471
2019 Third Stokes 54,813 19,785,713 02770 15,107 19,435,689
Fourth Stokes 50,147 19,789,918 0.2533
Vertical 513,177 58,990,754 0.8699
Horizontal 529,073 58,720,812 0.9010
Total Third Stokes 182,563 59,339,800 03077 52439 58,397,379
Fourth Stokes 167,121 59,353,683 0.2816
D. Data Statistics 754
] Maorth
To construct spectrograms of RFI and No-RFI features, 20 America
SMAP’s level 1 A and level 1B data products are used. These o 297
. . . =
spectrograms are utilized to detect RFI-contaminated footprints 2 04 South
within a DL framework. As described earlier, four raw moments < 254 B Austalin
of V-pol and H-pol along with Stokes parameters are collected 50
as training and testing datasets. Samples used in this study are s _
collected from June 1 to June 4, 2017, September 1 to September : , : | e , :
4, 2018, and March 1 to March 4, 2019, which took a total -0 -100 50 mng‘i’tude 50 w00 150
memory of over 600 GB in the computer hardware. SMAP _
usually takes 2—-3 days to perform a global coverage and data T o N 0 2 %
are taken in a way so that there are instances of RFI and No-RFI RFI cases (%) by continent
cases across the globe. Moreover, samples are accumulated from
Fig. 2. Distribution of RFI cases by continent.

different years to understand whether RFI types change over time
along with the effectiveness of the detection algorithm. All the
data files from the mentioned time frame from SMAP level 1 A
and level 1B are utilized to prepare and label the spectrograms.

Table I lists the number of SMAP footprints inspected for
the observed time spans each year for varying antenna count
domains. For each antenna count domain such as V-pol, H-pol,
38, and 48, the number of RFI observed footprints and RFI free
footprints is given along with the total numbers over the full-time
span tested.

For a fixed time frame and antenna count domain, it can be
seen that the number of footprints flagged as RFI by horizontal
and vertical quality flags is comparably higher than third and
fourth Stokes quality flags. The number of RFI-flagged foot-
prints for each domain has slightly decreased each year. From
the observations, it can also be seen that the ratio of RFI label
footprints to the number of no-RFI footprints is very small, in
most cases below 1%. This leads to a highly imbalanced dataset
where comparably a very small number of RFI cases are detected
compared to no-RFI cases. It is important to use proper metrics
to understand the performance of the detection algorithm in this
highly imbalanced dataset, which is detailed in the Section ITI-D.
Different numbers of RFI footprints for varying antenna count
domains indicate that a single footprint may be flagged as RFI
from one domain while being flagged as no-RFI in another
domain. From the observed samples, common RFI footprints

are also identified, where a certain footprint is labeled as RFI by
all four different quality flags. Comparably smaller number of
common RFI footprints indicate low agreement between SMAP
flags for each domain.

The spatial distribution of RFI cases across the globe is
portrayed in Fig. 2. The number of RFI-contaminated footprints
is segmented into seven continents. Total common RFI cases are
demonstrated in Table I and are used to identify the continents
with a higher number of RFI cases. Other quality flags show
a similar spatial distribution of RFI-contaminated footprints.
Among the continents, Asia and Europe are responsible for
the majority of the RFI cases globally with 34.5% and 31.9%,
respectively. The performance of the proposed DL framework
is evaluated in different regions of the world and region-based
analysis, showing high generalization performance for the over-
all detection algorithm, and is provided in Section IV.

E. Example Spectrograms

In Fig. 3, we show spectrograms for three example footprints
categorized as “Common RFL,” “Common No-RFL,” and “Mixed
Cases.” As described in previous sections, spectrograms are
divided into four different categories as V-pol, H-pol, 3S, and
48S. Moreover, V-pol and H-pol datasets consist of four different
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Example spectrograms generated from level 1 A data and labeled by label 1B data. Columns (1-4) and (5-8) show V-pol and H-pol spectrograms,

respectively. Columns (9) and (10) exhibit spectrograms with 3S and 4S. Row (1) illustrates a particular footprint which is labeled as RFI by all four quality flags.
Row (2) demonstrates common No-RFI cases. Row (3) indicates a particular footprint which is labeled differently (RFI by H-pol and 4S but No-RFI by V-pol and

38) by four different quality flags.

statistical raw moments. Antenna counts of generated spectro-
grams are normalized between 0 and 1, which is detailed in
Section III-A. Thus, each row of Fig. 3 shows a total of ten
spectrograms from all four categories for a single footprint.
Columns (1-4) and (5-8) demonstrate the V-pol and H-pol spec-
trograms of four different raw moments respectively. Columns
(9) and (10) show spectrograms of the third and fourth Stokes
parameters. The spectrograms in row (1) are generated from a
particular footprint which is labeled as RFI by all four quality
flags. The second footprint spectrograms shown in row (2) are
from an example footprint where every quality flag specifies
that there is no-RFI. This case is depicted in the figure as a
“common no-RFL” In “common RFI” and “common no-RFI”
cases, there are visible differences in spectrogram images that
can be indicative of the RFI. The third example footprint is
a mixed case where it is labeled as “RFI” by H-pol and 4S
quality flags but “No-RFI” by V-pol and 3S quality Flags. It is
difficult for SMAP algorithms to detect moderate (10-100 K)
and lower level RFI (5-10 K) [13] and these examples might
contain information about low and moderate level RFI. All
these spectrograms are considered for training and testing in
the proposed DL architecture.

ITII. METHODOLOGY

DL is one of the subsets of machine learning, which involves
a parametric model to learn from various types of data, such

as images, videos, or speech [15]. CNN is one of the highly
used DL network due to its high feature learning capability
and it plays an important part in modern-day computer vision.
This section details the structure and training of a DL architec-
ture designed specifically for the RFI detection from SMAP
data. In DL, there are various existing large-scale networks
trained on millions of camera images for object classification
purposes, such as AlexNet [27], ResNet [28], and VGG Net [29].
Although these pretrained networks could be used within the
transfer learning [30] framework for RFI detection as in [18],
the characteristics of spectrograms are very much different than
camera images. While transfer learning is more suitable for
limited data to utilize the feature extraction capability of a
pretrained network, the generated large dataset and labels in
this study allow utilization and learning of a new model for RFI
detection. Evaluation and performance metrics are discussed in
the latter parts of this section where different train/test scenarios
are explained with appropriate performance metrics to explain
the detection performance in an imbalanced dataset.

A. Data Preprocessing

Four different datasets are generated, as described in Sec-
tion II, to evaluate the DL framework. The spectrograms
are prepared with the magnitude of in-phase and quadrature
values. In a previous DL-based RFI detection work, similar
spectrograms are converted into RGB images followed by a
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min-max normalization to feed the data into pretrained networks
on camera images [18]. Converting spectrogram to RGB images
has the potential to limit the range of image intensity into integers
from O to 255 affecting the dynamic range inherent in the data.
Antenna counts of different polarization and Stokes parameters
can have very high numerical values because of incorporating
higher order moment data [21]. Turning spectrograms of antenna
counts to RGB images will add an additional preprocessing layer
which might be responsible to loose important information about
RFL In this study, before being sent into the DL framework
to detect RFI, spectrograms are directly normalized using the
min-max normalization technique rather than being converted
into RGB images.

In the min-max normalization technique, the minimum value
of a spectrogram gets transformed into a 0, the maximum value
gets transformed into a 1, and every other value gets transformed
into a decimal between 0 and 1. Normalization is performed on
the antenna counts of the whole dataset consisting samples from
land and ocean before training and testing with the model. As
different polarization datasets are trained and tested separately,
samples are normalized for each dataset independently. Normal-
ization is a preprocessing approach that helps in converging the
model with less computation complexity [31]. This allows the
DL architecture to learn directly from the spectrogram tensors by
keeping the existing dynamic range of data. Other normalization
techniques, such as utilizing mean and standard deviation, are
also inspected in this study but min-max normalization provides
the best result in terms of accuracy and computational time.

B. Design of the DL Architecture

A DL architecture is proposed formulated with convolutional
and fully connected (FC) layers that will map the input raw
moment spectrograms to a binary classification model where
No-RFI cases are considered as “0” (negative) and RFI cases as
“1” (positive). The developed architecture has been illustrated
in Fig. 4 for the spectrogram tensor inputs. The proposed ar-
chitecture has four convolutional layers followed by two FC
layers and a final dense layer with two neurons accompanied

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Output
Layer

Dense (2)

Flattening FC

—

Detection

2x10%128

1%5%128

by a softmax activation function to represent RFI and no-RFI
classes. The goal of the convolutional layers is to learn features
directly from the input spectrograms and the FC layers map these
features to the output RFI detection. A binary cross-entropy loss
function is associated with the DL architecture that updates the
learning parameters by comparing them with the ground truth
after each iteration. The output after the final soft-max layer can
be interpreted as probabilities so that the architecture as a whole
maps input spectrograms to probabilities of whether that input
has an RFI or not.

The input to the DL architecture is 16 x 8 > 4 moment spec-
trogram tensor for V-pol or H-pol cases and 16 x 8 matrices for
3S and 4S parameters. Other than the first layer that accepts these
inputs, we used the same DL architecture for all input cases.
The first convolutional layer started with 16 filters, which have
3 x 3 kernels. Then with each CNN layer, filters are increased to
32, 64, and 128 and all have 3 x 3 kernels. While the first layer
used the same padding, no zero padding is used for the following
layers. After convolutional layers, a two-dimensional max-pool
layer is used to extract low-level features of the inputs. The
extracted features are flattened and input to the FC layers with 64
and 32 neurons, respectively. After each layer, a rectified linear
unit activation function is used [32]. This activation function
helps with the vanishing gradient and saturation problems [33].
A soft-max layer follows the final layer, which outputs the prob-
abilities of RFI and no-RFI classes. The whole DL architecture
is built using TensorFlow Keras API [34].

C. Training the DL Archifecture

The flowchart of the training process for the proposed DL
architecture is depicted in Fig. 5. We trained and tested the
detection model with four different datasets: V-pol, H-pol, 3S,
and 4S parameters. Each model maps the input spectrograms to
a final output of RFI or no-RFI probabilities. The only difference
in training and testing with four datasets is the input layer and
corresponding labels for each dataset, which are detailed in the
previous section. The model is trained and tested by maintaining
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the ratio of “RFI” and “no RFI” cases discussed in Section II-D
to emulate a real-world scenario.

To update the parameters of the DL architecture, the outputs
of the model are compared with the RFI labels, which are SMAP
quality flags for the corresponding inputs. The model parameters
are determined in order to minimize the binary cross-entropy loss
function [35]. The minimization of the loss function is achieved
through a version of the gradient descent-based backpropaga-
tion approach. Adam optimizer is used for this purpose, which
iteratively updates the model parameters, and helps with com-
putational speed [36]. To develop a model that generalizes and
does not overfit to the training data, learning rate schedulers [37]
and early stopping [38], [39] have been introduced to the model.
The learning rate is a hyperparameter that governs how much
the model changes each time the model weights are changed in
response to the predicted error. A smaller value may result in a
long training process, whereas a larger value may result in an
unstable training operation that might not converge. Learning
rate schedulers refer to the idea of decreasing the learning
rate after each iteration of the model and this study utilizes
an exponential learning rate scheduler. It helps to decay the
learning rate exponentially with an initial learning rate of 0.01
and gradually decreased the learning rate after each epoch. Early
stopping checks the accuracy and losses in between the iterations
to force stop the training process before it starts overfitting.

A total of 20 epochs are used with a minibatch size of 10,000
data samples for training based on the convergence pattern of the
model. Different training/testing scenarios that lead to various
validation techniques are used to evaluate the model, which is
depicted in Section III-D. Python is used to develop conversion
scripts discussed in Section II-C and the DL framework.

D. Evaluation and Performance Metrics

CV is an important process to evaluate the generalization and
effectiveness of a DL-based model. It is most commonly utilized
in situations when the goal is prediction or classification and
how well a model will perform in practice. Four types of CV

RFI Labels

‘ SMAP Quality Flags

have been implemented in this study: train-test split, fivefold,
time-based, and region-based. To author’s knowledge, no other
study in DL-based RFI detection has evaluated their algorithm
with four different CV techniques. Each CV technique is trained
and tested with the four different datasets of V-pol, H-pol, 3§,
and 4S spectrograms.

At first, the train-test split technique is deployed, where total
data are split into 80% for training and 20% for testing/validation
randomly for the whole world and time span. Second, K-fold
CV has been used, where data products are randomly split into
K folds (K = 5 for this study) for training and testing. While the
DL is trained on K —1 fold data, it is tested on the remaining fold
and average performance results are reported on overall K folds.
Train-test split and K -fold are two conventional approaches in
DL to evaluate a model’s performance [40].

After evaluating traditional CV techniques, training and test-
ing datasets are divided with respect to different time spans. The
main goal of this type of evaluation method is to understand
whether the characteristics of RFI change over time and if it
can be modeled with data products from a certain period of
time. Finally, the dataset is divided regionwise, where the DL
model is trained with samples from different regions around the
world and tested with regions that are not considered in training.
Region-based CV portrays an important analysis of whether
RFI detection models can be trained in a certain region and
successfully used for other regions. This also helps to understand
the spatial distributions of different types of RFI that can be
generated from diverse sources.

The confusion matrix is generated to define the performance
of RFI detection and it helps to visualize and summarize the
overall capability of the detection framework. From the con-
fusion matrix, other performance-indicating metrics, such as
accuracy, precision, recall, and F1 scores, are generated. An
example confusion matrix is given in Table II for the binary
classification problem with true and predicted classes of RFI
and No-RFI. Depending on the predictions the elements of the
confusion matrix will be as shown, where TP = True Positive,
TN = True Negative, FP = False Positive, and FN = False



10106

TABLEII
GENERAL CONFUSION MATRIX FOR DETECTION

True Class Confusion Matrix
RFI TP | FN
No-RFI FP TN
No
RFI REI
Predicted Class

Highlighted portion of the table portrays
the significance of true detection.

Negative. “RFI” cases are considered as “1” or positive class and
“No-RFI” cases are considered as “0” or negative class. Using
the confusion matrix, the performance metrics are calculated as
follows:

TP + TN
AcCuracy = TN+ FP + FN @
Precision = 3
ecision TP + FP (3)

TP
Recall = ——— 4
= TP+ EN @
Fl— 2 x Precision * Recall _ 2% TP
" Precision + Recall = 2% TP+FP +FN’

(5)

Accuracy is perhaps the highly used metric to understand
the overall classification performance of the model. However,
a high accuracy does not always indicate the general detection
performance of the method, especially on an imbalanced dataset
scenario as in this case, where the number of “No-RFI” cases is
very larger than the “RFI cases.” Metrics such as precision and
recall should also be evaluated to observe the general perfor-
mance and they help to understand the performance with a large
biased dataset in terms of false positives and false negatives,
which is very critical in RFI detection [41], [42]. Precision refers
to how precise/accurate a model is in terms of how many of the
anticipated positives are actually positive. Precision is a good
statistic to employ when the costs of false positives are high.
On the other hand, recall determines out of all actually positive
cases (in this case “RFI”), how many the model predicted to
be positive. When there is a large cost associated with a False
Negative, recall can be the measurement metric that will help
to select the optimal model. In this study, a higher precision
and recall value can be important metrics to determine the
performance of RFI detection. Fl-score is a function of both
precision and recall creating a single metric instead of two and
is high when both precision and recall are high. F1-score can
also be referred to as the overall performance of a classification
model. All the stated performance metrics are evaluated in the
testing dataset, which has not been seen by the model during
training.

Receiving operating characteristics (ROC) is another illus-
tration to define the overall RFI detection performance of a
model [43]. ROC basically shows the probability of detection
(true positive rate) as a function of the false alarm rate (fraction
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TABLE III
CONFUSION MATRIX (%) OF RFI DETECTION

Antenna .
True Train-Test
S"“"‘.S Class Split K-Fold
'omain
) RFT | 99.702 [ 0298  99.992 [ 0.008
Vertical No-RFT | 0001 _ 99.999 [ 0.001 | 99.999
: RFI | 99.974 [ 0026  99.993 [ 0.007
Horizontal '~ RFT T 0.001 ~ 99.999 [0.002 | 99.998
) RET | 99.66 | 034  99.997 [ 0.003
Third Stokes o RFT T 012~ 99.88 [ 0252 | 99.748
| RFL | 9974 [ 026 99902 | 0.098
Fourth Stokes | 0o RFT 003 — 99.97 [ 0036 | 99.964
No No
RFI REL RFI fand
Predicted Class

Highlighted portion of the table portrays the significance of
true detection.

of false positive). Evaluating ROC curves for machine learning-
based classifications are detailed in [44]. The normalized area
under the ROC curve (AUC) is being used as a performance
indicator to estimate the relative performance of detection algo-
rithms under diverse scenarios. A higher AUC means a higher
performing detection algorithm.

IV. RESULTS AND DISCUSSION

In this section, analysis of the RFI detection performance of
the proposed DL model has been demonstrated. Spectrogram
tensors of V-pol, H-pol, 35, and 4S detailed in Section II, con-
taining the information of antenna counts with labels are utilized
for training and testing. The DL framework has been trained and
evaluated under various scenarios using performance metrics
described in Section III-D. Overall performance in recognizing
RFI and No-RFI scenarios with train/test split and K-fold is
depicted in Section IV-A. The dependence of the dataset is
explained in Section I'V-B. Day-based and region-based CV
analysis is illustrated in Sections I'V-C and IV-D, respectively.

A. Overall Performance of DL-Based RFI Detection

In this section, the performance of this study’s DL-based RFI
detection algorithm is shown with four different datasets and
two CV techniques of train/test split and K -fold. Table III lists
the confusion matrix for all antenna count domains of V-pol,
H-pol, 3S, and 4S under both CV techniques. The performance
metrics of RFI detection, such as accuracy, precision, recall, and
F1-score, are computed from the confusion matrix and given in
Table IV for all tested scenarios. Utilizing and validating four
different datasets with a single coherent DL model portray the
flexibility of DL-based model in RFI detection. Maintaining the
ratio of RFI and No-RFI cases given in Table I, 80% of the total
samples for each antenna count domain are used for training
and 20% for testing in the train-test CV technique. From this
analysis, accuracy with all four different datasets reaches over
99.7% and best achieved at 99.99% for H-pol. Because of the
class imbalance associated with “RFI” and “No-RFI”" samples,
accuracy alone might not be an ideal metric in these scenarios to
evaluate the success of a detection algorithm. Precision of RFI
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TABLE IV
PERFORMANCE METRICS (%) OF RFI DETECTION

;ﬁéﬁgﬁ:s Ammﬁums Accuracy | Precision | Recall | F1-Score
Vertical 99.85 9999 |99.70 | 99.85
Train-Test Horizontal 99.99 9980 [ 99.97 | 99.93
Split Third Stokes 99.77 99.88 |[99.66 | 99.77
Fourth Stokes 99.86 99.97 [99.74 [ 99.86
Vertical 99.99 9999 [99.99 [ 99.99
K-Fold Hpﬁzonml 99.99 9999 [99.99 [ 99.99
Third Stokes 99.87 99.75 [ 99.99 [ 99.87
Fourth Stokes 99.93 9996 [99.90 [ 99.93

detection is also above 99.7% for four different datasets, which
prove that the algorithm detects RFI cases successfully with very
few false positive associated with it. The highest precision level
in train/test split CV is achieved for V-pol case with 99.99%.
This study’s DL-based algorithm also produces a high recall
score in all datasets indicating a very low false negative rate in
overall RFI detection. F1-score is a combination of precision and
recall, which is greater than 99.8% for each dataset portraying
the overall performance. Comparing all the datasets in the train-
test split, H-pol and V-pol provide the best overall metrics in
detecting RFI.

K -fold shows similar results where the overall dataset is
divided into K = 5 different folds and then trained in (K -1) fold
and tested in the remaining fold repeating the process for each
fold independently. Results generated in each fold are averaged
to obtain the results, which are also given in Tables III and IV.
It can be seen that specifically for V-pol and H-pol cases, each
performance metric is 99.99%, which is an indication that a
very high rate of tested samples is correctly classified. From
the analysis, all four datasets provide satisfactory and similar
performance in RFI detection but V-pol and H-pol cases produce
slightly better precision and recall than Stokes parameters. This
shows that the proposed DL framework learns the SMAP RFI
flagging for V-pol and H-pol very accurately.

During the training of a DL-based model, it is important
to understand whether the model is overfitting or underfitting.
Overfitting means when a model works well in a training sce-
nario but cannot generalize in testing samples and a model
is considered as underfitting when it underperforms in both
training and testing data. Itis very important to find the optimum
spot in DL, which is considered as a good fit. When train and
test/validation loss is decreasing after each epoch and converges
after some number of iterations together at a low loss level, it
is considered as a good fit in DL, as depicted in Fig. 6. Both
training and validation loss are decreasing with each epoch,
which demonstrates that the model is neither underfitting nor
overfitting. The model loss here is plotted for the H-pol dataset
and other datasets show similar results.

These models have been trained and tested on a machine with
Intel(R) Xeon(R) 4116 CPU, 128 GB memory and NVIDIA
TITAN RTX GPU. The total training time for the fivefold CV
over the whole dataset is 5.76 h and the testing time is 0.73 h. On
average, predicting whether a particular footprint’s spectrogram
has RFI or not takes 0.13 s for the proposed DL approach. Noting
that the implementation is not being optimized for computation
time, this duration can be potentially reduced. This might be an
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Fig. 6. Model loss on training and validation dataset on H-pol dataset.

important consideration for future space-borne missions to in-
clude an onboard RFI detection unit running DL-based solutions
in real time.

A comparison of AUC with the help of ROC curves between
all the datasets with the train-test CV technique is depicted in
Fig. 7. The ROC of any detection algorithm aids in the visual
representation of the probability of detection (true positive rate)
versus the false alarm rate (false positive rate). A higher AUC
helps in determining the relative performance of the detection
algorithm. Traditional approaches used for RFI detection in
passive remote sensing are also compared with this study’s DL
model evaluated on all test datasets. SMAP has nine different
detection algorithms applied in V-pol and H-pol antenna counts,
which are combined with an “OR™ operation to increase the
performance of detection [13]. But this study utilizes a single
DL-based architecture to detect RFI globally. Among the tradi-
tional approaches, pulse and kurtosis detection algorithms are
evaluated. Pulse detection compares the deviation of a particular
measurement and kurtosis utilizes the ratio of the second and
fourth raw moments. Details about these algorithms can be
found in [45]. ROC for both of these algorithms is directly taken
from the SMAP’s algorithm theoretical basis document [12].
A positive sloped ROC curve that spans diagonally across the
figure area depicts a detector with a “50/50” guess as to whether
RFI is present. ROC curves are demonstrated with both linear
[see Fig. 7(a)] and logarithmic [see Fig. 7(b)] scales specifically
to illustrate the DL-based ROC performance curves, which
provide high detection rate with very small false-alarm rates.
The highest AUC achieved through the DL framework is approx-
imately 0.9999 with H-pol and V-pol datasets. DL-based RFI
detection performance is significantly higher than the traditional
RFI detection techniques of kurtosis, which provide AUC of
0.85 and the pulse detection algorithm provides AUC of 0.64.
AUC with 3§ (0.9990) and 4S (0.9995) parameters also show
better performance than traditional approaches suggesting DL
provides better overall performance in all four data products.
To illustrate ROC curves and calculate AUC, Python’s “Scikit-
Learn” package is used in this study [46].
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four different dataset and traditional approaches (b) with logarithmic scale.

B. Data Dependence

A data-driven technique, such as DL, is designed to learn and
make decisions directly from the data. In this study, SMAP’s
flags are used to label the antenna count data but experts labeling
the same data, collecting samples all around the world over the
desired time span can be very difficult. Thus, it is crucial to know
the effect of the number of training samples required to train a
model for satisfactory RFI detection. In the previous section,
the samples collected globally are divided into 80% training
and 20% testing to evaluate the performance for each antenna
count domain. In this experiment, the test dataset is fixed and to
train the DL-based detection model, different rates of samples
are used. H-pol antenna counts are used in this experiment where
train and test samples are randomly taken from the total observed
footprints maintaining the ratio of RFI and No-RFI cases. The
achieved performance metrics as a function of training rate are
illustrated in Fig. 8. We started the experiment with 5% of total
training samples and gradually increased the sample numbers
with the highest being 80%. The performance metrics utilized
in this study such as precision, recall, and F1-score increase with
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Fig.8. Performance metrics as a function of training data size in DL framework
for RFI detection.

TABLE V
PERFORMANCE METRICS (%) FOR SINGLE DIFFERENT RAW MOMENTS

Antenna
Counts Moment | Accuracy | Precision | Recall | F1-Score
Domain
M, 99.82 93.44 76.2 83.95
Horizontal My 99.98 99.93 99.80 99.87
M3 99.96 99.87 99.59 99,73
My 09.98 05.84 09.86 99.85
My 98.29 91.96 83.62 87.60
Vertical M 99.97 99.74 09.86 99.30
My 99.93 99.86 99.12 99.49
My 99.98 99.90 99.81 99.86

the training sample size. Lower number of training samples such
as 15%-20% demonstrate precision and recall over 99%. This
analysis shows that a DL-based algorithm can be effective with
a lower percentage of training samples to detect RFI. Because
of the availability of SMAP data products, we trained our model
with all available training samples that help to increase the
performance metrics. Moreover, a higher number of training
samples help to extract features from different types of RFI
conditions globally which contributes to reducing missed RFI
detection.

In the previous section, the experiment is conducted with
four raw moments jointly being utilized as an input to the DL
model. In this section, we analyze the individual performance
of these raw moment spectrograms for the overall detection
algorithm. Table V lists the performance metrics obtained from
individual raw moments from V-pol and H-pol datasets. In these
experiments, each raw moment spectrogram is utilized as a
single channel image. Utilizing only the first moment M; for
both V-pol and H-pol provides significantly low precision and
recall compared to jointly using all four channel spectrograms
(demonstrated in Table IV). Recall for M with V-pol and H-pol
is 76.2% and 83.62%, respectively. This means that the DL
model misses alot of RFI-contaminated footprints if only trained
on the first raw moment. Performance gets better with higher
order raw moments such as My, M3, and M, but all individual
raw moment performance is lower than joint utilization of all of
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TABLE VI
PERFORMANCE METRICS (%) OF TIME-BASED ANALYSIS (I'RA]NED WITH 2017
AND 2018 SAMPLES)

Antenna Counts

Domain Accuracy Precision Recall F1-Score
Vertical 99.80 96.85 99.99 98.4
Horizontal 99.92 98.71 99.99 99.35
Third Stokes 99.60 98.75 83.10 90.25
Fourth Stokes 99.65 95.85 85.05 90.12

TABLE VII
PERFORMANCE METRICS (%) OF TIME-BASED ANALYSIS (TRAINED WITH 2017
SAMPLES)

Antcs(:)lzlﬁﬁums Accuracy Precision Recall F1-Score
Vertical 98.88 84.67 99.10 91.32
Horizontal 98.93 85.39 99.69 91.99
Third Stokes 97.48 82.56 81.73 82.14
Fourth Stokes 97.35 82.17 80.55 81.35

them together. For individual performances, second (M>) and
fourth (M,) moments demonstrate better overall performance
(F1-score) for both V-pol and H-pol cases. These results are
encouraging and a single-channel spectrogram can also be uti-
lized for the RFI detection algorithm. However, as satellite data
products are critical for taking important decisions, four-channel
spectrograms are preferable in detecting RFI and provide supe-
rior performance than a single-channel spectrogram.

C. Time-Based Analysis

In time-based analysis, training and testing samples are di-
vided into different time frames. We have implemented two
validation models. First, the DL model is trained with samples
from 2017 and 2018 and tested with samples from 2019. For the
second analysis, the model is trained only with 2017 samples
and tested again on samples from 2019. These analyses will help
to understand whether training with samples from a particular
time frame is enough to detect RFI in a totally unseen time
frame. The results of the first time-based CV analysis are given
in Table VI, where all performance metrics are computed for
the four different datasets. Both V-pol and H-pol datasets show
satisfactory accuracy (99.80% and 99.92%) and recall (99.99%
for both cases), but the precision is higher with H-pol indicating
a lower number of false positive cases. Recall of 3S and 4S
parameters are 83.10% and 85.05%, respectively, which are
significantly lower than the other two datasets. Differences with
performances in 3S and 4S parameters can be due to the fact
that H-pol and V-pol parameters consist of higher order mo-
ments which are accommodated to the model with four-channel
configuration, whereas 3S and 4S have single channel inputs. As
DL has more numerical features to train the model with H-pol
and V-pol parameters, it likely provides better performance in
this experiment.

In the second CV analysis, the time difference between train-
ing and testing datasets is longer, where training is done in 2017
but the trained model is tested with the 2019 data. Obtained per-
formance metrics are listed in Table VII. It can be seen that while
accuracy and recall metrics are slightly reduced, the precision of
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the model is significantly affected. This could be because during
the long lapse between training and testing time-frames, RFI
characteristics might have changed or the receiver parameters
have drifted. A very important point for future research is the
implementation of additional preprocessing and calibrations on
raw antenna count data before they are used as input to DL
models to remove any receiver-related biases. Comparing the
overall performance and time-based analysis, it can be referred
that V-pol and H-pol inputs can be more robust in terms of RFI
characteristic changes in time and space. These findings may
further indicate worldwide RFI types or characteristics have
remained similar over shorter time lapses between training and
testing.

D. Region-Based Analysis

For this experiment, we plan to test the effectiveness of the
DL model trained on spatially different regions of the world and
tested on data from a new region. To achieve this, the samples of
H-pol are divided into different spatial regions to train and test
the DL-based RFI detection model. Several regions are estab-
lished with bounding boxes across the world, as demonstrated
in Fig. 9. SMAP data products come with a specific latitude and
longitude for a particular footprint, which helped to establish
these regions and generate dataset corresponding to them. This
analysis will help to understand the different RFI types across
the globe along with the importance and effectiveness of training
samples from a particular region. Train-test regions along with
overall performance are given in Table VIIIL.

In the first experiment, the RFI detection model is tested
with samples from the Europe region and trained with samples
from the rest of the world (ROW). This analysis gives a perfect
performance in RFI detection across Europe. When the model
is trained in Europe and tested on ROW, the results deteriorate
providing 97%-98% performance metrics. This analysis shows
that samples from ROW have enough statistical examples to
represent RFI cases in Europe while the inverse is not completely
correct. Europe region might not have enough features or all
possible RFI types to model global RFI cases. Similar results are
also observed when trained and tested with Asia and the ROW.
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TABLE VIII
PERFORMANCE METRICS (%) OF REGION-BASED ANALYSIS
lg‘; rgai]:n Rzgfén Accuracy | Precision | Recall | Fl-Score
ROW | Europe 100 100 100 100
" Europe | ROW 98.49 98.13 97.12 97.625
ROW Asia 99.99 99.93 99.86 99.90
Asia ROW 97.26 86.37 99.97 92.68
Europe Asia 99.94 99.99 99.90 99.95
"~ Asia Europe 98.27 99.99 86.78 92.92
USA Europe 80 39.98 99.89 57.10
USA Asia 78.17 21.68 80.27 34.14
USA India 98.92 99.46 86.01 92.25
_ Europe | USA 99.98 100 99.96 99.98
Asia USA 99.25 100 97.97 98.97
India USA 99.34 98.2 99.75 98.94

Next, train/test data are split between Asia and Europe. These
two regions possess most of the RFI cases globally and this
analysis will help to understand how effectively DL-model
learns RFI types and characteristics in different continents.
When trained in Europe and tested in Asia, both precision and
recall are very high. This means training samples from Europe
contain enough features of RFI and No-RFI footprints which are
successfully learned by the detection model. When the model is
trained in Asia and tested in Europe, recall is comparably lower.
This means the detection framework missed some RFI cases
that leads to false negative decisions. This shows that samples
from Asia do not fully contain the types of RFI cases that are
happening over Europe. This analysis can be an indication that
samples from a highly RFI-contaminated region can be utilized
to establish a successful DL-based RFI detection model for other
regions.

Samples collected from a continent might also be a challenge
itself in terms of cost and feasibility. So, this study’s DL-based
model is trained with samples from a particular region (USA
region for this experiment) and then tested in diverse spatially
distributed regions such as Europe, Asia, and India. Testing with
Europe shows that despite a high recall (99.89%), precision is
around 39.98%, which is evidence of a very high false alarm
rate. This proves that samples over the USA are not enough to
detect RFI robustly over Europe. Testing over Asia shows similar
performance to Europe, where false alarm rates are very high.
Samples from India also detect RFI with a very low false alarm
rate as precision is 99.46% but missed some RFI cases which are
apparent in 86.01% recall. This shows that the CNN-based DL
algorithm finds it challenging to detect RFI correctly when it is
trained and tested over different regions with possibly different
RFI characteristics.

Finally, we train the DL-based RFI detection model over
regions of Europe, Asia, and India separately and each learned
model is tested over the USA region. Our first observation is
that the detection model trained with Europe and Asia region
performs very accurately, where all overall performance metrics
are above 98.96%. Europe and Asia have most of the RFI cases
globally, and possibly they include similar RFI cases to the
USA region leading to high detection performance. We see
that overall performance deteriorates slightly when it is trained
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Fig. 10. RFI detection performance over USA trained with (a) Europe,
(b) Asia, and (c) India.

with a smaller region such as India. The spatial distributions of
all detection decisions are depicted in Fig. 10 to illustrate the
performance of the DL-based model spatially. Fig. 10(a)—(c)
demonstrates the experiment when the DL-based RFI detection
model is trained with Europe, Asia, and India, respectively.
In each figure, correct and missed detections as well as false
alarms are shown spatially. While a high correct detection is
demonstrated in Fig. 10(a) (trained with Europe), it is also
observed that some missed RFI detections available in Fig. 10(b)
(trained with Asia) and false alarms can be seen specifically on
the western coastline in Fig. 10(c) (trained with India). This
shows that high care should be given to designing the training
dataset to make sure it has enough RFI variation to cover possible
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RFI cases in the test region. When the model is trained with
relatively smaller regions possibly with less RFI-type variation
and a lower number of samples, the detection performance
applied to another region might not be very high. Furthermore,
special care must be exercised for the coastlines as the footprint
is mixed with land and water. This, in turn, introduces systematic
variable background on the spectrogram over time [18]. Hence,
one can train the DL model just using samples from coastlines
to create a detection framework specific to those regions that
might have increased performance specifically in those regions.

V. SUMMARY AND CONCLUSION

In this study, it is demonstrated that radiometer RFI can be
detected by using a single DL framework based on a CNN
architecture. This study utilizes one coherent model to detect
RFI-contaminated footprints using raw antenna counts, whereas
the SMAP ground processing unit utilizes nine different algo-
rithms to identify RFI. SMAP’s Level 1 A data products are used
to create the input spectrograms and level 1B quality flags are
employed to dynamically label these spectrograms. DL model
is trained and tested with vertical and horizontal polarized raw
moments as well as third and fourth Stokes parameters. Four dif-
ferent CV techniques are evaluated to depict the robustness and
flexibility of the model. As the dataset is heavily biased for one
class (“No RFI” for this study), a single metric such as accuracy
might not be enough performance indicator. Evaluations with
performance metrics, such as precision, recall, and F1-score,
are performed. Overall performance (Fl-score) is above 99%
for each dataset, which proves that the DL-based algorithm can
be an attractive alternative in current and future earth observation
satellites. Performance metrics of the time-based and regional
analysis show that the DL-based RFI detection model is effective
in diverse situations with a moderate number of samples for
shorter time spans. Additional preprocessing steps on raw an-
tenna count observations before they are utilized on DL training
have the potential to mitigate receiver parameter drifts in time.
In addition, this study is limited to detecting RFI with the entire
spectrogram. Future studies can aim to develop DL-based RFI
mitigation techniques based on this study’s detection algorithm,
which can also be extended into sub-band level RFI detection. In
addition, studies on merging different polarization inputs under
a maximum probability of detection framework may improve
the proposed approach.
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